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ABSTRACT In this paper, we propose an effective source-aware domain enhancement and adaptation
(SDEA) approach to increase the accuracy of the existing convolutional neural network-based (CNN-
based) object segmentation methods. We first scoop out the source elements, such as the falling-leaves,
manhole covers, cirrus clouds, and advertisements, which often cause invalid object segmentation and make
the existing object segmentation methods provide unreliable information to the ADAS (automatic driving
assistance systems) applications. Secondly, we create a new GTAS5-like (Grand Theft Auto V-like) dataset
with the scenarios including these source elements. Furthermore, we perform a domain adaptation on the
created GTAS-like dataset to generate a photo-realistic GTAS-like dataset, namely GTA55P#4, Without the
need to relabel the pixel-annotations for GTASSPE4 | we combine GTASSPEA with the realistic dataset,
namely Camvid, to constitute a newly enhanced dataset. After retraining the existing CNN-based object
segmentation methods by using our enhanced dataset, it can achieve substantial segmentation accuracy
improvement. The comprehensive experimental results have demonstrated the clear accuracy improvement
merit by applying our SDEA approach to the state-of-the-art object segmentation methods on FCN (Fully
Convolutional Networks), SegNet-basic, AdaptSegNet, and Gated-AdaptSegNet, providing more reliable
information to ADAS applications.

INDEX TERMS ADAS (automatic driving assistance systems), CNN (Convolutional Neural Networks),
Domain Adaptation, Domain Enhancement, GTAS (Grand Theft Auto V), mloU (mean intersection over

union), Object Segmentation Accuracy.

I. INTRODUCTION

Recently, developing object segmentation methods using
convolutional neural networks (CNN) [1], [4], [16]-[18],
[21], [27], [32] has received great attention in different ap-
plications, particularly in ADAS (automatic driving assis-
tance systems) applications [1], [24]. In ADAS applications,
for each image frame, the CNN-based object segmentation
method often considers up to nineteen object types, namely
road, sidewalk, building, wall, fence, pole, traffic light, traffic
sign, vegetation, terrain, sky, person, rider, car, truck, bus,
train, motorcycle, and bike. Due to the high object segmen-
tation accuracy demand in ADAS applications, designing a
novel approach to improve the existing CNN-based object
segmentation methods is an important task.

In the past years, by using the CNNs, animation-based
dataset enhancement, and domain adaptation, some success-
ful object segmentation methods have been developed to
increase the segmentation accuracy, providing more reliable

information to ADAS applications in lane detection [7],
[14], traffic sign recognition [16], departure/collision warn-
ing [26], [29], and vanishing point detection [3], [13]. In the
next subsection, the related work is introduced.

A. RELATED WORK

Based on the end-to-end fully-convolutional network (FCN)
model, in which there are 15 convolutional layers in the
encoder and there are three deconvolutional layers in the
decoder, an effective FCN-based object segmentation method
[18], [25] was proposed. The configuration of FCN used in
their method is shown in Table 1. To achieve higher object
segmentation accuracy, Badrinarayanan et al. [1] modified
the FCN model by reducing the number of convolutional
layers from 15 layers to nine, and replacing the three de-
convolutional layers by five upsampling layers. Their mod-
ified FCN model is called SegNet-basic. Table 2 shows the
configuration of SegNet-basic. Due to the available source
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TABLE 1. The configuration of FCN.

Layer Filter (#Filters) Feature Map
Convl 3x3x3 (64) 256x512x64
Conv2 3x3x64 (64) 256x512x64
Maxpool - 128x256x64
Conv3 3x3x64 (128) 128x256x128
Conv4 3x3x128 (128) 128x256x128
Maxpool - 64x128x128
Conv5 3x3x128 (256) 64x128x256
Conv6 3x3x256 (256) 64x128x256
Conv7 3x3%256 (256) 64x128%x256
Maxpool - 32x64x256
Conv8 3x3x256 (512) 32x64x512
Conv9 3x3x512 (512) 32x64x512
Conv10 3x3x512 (512) 32x64x512
Maxpool - 16x32x512
Convll 3x3x512 (512) 16x32x512
Convl12 3x3x512 (512) 16x32x512
Conv13 3x3x512 (512) 16x32x512
Maxpool - 8x16x512
Convl14 3x3x512 (4096) 8x16x4096
Conv15 3x3x4096 (19) 8x16x19
DeConvl1 4x4x19 (19) 16x32x19
Fuse - 16x32x19
DeConv2 4x4x19 (19) 32x64x19
Fuse - 32x64x19
DeConv3 16x16x19 (19) 256x512x19
Softmax - 256x512x19

