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Abstract In this paper, an effective directional interpolation- and inpainting-based impulse
noise removal algorithm is proposed. Firstly, each noisy pixel is classified to either the
low-density noise or the middle/high density noise. Secondly, a directional interpolation-
based noise removal procedure is proposed to denoise the low-density noise. Thirdly, an
inpainting-based noise removal procedure is proposed to denoise the middle/high-density
noise. Based on ten typical test images, each image with noise level ranging from 30 to 90%,
the experimental results demonstrate that in terms of peak-signal-to-noise-ratio (PSNR),
structural similarity index (SSIM), and visual effect, the proposed algorithm has the best
quality performance when compared with six state-of-the-art noise removal algorithms.

Keywords Highly corrupted images · Directional interpolation · Impulse noise removal ·
Inpainting · Objective and subjective quality comparison

1 Introduction

Digital images are often corrupted by impulse noise due to electromagnetic interfer-
ence, bad-quality sensors, interfered channels or environmental noise [9]. Usually, impulse
noise is classified as the fixed-valued impulse noise, called the salt and pepper noise
which is exhibited as the pixel with the maximum/minimal gray value, and the random-
valued impulse noise exhibited as the pixel with gray value within a pre-determined range
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[8, 18]. Removing impulse noise and preserving good quality in reasonable execution-time
are demanded by signal and image communities.

The standard median filter (SMF) [17] simply replaces the noisy pixel with the median
gray value within the window, but suffers from the blurring side-effect for high density
noise. Accordingly, several improved SMFs [4, 13, 14, 20] were proposed and they work
well for low-density noise, but still suffer from quality degradation for highly corrupted
images. Therefore, Hwang and Haddad [10] developed an adaptive window-based median
filter (AMF) to improve the quality performance. In [21], Zhang et al. proposed a four-
direction based impulse noise detector and then applied the SMF for noise removal.

In [7], Eng and Ma classify all pixels into the noise-free pixels, isolated impulse noisy
pixels, and non-isolated impulse noisy pixels. Then the SMF and the Fuzzy weighted MF
are adopted to restore isolated impulse noisy pixels and non-isolated impulse noisy pix-
els, respectively. Srinivasan and Ebenezer [18] proposed an improved decision-based noise
removal algorithm (DBA) for highly corrupted images. Unfortunately, when the noise level
is up to 80%, the DBA often suffers from the streaking effect. For reducing the streak-
ing effect, Jayaraj and Ebenezer [12] proposed a switching-based median filtering noise
removal algorithm for high-density salt and pepper noise. Aiswarya et al. [1] proposed
a decision-based nonsymmetrical trimmed median filter (DBUTMF) for noise removal.
However, when the noise density ranges from 80% to 90%, its denoising performance is
poor. Esakkirajan et al. [8] proposed a modified DBUTMF (MDBUTMF) which adaptively
selects the mean or median of the neighboring noise-free pixel values to restore the current
noisy pixel.

With the help of four directions, Bai et al. [2] adopted the continued fractions inter-
polation filter (CFIf) for noise rmoval. Currently, Lin et al. [15] proposed an efficient
morphological mean filter (MMF) based noise removal. The MMF first restores the noisy
pixels which are adjacent to the noise-free pixels, and then iteratively propagates the
denoised results to the remaining noisy pixels. Considering more impulse noise models, Ng
and Ma [16] developed a switching median filter with boundary discriminative noise detec-
tion (BDND) method for denoising highly corrupted images. Jafar et al. [11] proposed an
improved adaptive window-based BDND (IBDND). Recently, Chou et al. [5] proposed the
multi-level adaptive switching filter (MASF) for removing noise under different impulse
noise models. The MASF has better quality performance than the IBDND.

In this paper, we propose an effective three-stage directional interpolation- and
inpainting-based impulse noise removal algorithm. In the first stage, each detected noisy
pixel is classified to the low-density noise type or the middle/high density noise type. In
the second stage, a directional interpolation-based procedure is proposed to restore the low-
density noisy pixels. In the third stage, first, a connected component labeling method is
applied to identify and locate all connected middle/high noisy pixels in the denoised image
obtained in the second stage. Then, the proposed inpainting-based procedure is proposed to
denoise these middle/high density noisy pixels in the selected connected component accord-
ing to the priority-first rule. Based on ten typical test images, six from the commonly used
benchmark, each with size 512 × 512, and four from the Kodak test set (http://r0k.us/
graphics/kodak/), each with size 768 × 512, each image with noise density ranging from
30% to 90%, the experimental results demonstrate that the proposed noise removal algo-
rithm substantially outperforms six state-of-the-art noise removal algorithms, MDBUTMF,
BDND, IBDND, CFIf, MMF, and MASF, in terms of the peak-signal-ratio-noise (PSNR),
the structural similarity index (SSIM) [19], and visual effect. The average execution-time
required by the proposed algorithm is less than 0.35 second per image, which is middle
among the concerned seven algorithms and is promising for real-time demand.