codes, the object segmentation methods by using FCN and
SegNet-basic are included in the comparative methods to
justify the segmentation accuracy improvement merit of our
source-aware domain enhancement and adaptation (SDEA)
approach.

To increase the segmentation accuracy, researchers have
put much effort into capturing realistic images, and then
they labeled each pixel annotation for these captured im-
ages for creating realistic datasets, such as Camvid [2],
Cityscapes [5], KITTI [9], and Urban LabelMe [23]. How-
ever, capturing and labeling more realistic images to en-
hance the datasets is quite expensive and time-consuming. To
solve this expensive and time-consuming problem, Richter
et al. [20] proposed a cheap and effective animation-based
approach to create a synthetic GTAS dataset with 7500
synthetic images. Experimental data demonstrated that using
this synthetic GTAS dataset and one realistic dataset, e.g.
Camvid, as the hybrid training set, the CNN-based object
segmentation accuracy can be improved.

Although Richter et al.’s animation-based dataset en-
hancement approach [20] can improve the segmentation ac-
curacy relative to the traditional approach, due to the domain
shift problem between the realistic dataset, namely Camvid,
and the synthetic dataset, namely GTAS, the segmentation ac-
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TABLE 2. The configuration of SegNet-basic.

Layer Filter (#Filters) | Feature Map
Convl 7x7x3 (64) 256x512x64
Maxpool - 128x256x64
Conv2 Tx7x64 (64) 128x256x64
Maxpool - 64x128x64
Conv3 7XT7x64 (64) 64x128x64
Maxpool - 32x64x64
Conv4 7x7x64 (64) 32x64x64
Maxpool - 16x32x64
Upsample - 32x64x64
Conv5 Tx7x64 (64) 32x64x64
Upsample - 64x128x64
Conv6 7X7x64 (64) 64x128x64
Upsample - 128x256x64
Conv7 TxTx64 (64) 128x256x64
Upsample - 256x512x64
Conv8 7XT7x64 (64) 256x512x64
Conv9 1x1x64 (19) 256x512x19
Softmax - 256x512x19

curacy using the hybrid training dataset “GTAS+Camvid” to
train the CNN-based frameworks is not as good as expected.

To solve this domain shift problem, several domain adap-
tation approaches were proposed to reduce the gap between
the synthetic dataset and the realistic dataset. Tsai et al. [27]
proposed a generated adversarial network-based (GAN-
based) object segmentation method, called the AdaptSegNet
method, that used the adversarial training to align pixel-
level ground truth in the output space. Based on GAN, Lin
et al. [17] proposed the Gated-AdaptSegNet based method
that used a foreground adaptation module to separate the
foreground and background for improving the segmentation
accuracy.

Different from Tsai et al.’s approach [27], Zhang et al. [33]
transformed the GTAS dataset to a photo-realistic dataset,
denoted by GTAS;, by using the style transfer technique.
Experimental data illustrated that using the hybrid training
dataset “GTAS;+Camvid” as the enhanced training dataset
can increase the object segmentation accuracy. Due to the
available codes, the AdaptSegNet and Gated-AdaptSegNet
methods are included in the comparative methods to justify
the accuracy improvement by using our SDEA approach.