http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/
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The rest of this paper is organized as follows. In Section 2, the proposed three-stage noise
removal algorithm is presented. In Section 3, several experiments are conducted to show the
quantitative and qualitative quality superiority of the proposed algorithm when compared
with six state-of-the-art algorithms. Some concluding remarks are addressed in Section 4.

2 The proposed three-stage noise removal algorithm

In this section, we first present the procedure for impulse noise detection and classification.
Next, we present the proposed directional interpolation-based procedure to restore the low-
density noise. Finally, we present the inpainting-based procedure to restore the middle/high-
density noisy pixels.

2.1 Noise detection and classification

For the image pixel Ix,y at location (x, y), we define a noise detection map D = (Dx,y), in
which ‘1’ denotes a noisy pixel and ‘0’ denotes a noise-free pixel. Therefore, D = (Dx,y)

is defined by

Dx,y =
{
1, where Ix,y ∈ [0, �1] or Ix,y ∈ [255 − �2, 255],
0, otherwise,

(1)

where �1 and �2 are two pre-determined gray values by the histogram based noise detection
method. As mention in Section 3, for the first and second noise models, i.e. the salt-and-
pepper noise model, we set �1 = 0 and �2 = 0; for the third noise model, we set (�1, �2) ∈
{9, 19, 29} and for the fourth noise model, we set (�1, �2) ∈ {(9, 19), (19, 29)}.

The number of neighboring noisy pixels of the current noisy pixel is defined by

N3×3
x,y =

∑
(i,j)∈W 3×3

x,y

Di,j (2)

The noisy pixel is called the low-density noise when the number of its neighboring noise-
free noisy pixels is equal to or less than 3, i.e. N3×3

x,y ≤ 3; otherwise, because the number
of its neighboring noise-free ones is equal to or larger than 4, it is called the middle/high-
density noise.

2.2 Directional interpolation-based noise removal for low-density noise

For the low-density noisy pixel Ix,y , for which Di,j = 1 and N3×3
x,y ≤ 3 are held, we further

examine its eight neighboring pixels to determine its textural class as either a horizontal
edge, a vertical edge, a textural region, or a smooth region. The main idea of the second
stage is that Ix,y will be restored by the average value of its two horizontal (vertical) neigh-
boring noise-free pixels if there is a horizontal (vertical) line passing through it; by the
mean value of the four-directional neighboring noise-free pixels if there is a textural area

around Ix,y ; by applying the Gaussian filter with mask
0.5 1 0.5
1 0 1
0.5 1 0.5

on the eight-directional

neighboring noise-free pixels if there is a smooth area around Ix,y . To determine the
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texture type of a low-density noisy pixel, we first calculate the horizontal gradient and
vertical gradient of Ix,y , respectively, by

Gh
x,y =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣∣∣

∑
(i,j)∈Sl

x,y

fi,j

∑
(i,j)∈Sl

x,y

ci,j +δ
−

∑
(i,j)∈Sr

x,y

fi,j

∑
(i,j)∈Sr

x,y

ci,j +δ

∣∣∣∣∣∣ , when ci,j �= 0,

0, otherwise,

(3)

and

Gv
x,y =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣∣∣

∑
(i,j)∈St

x,y

fi,j

∑
(i,j)∈St

x,y

ci,j +δ
−

∑
(i,j)∈Sb

x,y

fi,j

∑
(i,j)∈Sb

x,y

ci,j +δ

∣∣∣∣∣∣ , when ci,j �= 0,

0, otherwise,

(4)

where Sl
x,y = {(x − 1, y − 1), (x − 1, y), (x − 1, y + 1)}, Sr

x,y = {(x + 1, y − 1), (x +
1, y), (x + 1, y + 1)}, St

x,y = {(x − 1, y − 1), (x, y − 1), (x + 1, y − 1)}, and Sb
x,y =

{(x − 1, y + 1), (x, y + 1), (x + 1, y + 1)}. We set δ = 0.001 in the experiment to avoid the
infinite case of the rational term when the denominator of the rational term tends to zero.
The noise-free pixel fi,j and its noise-free status ci,j are defined by

fi,j =
{

Ii,j , when Di,j = 0,
0, otherwise.

(5)

and

ci,j =
{
1, when Di,j = 0,
0, otherwise.

(6)

The following procedure is used to determine the texture type of the noisy pixel Ix,y .
In the procedure, if there is a vertical (or horizontal) line passing through the noisy pixel
Ix,y , the gradient Gh

x,y (or Gv
x,y) must be larger than the threshold TG, and empirically, the

best value of TG is set to 10 for all test images. The threshold TR denotes the minimal ratio
bound of Gh

x,y over Gv
x,y or vice versa, and empirically, the best value of TR is set to 1.5 for

all test images. The similar texture type determination concept for low-density noise can be
seen in [16].

Procedure: Texture type determination for low-density noise

if or and
max

min
then

if then
is in a horizontal edge.

else
is in a vertical edge.

else
if and then

is in a textural region.
else

is in a smooth region.

Based on the determined texture type of the low-density noise, the proposed directional
interpolation-based noise removal is presented below.
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Procedure: Directional interpolation-based noise removal for low-density noise

if is in a horizontal edge and 1 then

else if is in a vertical edge and 1 then

else
if is in a texture region then

where
else

where

2.3 Inpainting-based noise removal for Middle/High-density noise

After performing the second stage for denoising low-density noise, we have the updated D

and N3×3
x,y s together with the recovered image in which the low-density noisy pixels have

been restored. For restoring middle/high-density noisy pixels, the proposed inpainting-based
procedure is presented below. Selecting one middle/high-density noisy pixel as a seed, we
apply the connected component labeling algorithm (CCLA) [6] to obtain the seed-based
connected noisy component (CNC) in which each node in the CNC is a middle/high-density
noisy pixel. By experiment, when the path length of each CNC is at most 20, the inpainting
effect, i.e. denoising effect, is better for having more noise-free pixels at the endpoints of
these CNCs. We continue CCLA until all the remaining middle/high-density noisy pixels
have been processed. Suppose we obtain n CNCs, C0, C1 , ..., and Cn−1. Then we sort these
n CNCs based on their priorities, and the priority of Ck is defined by

Pk =

∑
I ′
i,j ∈Ck

(9 − N3×3
i,j )

|Ck| (11)

where |Ck| denotes the number of noisy pixels in Ck , 0 ≤ k ≤ n − 1. The follow-
ing inpainting-based noise removal procedure begins at the selected CNC with the highest
priority and ends at the one with the lowest priority.

In the recovery of each CNC, the proposed inpainting-based procedure considers the
noisy pixels between the current CNC and the adjacent CNC in order to avoid the gray
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value discontinuity between two adjacent recovered CNCs. Thus, for Ck , the rectangular
region Rk bounded by (xk

l −�, yk
t −�) and (xk

r +�, yk
b +�), where (xk

l , yk
t ) and (xk

r , yk
b )

denote the top-left corner and bottom-right corner of the minimum bounding box of Ck and
empirically, � is set to 5 in order to cover the overlapped pixels between Ck and its adjacent
CNCs, leading to better denoising effect. Instead of denoising Ck directly, the proposed
inpainting-based noise removal procedure will start from denoising the noisy pixels in Rk .
Before that, an inpainting status map of Rk , M = (Mx,y), is defined as follows:

Mx,y =

⎧⎪⎪⎨
⎪⎪⎩

−1, Ix,y /∈ Rk

0, Ix,y is unnecessary to be inpainted (Dx,y = 0),
1, Ix,y is to be inpainted (Dx,y = 1),
2, Ix,y has been inpainted.

(12)

In Rk , the noisy pixels are inpainted by the onion-peel order, i.e. from the noisy pixels
on the border to thous on the center of Rk . Different from inpainting holes in video [3], we
plug the Navier-stokes formula into the proposed inpainting status map. With the help of the
neighboring noise-free pixels f ′

i,j s within a m × m window Wm×m
x,y centered at the location

(x, y), by the Navier-stokes formula, the noisy pixel Ix,y with Mx,y = 1 is restored, i.e.
inpainted, by

Ix,y =

∑
(i,j)∈Wm×m

x,y

ω
x,y
i,j f ′

i,j

∑
(i,j)∈Wm×m

x,y

ω
x,y
i,j c′

i,j

(13)

where

f ′
i,j =

{
Ii,j , Mi,j ∈ {0, 2},
0, otherwise.