B. MOTIVATION

For convenience, let the FCN-based object segmenta-
tion method, the SegNet-basic-based object segmenta-
tion method, the AdaptSegNet-based object segmentation
method, and the GatedAdaptSegNet object segmentation
method be denoted by FCN, SegNet-basic, AdaptSegNet,
and GatedAdaptSegNet, respectively. Based on the en-
hanced dataset “GTAS;+Camvid”, after training the above-
mentioned four object segmentation methods, we found that
in the testing step, the two sources, namely falling-leaves
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and manhole covers, often cause invalid road segmentation;
another two sources, namely cirrus clouds and advertise-
ments, often cause invalid sky and building segmentation,
respectively. In particular, the invalidly segmented road, sky,
and building information may result in improper decisions
in ADAS applications. For example, the invalid road seg-
mentation may lead to improper lane detection, invalid traffic
sign recognition, and wrong departure/collision warning; the
invalidly segmented sky may lead to incorrect vanishing
point detection.

Without the need to relabel the pixel-annotations, the
above source-aware observation prompted us to develop a
novel and effective source-aware domain enhancement and
adaptation (SDEA) approach to create a newly enhanced
dataset “GTASED EA»  And then, based on our dataset
GTA5§D EA the retrained version of the four considered
object segmentation methods, namely FCN, SegNet-basic,
AdaptSegNet, and Gated-AdaptSegNet, can have higher seg-
mentation accuracy. Note that our SDEA approach is infeasi-
ble to retrain the Mask R-CNN based object segmentation
method [12] because among the eighty objects considered
by Mask R-CNN, only nine, namely person, bicycle, car,
motorcycle, bus, train, truck, traffic light, and stop sign, are
useful in ADAS applications. Therefore, we do not apply our
SDEA approach to the Mask R-CNN model.

C. CONTRIBUTION

To overcome the above-mentioned weakness and limitation
existing in the related work, this paper proposes a novel
and effective SDEA approach to achieve substantial object
segmentation accuracy improvement for the four considered
CNN-based object segmentation methods. The three contri-
butions of our SDEA approach are clarified as follows.

In the first contribution, the proposed SDEA approach
scoops out the sources, namely the falling-leaves, manhole
covers, cirrus clouds, and advertisements, which infrequently
or irregularly appear in the real situation but often cause
invalid object segmentation; the invalid object segmentation
information tends to interfere with incorrect decisions in
ADAS applications. Therefore, we propose a source-pasting
technique to create a new GTAS-like dataset which contains
the scenarios including these sources. In each GTAS5-like
image, the additive sources come from the sub-image cutting
off from a realistic image in the dataset “Camvid”.

In the second contribution, we perform a domain adapta-
tion on our GTAS-like dataset to generate a photo-realistic
GTAS-like dataset, called “GTASSPEA”, Accordingly, the
new hybrid dataset, called “GTASf,D EALCamvid,” is cre-
ated. Due to inheriting the originally labeled pixel annotation
in GTAS, and Camvid, the labeling work on GTASf DEA can
be waived, exempting the labeling-time overhead. Further-
more, we apply our new hybrid dataset to retrain the four con-
sidered object segmentation methods, namely FCN, SegNet-
basic, AdaptSegNet, and Gated-AdaptSegNet, achieving sub-
stantial object segmentation accuracy improvement.

In the third contribution, the comprehensive experimental
data have confirmed that our SDEA approach with our newly
enhanced dataset “GTASSPFA+Camvid” can substantially
improve the object segmentation accuracy for the above-
mentioned four considered CNN-based object segmentation
methods. In terms of mean intersection over union (mloU) to
measure the object segmentation accuracy for the considered
nineteen objects, the mloU gains of our SDEA approach over
FCN, SegNet-basic, AdaptSegNet, and Gated-AdaptSegNet
are 1.1, 3.1, 1.5, and 1.7, respectively, providing more reli-
able object segmentation information to ADAS applications,
making more trustworthy traffic decisions.

The rest of this paper is organized as follows. Section II
presents our SDEA approach and describes how to build up
the newly enhanced dataset “GTA55P#4+Camvid”. Section
III reports the object segmentation accuracy improvement
merit of our SDEA approach relative to the four state-of-
the-art CNN-based object segmentation methods. Section IV
addresses some concluding remarks.

Il. THE PROPOSED SDEA APPROACH

We first scoop out sources causing invalid object segmenta-
tion in the testing step. Then, without the pixel-annotation
labeling overhead, a source-pasting technique is proposed to
create an enhanced version of the dataset “GTAS,,” called
“GTASIPFA” which contains the scenarios including these
sources. Furthermore, we create a newly enhanced dataset
“GTA55PFA+Camvid” which will be used to retrain the
above-mentioned CNN-based object segmentation methods
for increasing their segmentation accuracy.