(14)

and

c′
i,j =

{
1, Mi,j ∈ {0, 2},
0, otherwise.

(15)

In (13), we set m = 3 when there is more than one noise-free pixel in the neighborhood
of I (x, y), i.e. N3×3

x,y < 8; otherwise, we set m = 5 for N3×3
x,y ≥ 8. This adaptive window

size-based approach achieves better denosing result. Using the inner production operation,
the weight ωx,y

i,j is calculated by

ω
x,y
i,j = 1

‖rx,y
i,j ‖2 · |Gi,j · r

x,y
i,j |

‖Gi,j‖‖ri,j‖ (16)

where Gi,j = (Gh
i,j , G

v
i,j ) denotes the gradient vector and r

x,y
i,j = (x − i, y − j) denotes

the directional vector. The bigger the weight ω
x,y
i,j is, the higher the correlation of Gi,j and

r
x,y
i,j is. It means that by (16), if the weight the neighboring noise-free pixel f ′

i,j within the
window W is high, based on (13), the neighboring noise-free pixel the noisy pixel f ′

i,j has
more positive influence on the restoration of the current noisy pixel Ix,y .
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In what follows, the inpainted pixels in Ck is further refined. The refinement for Ix,y is
realized by

Ix,y =

∑
(i,j)∈Wm×m

x,y

ω
x,y
i,j Ii,j

∑
(i,j)∈Wm×m

x,y

ω
x,y
i,j

. (17)

After all Ix,ys in Ck have been refined, we calculate the difference between the currently
restored result Ix,y , denoted by IC

x,y , and the previously restored Ix,y , denoted by IP
x,y , by

E =
∑

Ix,y∈Ck

|IC
x,y − IP

x,y |
|Ck| . (18)

We continue the refinement step until the termination condition E < TE (= 1 empirically)
is held. Note that in our experiments, the number of refinement iterations being 2 is enough.
After finishing the refinement step for Ck , the noise detection map D is updated by setting
D(x, y) = 0 for Ix,y ∈ Ck .

After performing the above inpainting-based noise removal process on C0, C1 , ..., and
Cn−1, the middle/high-density noisy pixels in I can be restored. The pseudo-code of the
above inpainting-based noise removal procedure is listed below.

Procedure: Inpainting-based noise removal for middle/high-density noise

Perform CCLA to obtain CNCs, 0, 1 , ..., and 1.
Sort CNCs based on their priorities by (11).
repeat

Select with the highest priority from the remaining CNCs.
Determine the rectangular region to cover .
Initialize the inpainting status map by (12).
repeat

Select the noisy pixel from based on onion-peel order.
Recover by (13)–(16).
Update by setting 2.

until all noisy pixels in have been recovered.
repeat

repeat
Select the noisy pixel from based on onion-peel order.
Refine by (17).

until all noisy pixels in have been refined.
Calculate by (18).

until
Update by setting 0 for

until all CNCs have been recovered.

Because the directional interpolation-based noise removal procedure in the second stage
takes the texture type of the low-density noise into account, the second stage achieves a
good denoising effect for low-density noisy pixels. In the third-stage, several useful strate-
gies, such as the connected component labeling, priority-first denoising policy, determining
rectangular region to smooth the denosing effect, Navier-stokes formula-based inpainting



Multimed Tools Appl

procedure, and 2-stage refinement, are integrated to efficiently denoise the middle/high-
density noisy pixels. In the next section, the experimental results demonstrate that the
proposed three-stage noise removal algorithm has substantial quality improvement and the
edge-preservation effect.

3 Experimental results

In our experiments, four impulse noise models are considered. The first noise model is
the salt-and-pepper noise model, i.e. �1 = 0, �2 = 0, and p1 = p2 in which p1 and p2
denote the probability of noise with gray value 0 and gray value 255, respectively. The
second noise model is similar to the salt-and-pepper noise model but with unbalanced noise
density, p1 �= p2. The third noise model considers the noise with larger and balanced noise
range, �1 > 0, �2 > 0, and balanced noise density, p1 = p2, while the fourth noise model
considers the noise with unbalanced noise density and balanced noise range.

We compare PSNR, SSIM, and the visual effect performance of the proposed algorithm
with the six concerned algorithms, MDBUTMF [8], BDND [16], IBDND [11], CFIf [2],
MMF [15], and MASF [5]. Since MDBUTMF, CFIf, and MMF only deal with images
corrupted by the salt-and-pepper noise model, for fairness, we apply the first noise model
to generate the corrupted images. As shown in Fig. 1, the 10 test images are Lena, Boat,

Fig. 1 Ten test images. a Lena. b Boat. c Mandrill. d Airplane. e Stream and bridge. f Sailboat on lake.
g Sailboard. h Door. i Window. jWall
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Table 1 PSNR comparison for the first noise model

Image Noise
density

Proposed MDBUTMF
[8]

BDND
[16]

IBDND
[11]

CFIf [2] MMF [15] MASF [5]

PSNR �PSNR(dB)

Lena 30% 37.64 1.23 1.31 0.66 0.80 0.83 0.35

50% 34.37 2.41 2.06 0.61 0.76 0.81 0.46

70% 31.14 1.86 2.32 0.43 0.55 0.81 0.52

90% 26.66 1.89 1.62 0.83 0.65 0.88 0.46

Boat 30% 34.62 1.86 2.35 1.75 1.52 1.59 1.01

50% 31.25 2.72 2.71 1.22 1.26 1.23 0.84

70% 28.11 1.92 2.59 0.72 0.91 0.98 0.65

90% 24.13 1.64 1.62 0.95 0.86 0.98 0.50

Mandrill 30% 27.71 0.96 1.04 0.30 0.67 0.57 0.26

50% 25.01 1.56 1.21 0.27 0.56 0.60 0.29

70% 22.74 1.22 1.17 0.29 0.37 0.78 0.25

90% 20.26 0.97 0.96 0.89 0.16 1.16 0.35

Airplane 30% 37.46 2.49 2.40 1.44 1.53 1.99 1.21

50% 33.75 3.46 3.29 1.21 1.33 1.62 1.13

70% 29.95 2.34 3.06 0.60 0.83 1.14 0.77

90% 24.97 2.17 1.85 0.99 1.09 0.92 0.48

Stream and 30% 29.84 1.04 1.78 1.04 0.71 0.53 0.28

bridge 50% 27.25 1.93 2.07 0.83 0.75 0.60 0.39

70% 24.81 1.62 1.99 0.66 0.62 0.74 0.36

90% 21.65 1.50 1.41 1.04 0.51 1.00 0.41

Sailboat 30% 33.86 1.30 1.36 0.50 0.80 0.71 0.34

on lake 50% 30.88 2.59 2.34 0.62 0.91 0.87 0.57

70% 27.79 1.90 2.57 0.45 0.76 0.86 0.54

90% 23.51 1.82 1.73 0.94 0.98 0.88 0.42

Sailboard 30% 36.97 2.37 3.83 3.01 1.8 2.07 1.40

50% 33.42 3.09 4.04 2.04 1.47 1.50 1.11

70% 30.10 2.22 3.43 1.32 0.98 1.06 0.87

90% 25.88 1.67 1.80 1.09 0.87 0.89 0.45

Door 30% 37.21 1.21 1.81 1.25 1.10 0.99 0.58

50% 34.22 2 .16 1.99 0.92 0.97 0.89 0.54

70% 31.69 1.50 1.83 0.67 0.63 0.88 0.42

90% 28.50 1.78 0.95 0.83 0.32 1.00 0.26

Window 30% 37.07 1.52 2.22 1.61 0.77 1.21 0.57

50% 33.80 2.84 2.93 1.29 0.89 1.14 0.76

70% 30.27 2.03 2.82 0.68 0.75 0.87 0.67

90% 25.68 1.68 1.60 0.75 1.03 0.83 0.47

Wall 30% 29.80 1.67 2.36 1.56 1.45 1.33 0.78

50% 27.05 2.84 2.62 1.22 1.30 1.18 0.84

70% 24.30 1.98 2.22 0.74 0.87 0.92 0.67

90% 21.07 1.29 1.25 0.87 0.30 1.10 0.49
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Table 2 SSIM comparison for the first noise model

Image Noise
density

Proposed MDBUTMF
[8]

BDND
[16]

IBDND
[11]

CFIf [2] MMF
[15]

MASF
[5]