A. SCOOP OUT SOURCES CAUSING INVALID OBJECT
SEGMENTATION

From the observation of the object segmentation results in
the testing step, we found that some invalid segmentation
for objects, such as road, sky, and buildings, is often caused
by the sources, namely the falling-leaves, manhole covers,
cirrus clouds, and advertisements, because these sources
infrequently or irregularly appear in the testing images. In
particular, these invalid segmented roads, sky, and buildings
may provide wrong information to ADAS applications in
lane detection, departure/collision warning, and vanishing
point detection.

Before taking practical examples to explain why the
above-mentioned sources cause invalid object segmentation,
the loss function Loss(I) used for object segmentation is
defined by

Loss(I) = — Z yeDiog(se)) (1)
ceC

where I(€ R¥*W>3) denotes the input H x W RGB full-
color image; S¢)e RT*WXC denotes the output H x W
binary map, in which C' denotes the set of all object classes
and S°(!) denotes the resultant segmentation map for the
object class ¢ € C. When the entry in S°() is 1, it indicates
that the recognized object class for that pixel is equal to the
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FIGURE 1. Four sources causing invalid object segmentation. (a) Falling-leaves. (b) Invalid road segmentation due to (a). (¢) Manhole cover. (d) Invalid road
segmentation due to (c). (e) Cirrus clouds. (f) Invalid sky segmentation due to (e). (g) Advertisements. (h) Invalid building segmentation due to (g).

object class c; otherwise, it denotes the wrong recognition for
the pixel. Y¢(!) denotes the ground-truth labeled annotation
map.

Based on the dataset “GTAS5,+Camvid” on FCN, in which
the photo-realistic dataset GTAS; is obtained by performing
the domain adaptation method “Photorealistic Image Styl-
ization [15]” on the synthetic dataset GTAS, we take four
practical testing images to explain why the above-mentioned
four sources lead to the invalid object segmentation problem,
prompting us to propose the SDEA approach to solve this
important problem.

As shown in Fig. 1(a), the falling-leaves surrounded by
a yellow trapezoid on the lane cause an invalid road seg-
mentation, as shown in Fig. 1(b). As shown in Fig. 1(c), the
manhole cover on the lane surrounded by a yellow rectangle
causes an invalid road segmentation, as shown in Fig. 1(d),
because the texture of the manhole cover is different from
that of the road. As for the cirrus clouds and advertisements
shown in Fig. 1(e) and Fig. 1(g), respectively, the invalid
segmented sky and buildings are illustrated in Fig. 1(f) and
Fig. 1(h).

B. THE PROPOSED SOURCE-PASTING TECHNIQUE TO
CREATE A NEWLY ENHANCED DATASET
In Fig. 1, four invalid object segmentation examples caused
by four sources have been demonstrated. Capturing more
realistic images with the scenarios containing the considered
four sources is a straightforward way to enhance the dataset,
but it is expensive and time-consuming. In addition, it is
also quite time-consuming to label each pixel annotation of
these captured real images. In what follows, without pixel-
annotation labeling overhead, we propose a fast and effec-
tive source-pasting technique to create a new photo-realistic
dataset, in which the scenarios contain these sources coming
from the images in “Camvid,” and then we combine it with
“Camvid” to create the newly enhanced dataset.

For easy exposition of the proposed SDEA approach, we
first explain how to create a new synthetic GTAS-like image
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containing the falling-leaves. Given a labeled synthetic GTAS
image in Fig. 2(a), from the dataset “Camvid,” we select one
real image containing falling-leaves, as shown in Fig. 2(b).
Then, we paste the subimage containing falling-leaves, which
is cut off from Fig. 2(b), to Fig. 2(a), creating the synthetic
GTAS5-like image shown in Fig. 2(c). In Fig. 2(c), all the pix-
els in the falling-leaves inherit the original labeled annotation
in Fig. 2(b), and except for the falling-leaves, all the pixels in
Fig. 2(c) inherit the original labeled annotation in Fig. 2(a),
waiving the pixel-based labeling overhead.

After performing the style transform on the synthetic
GTAS-like image via the domain adaptation method [15],
the resultant photo-realistic GTAS-like image is shown in
Fig. 2(d). As for the manhole cover case, by the same ar-
gument, Figs. 2(e)-(h) illustrate the corresponding four snap-
shots. Figs. 2(i)-(1) and Figs. 2(m)-(p) show the correspond-
ing snapshots for the cirrus cloud and advertisement sources
with respect to sky and building, respectively. However, using
the above domain adaptation way to create the new photo-
realistic GTAS5-like images, the versatility of the created
images is still not enough. To overcome this disadvantage
and automatically generate more new photo-realistic GTAS-
like images with different styles, we deploy the weather,
namely the sunny day, the rainy day, and the overcast day,
influence and the time period, the daytime, the nighttime,
and the twilight, influence into the domain adaptation of our
SDEA approach to increase the diversity of the newly created
photo-realistic GTAS-like images as quick as possible.

By using our proposed SDEA approach, let the newly
created photo-realistic GTAS-like dataset be denoted by
GTASSPEA Consequently, the newly enhanced dataset
“GTASSPEALCamvid” is used to retrain the four consid-
ered object segmentation methods, namely FCN, SegNet-
basic, AdaptSegNet, and Gated-AdaptSegNet, to increase the
segmentation accuracy, providing more reliable segmentation
information to ADAS applications.
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FIGURE 2. Four generated photo-realistic GTA5-like images by using our SDEA approach. (a) The first GTA5 image example. (b) A realistic image containing the
falling-leaves source. (c) The synthetic GTA5-like image of (a). (d) The created photo-realistic GTA5-like image of (c). (e) The second GTAS5 image example. (f) A
realistic image containing the manhole-cover source. (g) The synthetic GTA5-like image of (e). (h) The created photo-realistic GTA5-like image of (g). (i) The third
GTA5 image example. (j) A realistic image containing the cirrus cloud source. (k) The synthetic GTA5-like image of (i). (I) The created photo-realistic GTA5-like image
of (k). (m) The fourth GTA5 image example (n) A realistic image containing the advertisements source. (0) The synthetic GTA5-like image of (m). (p) The created

photo-realistic GTA5-like image of (0).

lll. EXPERIMENTAL RESULTS

Based on the training dataset “Camvid+GTAS5,” with 1402 (=
701+701) images, as the four comparison baselines, four sets
of experiments are carried out to show the object segmen-
tation accuracy of the four comparative object segmentation
methods , namely FCN [18], SegNet-basic [1], AdaptSegNet-
based [27], and Gated-AdaptSegNet-based [17].

In order to demonstrate the accuracy improvement merit
of our SDEA approach, we apply the proposed new dataset
“Camvid+GTASPFA” with 1722 (= 701+1021) images
to train the above-mentioned four CNN-based object seg-
mentation models. For convenience, the four retrained ver-
sions of the four object segmentation methods are called
FCNSPEA " SegNet-basicSPF4,  AdaptSegNet®PF4 | and
Gated-AdaptSegNet®PFA | respectively. For fairness, to
compare the segmentation accuracy performance of all the
considered object segmentation methods, we utilize the same
testing dataset which consists of 580 images of which 500 are
randomly collected from the dataset “Cityscapes” and 80 are
captured from the real urban world and can be accessed from
the website [8]. Note that in our two-step SDEA approach,
the experimental results indicated that based on the dataset

“Camvid+GTAS5PF4 > the accuracy improvement effect
of the first step, namely the source-aware based domain
enhancement step, is incremental relative to the baseline
models, while based on the dataset “Camvid+GTA55PFA >
the accuracy improvement effect of our two-step SDEA ap-
proach, namely the source-aware based domain enhancement
and adaptation, is obvious relative to the baseline models.

All experiments are implemented using a desktop with an
Intel Core i7-7700 CPU running at 3.6 GHz with 32 GB
RAM and an NVIDIA 1080Ti GPU. The operating system
is Microsoft Windows 10 64-bit. The program development
environment is PyCharm Professional with the Python pro-
gramming language.