SSIM �SSIM

Lena 30% 0.967 0.005 0.006 0.002 0.003 0.003 0.001

50% 0.937 0.023 0.018 0.004 0.007 0.006 0.003

70% 0.890 0.032 0.040 0.006 0.011 0.015 0.007

90% 0.785 0.079 0.056 0.027 0.017 0.033 0.018

Boat 30% 0.939 0.012 0.014 0.008 0.010 0.007 0.005

50% 0.884 0.040 0.038 0.013 0.019 0.015 0.010

70% 0.798 0.051 0.074 0.015 0.031 0.024 0.015

90% 0.569 0.092 0.081 0.032 0.102 0.034 0.027

Mandrill 30% 0.911 0.017 0.019 0.006 0.014 0.010 0.005

50% 0.827 0.068 0.047 0.010 0.027 0.017 0.009

70% 0.694 0.079 0.087 0.007 0.037 0.021 0.014

90% 0.460 0.081 0.079 0.019 0.040 0.027 0.021

Airplane 30% 0.980 0.006 0.007 0.003 0.005 0.004 0.002

50% 0.960 0.030 0.025 0.006 0.012 0.007 0.005

70% 0.920 0.038 0.051 0.006 0.017 0.011 0.009

90% 0.812 0.102 0.057 0.018 0.029 0.018 0.015

Stream and 30% 0.931 0.014 0.024 0.012 0.012 0.008 0.004

bridge 50% 0.866 0.064 0.056 0.017 0.025 0.016 0.009

70% 0.756 0.076 0.106 0.016 0.037 0.02 0.017

90% 0.533 0.101 0.102 0.030 0.050 0.027 0.027

Sailboat 30% 0.946 0.004 0.005 0.001 0.001 0.000 0.000

on lake 50% 0.902 0.028 0.023 0.004 0.006 0.004 0.002

70% 0.836 0.040 0.056 0.008 0.015 0.015 0.008

90% 0.694 0.095 0.070 0.028 0.034 0.031 0.019

Sailboard 30% 0.971 0.009 0.01 0.009 0.007 0.008 0.005

50% 0.942 0.031 0.031 0.013 0.012 0.012 0.008

70% 0.893 0.04 0.050 0.014 0.016 0.017 0.013

90% 0.789 0.069 0.051 0.021 0.019 0.023 0.015

Door 30% 0.958 0.011 0.014 0.008 0.011 0.008 0.005

50% 0.918 0.041 0.029 0.011 0.018 0.014 0.008

70% 0.855 0.046 0.044 0.010 0.019 0.018 0.011

90% 0.742 0.074 0.040 0.023 0.011 0.031 0.012

Window 30% 0.981 0.006 0.010 0.007 0.003 0.005 0.002

50% 0.960 0.029 0.029 0.010 0.008 0.009 0.005

70% 0.916 0.040 0.059 0.010 0.014 0.013 0.012

90% 0.790 0.077 0.062 0.015 0.035 0.017 0.017

Wall 30% 0.933 0.024 0.031 0.018 0.022 0.019 0.011

50% 0.863 0.089 0.067 0 .025 0.038 0.028 0.019

70% 0.739 0.102 0.111 0.021 0.047 0.027 0.028

90% 0.503 0.098 0.091 0.023 0.028 0.028 0.028
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Mandrill, Airplane, Stream and bridge, Sailboat on lake, Sailboard, Door, Window, and
Wall, where the last four images are from the Kodak set. All experiments were performed
on a computer with an Intel i7-3770 CPU 3.4 GHz, 4GB RAM, and Microsoft Windows 7
operating system. The programming language and library used are Visual Studio C++ 2008
and the OpenCV library.

Interfering each test image with noise density ranging from 30% to 90%, the PSNR
gain and SSIM gain of the proposed algorithm, ‘�PSNR’ and ‘�SSIM’, over the previ-
ous six algorithms are shown in Tables 1 and 2, respectively, in which the two columns,
PSNR and SSIM, below ‘Proposed’ denote the PSNR and SSIM performance of the pro-
posed algorithm, respectively. The last rows of Tables 1 and 2 indicate the average quality
performance merits of the proposed algorithm. The positive PSNR and SSIM gains indi-
cate that the proposed algorithm has the best quantitative quality performance among the
seven concerned algorithms. In detail, the proposed algorithm outperforms MDBUTMF,
BDND, ISDND, CFI, MMF, and MASF in 0.96-3.46 dBs, 0.95-4.04 dBs, 0.27-3.01 dBs,
0.16-1.8 dBs, 0.3-2.07 dBs, and 0.25-1.4 dBs, respectively, under the four noise levels. Note
that because of employing the inpainitng-and-refinement stage for restoring the middle/high
density noise, the proposed algorithm does preserve more edge and texture information