A. OBJECT SEGMENTATION ACCURACY
IMPROVEMENT MERIT OF FCN°P ¥4

In the first set of experiments, the “mloU” gain is used to
show the average object segmentation accuracy improvement
merit of the proposed FCNSPF4 method over the FCN
method [18].

The metric “IoU” is used to measure the object segmenta-
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TABLE 3. The mloU improvement merit of the proposed SDEA approach relative to the FCN method [18].

= o0
< £ =} = =
3 3 8 . g= S A g mloU
k=] 5 = = 9 o = = s Z 8 . S 4 E B 2L
E 3 2§ s r22 ¥ 5 F 2E 5 EEE =
FCN 69.1 183 57.7 14 04 3.1 29 26 563 119 61.7 53 22 484 0.5 0.7 0.0 0.1 1.1 18.1
FCNSDPEA 711 241 588 3.0 1.0 3.8 3.0 34 56.1 112 644 52 27 53.6 0.7 09 00 00 1.0 192

tion accuracy of one object, and “IoU” is defined by

IoU(object) =

|Detected object pixels [ Ground truth object pixels|

|Detected object pixels |J Ground truth object pixels£
?)

In Eq. (2), “()” and “(J” denote the “intersection” and
“union” operations, respectively. The metric “mloU” is used
to measure the expected value of the “IoU” values for all
considered objects.

In terms of “IoU” Table 3 tabulates the segmentation
accuracy of each object among the considered 19 objects; the
IoU value of each object is listed below the object field. The
mloU value of all the objects is listed in the final column
of Table 3. Table 3 indicates that the mloU gain of our
FCNSPEA method over FCN is 1.1 (= 19.2 - 18.1), leading
to a clear segmentation accuracy improvement of FCNSPEA,

Besides demonstrating the accuracy improvement in terms
of “mlIoU” to help the readers to visualize the accuracy im-
provement by using FCN*PF4 Fig_ 3 depicts the perceptual
effects of our SDEA approach. In Fig. 3, we observe that by
using our FCNSPEA method, the perceptual effects for the
segmented road, sky, and building have been much improved
relative to the FCN method.

To demonstrate the perceptual effect merit of the proposed
SDEA approach for the two sources “leaves” and “manhole
cover” as shown in the segmented roads of Fig. 3(b) and
Fig. 3(d), our FCN®PEA method justifies the IoU gains,
21.1 (= 86.8 - 65.7) and 25.2 (= 95.9 - 70.7), respectively,
over the FCN method whose segmented roads are shown
in Fig. 3(a) and Fig. 3(c). From the perceptual effects of
the segmented sky and building, as shown in Fig. 3(f) and
Fig. 3(h), our FCNSPEA method justifies the IoU gains, 13.5
(=95.4-81.9)and 36.0 (=71.2 - 35.2), over the FCN method
whose segmented results are shown in Fig. 3(e) and Fig. 3(g),
respectively.

For fairness, based on the same testing dataset with 580
images [8], the average execution times for one testing im-
age on the baseline model FCN and our model FCNSPEA
are reported. Because the CNN configurations of FCN and
FCNSPEA are the same and the only difference is the trained
weights in the two models, for one testing image, the average
execution times required by both models are the same and it
takes 0.06 seconds.

B. OBJECT SEGMENTATION ACCURACY
IMPROVEMENT MERIT OF SEGNET-BASIC®PF4

In the second set of experiments, Table 4 tabulates the
IoU comparison between the proposed SegNet-basic®PF4
method and the SegNet-basic method. In the last column of
Table 4, the mIoU gain of our SegNet-basic®”?F4 method
over SegNet-basic is 3.1 (= 24.7 - 21.6), indicating a clear
average IoU improvement by using our SDEA approach.
In addition, as shown in Fig. 4, we observe that by using
our SegNet-basic*P#4 method, the perceptual effects of the
segmented road, sky, and building justify the related IoU
improvements.

Based on the same testing dataset [8], the average exe-
cution times for one testing image on the baseline model
SegNet-basic and our model SegNet-basic®PF4 are re-
ported. Because the CNN configurations of the two models
are the same and the only difference is the trained weights in
the two models, for one testing image, the average execution
times required by both models are the same and it takes 0.059
seconds.

C. OBJECT SEGMENTATION ACCURACY
IMPROVEMENT MERIT OF ADAPTSEGNET?PF4

In Table 5, the mIoU gain of our AdaptSegNet®PF4 method
over AdaptSegNet is 1.5 (= 34.4 - 32.9), and it indicates
a clear average IoU improvement by our SDEA approach.
In Fig. 5, we observe that by using our AdaptSegNetPF4
method, the perceptual effects of the segmented road, sky,
and building justify the related IoU improvements.

Based on the same testing dataset, the average execution
times for one testing image on the baseline model AdaptSeg-
Net and our model AdaptSegNet®PF4 are the same because
the configurations of the two CNN models are the same.
Experimental results demonstrated that for one testing image,
the average execution times required by both models are the
same and it takes 0.036 seconds.

D. OBJECT SEGMENTATION ACCURACY
IMPROVEMENT MERIT OF GATED-ADAPTSEGNET®P¥4

In Table 6, the mIoU gain of our Gated-AdaptSegNet®PF4
method over Gated-AdaptSegNet is 1.7 (= 36.4 - 34.7), indi-
cating a substantial average IoU improvement by using our
SDEA approach. In addition, Fig. 6 illustrates the perceptual
effects of the segmented road, sky, and building by using our
SDEA approach relative to Gated-AdaptSegNet.
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(e) ® (9 (h)

FIGURE 3. Perceptual effect merit of our FCN®PF4 method. (a) The first segmented road example with loU = 65.7 by using FCN. (b) The first segmented road
example with loU = 86.8 by using our FCN*P 4 method. (c) The second segmented road example with loU = 70.7 by using FCN. (d) The second road example
with loU = 95.9 by using our FCN®PZ4 method. (e) The segmented sky example with loU = 81.9 by using FCN. (f) The segmented sky example with loU = 95.4 by
using our FCNSPF4 method. (g) The segmented building example with loU = 35.2 by using FCN. (h) The segmented building example with loU = 71.2 by using our

FCNSPEA method.

TABLE 4. The mloU improvement merit of the proposed SDEA approach relative to the SegNet-basic method [1].

24 o0
§ £ o g g ~ 5 mloU
2 5 = 5 2 & = = I 2 B . 9 »- £ £ 2
E: % 2 f s r 22 2 E F RE 5 EEEGEGE
SegNet-basic 68.6 17.3 54.1 24.1 14 263 3.8 6.8 62.1 70 592 6.7 11.3 51.0 47 13 0.0 0.2 4.1 21.6

SegNet-basicSPFA 723 263 57.4 351 3.7 246 3.6 11.7 638 239 612 83 107 546 52 2.7 0.0 0.1 3.4 247

(h)

SDEA method. (a) The first segmented road example with loU = 75.0 by using SegNet-basic. (b) The first
segmented road example with loU = 80.1 by using our SegNet-basic®” 4 method. (c) The second segmented road example with loU = 85.4 by using SegNet-basic.
(d) The second road example with loU = 90.4 by using our SegNet-basic®”#“ method. (e) The segmented sky example with loU = 29.1 by using SegNet-basic. (f)
The segmented sky example with loU = 73.5 by using our SegNet-basic®? £ method. (g) The segmented building example with loU = 18.8 by using SegNet-basic.
(h) The segmented building example with loU = 28.6 by using our SegNet-basic®” 4 method.

FIGURE 4. Perceptual effect merit of our SegNet-basic

TABLE 5. The mloU improvement merit of the proposed SDEA approach relative to the AdaptSegNet method [27].