Fig. 2 Denoised results for the Boat image corrupted by 70% noise density. a Corrupted image.
bMDBUTMF. c BDND. d IBDND. e CFIf. fMMF gMASF. h The proposed algorithm. i The original image
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Fig. 3 Denoised results for the Airplane image corrupted by 70% noise density. a Corrupted image.
bMDBUTMF. c BDND. d IBDND. e CFIf. fMMF gMASF. h The proposed algorithm. i The original image

for highly corrupted images. The main reason is that the SSIM gain improvement in the
proposed algorithm is proportional to the noise level, leading to better quality effect.

We take the two original test images, Boat and Airplane, as shown in Figs. 2i and 3i,
as the visual comparison examples. The two images are corrupted by 70% salt-and- pepper
noise density and the three corresponding corrupted images are shown in Figs. 2a and 3a.
After running the seven algorithms on the two corrupted images, the two sets of resultant
denoised images are shown in Figs. 2b–h and 3b–h. It is observed that when compared
with the MDBUTMF, BDND, IBDND, CFIf, MMF, and MASF, the proposed algorithm can
substantially reduce the blurring and zigzag artifacts in the denoised images.

After demonstrating the quality merits of the proposed algorithm for high-density
impulse noise, the related performance comparison among the seven concerned algorithms
for the second, third, and fourth noise models are shown in Tables 3 and 4. For simplicity,
Tables 3 and 4 only show the average PSNR and SSIM of each test image. The parameters
of each noise model are set as below. In the second noise model, four combinations of noise
density, (p1, p2) ={(20%, 50%), (30%, 40%), (40%, 30%), (50%, 20%)} are considered.
In the third noise model, we consider 70% noise density and (�1, �2) ∈ {9, 19, 29}. In the
fourth noise model, we consider (�1, �2) ∈ {(9, 19), (19, 29)} and (p1, p2) ∈ {(20%, 50%),
(30%, 40%)}. From Tables 3 and 4, we observe that the proposed noise removal algorithm
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still has the best quality performance among the seven concerned algorithms for the second,
third, and fourth noise models.

Finally, the execution-time performance comparison of the concerned algorithms is
provided in terms of milliseconds (ms) per image. On average, the proposed algorithm,
MDBUTMF, CFIf, MMF, MASF, BDND, and IBDND take 350 ms, 62 ms, 259 ms, 22 ms,
342 ms, 2700 ms, and 2772 ms, respectively. Because a sorting operation is required in each
21× 21 sliding window, the previous BDND and IBDND have poor execution-time perfor-
mance. Although the proposed algorithm has modest execution-time performance among
the seven concerned algorithms, it has the best quality performance in terms of PSNR,
SSIM, and visual effect.

4 Conclusion

The proposed three-stage algorithm for removing impulse noise has been presented. We first
classify each noisy pixel into the low-density noise or the middle/high-density noise. Next,
according to the texture of each low-density noisy pixel, a directional interpolation-based
noise removal method is proposed. Finally, the proposed inpainting-based noise removal
method for restoring the middle/high-density noise is presented. Based on four noise mod-
els with different noise densities, the experimental results demonstrate that the proposed
noise removal algorithm has the best subjective and objective quality performance when
compared with the six concerned algorithms. Specifically, the execution-time performance
of the proposed algorithm is middle among the concerned seven algorithms and is quite
competitive with the two recently published real-time noise removal algorithms, the CFIf
and MASF.

Acknowledgments The authors appreciate the proofreading help of Ms. C. Harrington, the valuable
comments of the three anonymous referees, and the support under the contracts MOST 104-2221-E-011-
118-MY3 and MOST 104-2221-E-228-006.

References

1. Aiswarya K, Jayaraj V, Ebenezer D (2010) A new and efficient algorithm for the removal of high density
salt and pepper noise in images and videos. In: Proc International Conference Computer Modeling and
Simulation, vol 4, pp 409–413

2. Bai T, Tan J, Hu M, Wang Y (2014) A novel algorithm for removal of salt and pepper noise using
continued fractions interpolation. Signal Process 102:247–255

3. Bertalmio M, Bertozzi A, Sapiro G (2001) Navier-stokes, fluid dynamics, and image and video inpaint-
ing. In: Proceedings IEEE Conference Computer Vision and Pattern Recognition, vol 1, pp 355–
362

4. Brownrigg DRK (1984) The weighted median filter. Commun ACM 27(8):807–818
5. Chou HH, Hsu LY, Hu HT (2015) Multi-level adaptive switching filters for highly corrupted images. J

Vis Commun Image Represent 30(7):363–375
6. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms. 3rd Edition,

Subsection 22. 5: Strongly connected components. The MIT Press, Cambridge
7. Eng HL, Ma KK (2001) Noise adaptive soft-switching median filter. IEEE Trans Image Process 10:

242–251
8. Esakkirajan S, Veerakumar T, Subramanyam AN, PremChand CH (2011) Removal of high density salt

and pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal
Process Lett 18(5):287–290

9. Gonzalez RC, Woods RE (2002) Digital Image Processing. Prentice Hall, Upper Saddle River



Multimed Tools Appl

10. Hwang H, Haddad RA (1995) Adaptive median filters: new algorithms and results. IEEE Trans Image
Process 4(4):499–502

11. Jafar IF, AlNa’mneh RA, Darabkh KA (2013) Efficient improvements on the BDND filtering algorithm
for the removal of high-density impulse noise. IEEE Trans Image Process 22(3):1223–1232

12. Jayaraj V, Ebenezer D (2010) A new switching-based median filtering scheme and algorithm for removal
of high-density salt and pepper noise in images, EURASIP. J Advances Signal Process 2010:1–11

13. Ko SJ, Lee YH (1991) Center weighted median filters and their applications to image enhancement.
IEEE Trans Circuits Syst 38(9):984–993

14. Lin HM, Willson AN (1988) Median filters with adaptive length. IEEE Trans Circuits Syst 35(6):675–
690

15. Lin PH, Chen BH, Cheng FC, Huang SC (2015) AMorphological mean filter for impulse noise removal,
IEEE J. Display Technology, Accepted for publication

16. Ng PE, Ma KK (2006) A switching median filter with boundary discriminative noise detection for
extremely corrupted images. IEEE Trans Image Process 15(6):506–1516

17. Pitas I, Venetsanopoulos AN (1992) Order statistics in digital image processing. Proc IEEE 80(12):1893–
1921

18. Srinivasan KS, Ebenezer D (2007) A new fast and efficient decision-based algorithm for removal of
high-density impulse noises. IEEE Signal Process Lett 14(3):189–192

19. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to
structural similarity. IEEE Trans Image Process 13(4):600–612

20. Yang R, Yin L (1995) Optimal weighted median filtering under structural constrains. IEEE Trans Signal
Process 43(3):591–604

21. Zhang S, Karim MA (2002) A new impulse detector for switching median filters. IEEE Signal Process
Lett 9(11):360–363

Kuo-Liang Chung received the B.S., M.S., and Ph.D. degrees from National Taiwan University, Taipei,
Taiwan, in 1982, 1984, and 1990, respectively. He is currently a Chair Professor with the Department of
Computer Science and Information Engineering, National Taiwan University of Science and Technology
(NTUST), Taipei, Taiwan. His current research interests include video coding and image processing. Dr.
Chung was a recipient of the Distinguished Research Award (2004-2007) and Distinguished Research Project
Award (2009-1012) from the National Science Council of Taiwan. He is now an Associate Editor of the
Journal of Visual Communication and Image Representation.



Multimed Tools Appl

Yong-Huai Huang received the BS degree in Information Management from Aletheia University, Danshui,
Taipei, Taiwan, and the MS and PhD degrees in Computer Science and Information Engineering from the
National Taiwan University of Science and Technology, Taipei, Taiwan. He is now an associate professor
in the Department of Computer Science and Information Engineering at Jinwen University of Science and
Technology, Hsin-Tien Dis., New Taipei City, Taiwan. His research interests include image processing and
compression, and algorithms.


	An effective directional interpolation- and inpainting-based algorithm for removing impulse noise
	Abstract
	Introduction
	The proposed three-stage noise removal algorithm
	Noise detection and classification
	Directional interpolation-based noise removal for low-density noise
	Inpainting-based noise removal for Middle/High-density noise

	Experimental results
	Conclusion
	Acknowledgments
	References