= on
< E o = I
2 k=) Q - = o I A s} mloU
=} ) = =1 o ) = =} ] 7] 5] o =) = [9)
i 2 2 % 8 g2 2 ¥ B g o2 ¢ 5t 2 E B2
AdaptSegNet 80.7 16.6 79.1 12.7 15.7 245 17.8 17.7 769 113 785 385 8.6 79.8 222 26.7 0.7 17.8 0.1 329

AdaptSegNetSPEA 830 223 79.3 17.5 17.0 26.8 157 12.4 77.3 113 782 41.0 153 80.2 21.9 324 0.1 20.6 1.3 344
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FIGURE 5. Perceptual effect merit of our AdaptSegNet® P F4 method. (a) The first segmented road example with loU = 78.2 by using AdaptSegNet. (b) The first
segmented road example with loU = 80.7 by using our AdaptSegNet® 4 method. (c) The second segmented road example with loU = 91.6 by using AdaptSegNet.
(d) The second road example with loU = 94.9 by using our AdaptSegNet® P F4 method. (e) The segmented sky example with loU = 64.8 by using AdaptSegNet. (f)
The segmented sky example with loU = 88.8 by using our AdaptSegNet® P #4 method. (g) The segmented building example with loU = 20.7 by using AdaptSegNet.

h) The segmented building example with loU = 65.3 by using our AdaptSegNet®”*4 method.
( g 9 p y using ptSeg

(h)

FIGURE 6. Perceptual effect merit of our Gated-AdaptSegNet®” 4 method. (a) The first segmented road example with loU = 89.7 by using Gated-AdaptSegNet.
(b) The first segmented road example with loU = 92.4 by using our Gated-AdaptSegNet> EA method. (c) The second segmented road example with loU = 92.8 by
using Gated-AdaptSegNet. (d) The second road example with loU = 96.9 by using our Gated-AdaptSegNet® P £ 4 method. (e) The segmented sky example with loU

= 74.9 by using Gated-AdaptSegNet. (f) The segmented sky example with loU = 88.8 by using our Gated-AdaptSegNet> P £4 method. (g) The segmented building

example with loU = 64.7 by using Gated-AdaptSegNet. (h) The segmented building example with loU = 80.4 by using our Gated-AdaptSegNe

tSPEA method.

TABLE 6. The mloU improvement merit of the proposed SDEA approach relative to the Gated-AdaptSegNet method [17].

= &0
< = =} =} =
2 =] Q o ‘3 o . > <} mloU
2 15} = = S 2L = g g 12 5] S @ s 2 Q
i 2 2 £ 5 22 2 ¢ 5 Z 2 2 §5 £ 2 E B Z
Gated-AdaptSegNet 85.8 17.6 81.9 24.1 153 27.5 20.0 142 77.5 183 73.0 29.4 15.1 79.6 21.9 20.7 0.8 252 12.2 34.7

Gated-AdaptSegNet3PEA 890 203 79.8 237 18.0 282 162 12.8 782 182 748 29.4 157 841 302 355 0.1 185 184 364

Based on the same testing dataset, for one testing image,
the execution times required by the baseline model Gated-
AdaptSegNet and our model Gated-AdaptSegNet®PF4 are
the same and it takes 0.042 seconds.

IV. CONCLUSION

We have presented the proposed novel and effective SDEA
approach to enhance the accuracy of the CNN-based object
segmentation methods on FCN, SegNet-basic, AdaptSeg-
Net, and Gated-AdaptSegNet. In particular, in the proposed
fast source-pasting technique, the labelled pixel-annotations
covered by these sources can inherit the original pixel-
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annotations from the sub-image of the selected “Camvid”
image, and the labelled pixel-annotations covered by the
other parts can also herit the original pixel-annotations in
the selected GTAS image. The comprehensive experimental
results have justified the segmentation accuracy improvement
merit and the perceptual effect of our SDEA approach rela-
tive to the four CNN-based object segmentation methods on
FCN, SegNet-basic, AdaptSegNet, and Gated-AdaptSegNet.

Our first future work is to extend our SDEA ap-
proach to cover more sources for further improving existing
CNN-based object segmentation methods. In addition, our
SDEA approach will be considered to apply to the spatio-
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temporal graph convolutional network-based traffic forecast-
ing method [31] which has been successfully used in the
public bike sharing program [30]. Our second future work
is to deploy the time-varying communication time delay
issue [6], [28] into the proposed SDEA- and CNN-based
object segmentation method to achieve higher segmentation
accuracy and real-time demand in ADAS applications.
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