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For reducing the cost, most digital cameras are equipped with a CCD or CMOS sensor and a
RGB color filter array (CFA) for each pixel to capture one primary color component, and
hence produce a mosaic image. Suppose the input mosaic image without the CFA
structure information, this paper presents a novel efficient method, consisting of a
training-based scheme and an identification scheme, for identifying its CFA structure
using the frequency domain approach. Initially, based on a set of training mosaic images
with different CFA structures, a training-based scheme is proposed to build up the
representative spectrum for every CFA structure. As the model maps, the constructed
representative spectra can be reused in subsequent identification processes. The proposed
identification scheme first constructs the representative spectrum of the header-less input
mosaic image as the query map. Then, a matching scheme is proposed to identify the
corresponding CFA structure of the query map from the model maps. Experimental results
demonstrate that the proposed identification method has low computational cost and
high identification accuracy merits for mosaic images without prior header information,
when compared with the state-of-the-art spatial domain-based method by Chiu et al.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Nowadays, digital cameras have become increasingly
popular in the consumer electronics market. To reduce
hardware costs, most digital cameras use a single charge-
coupled device (CCD) or a complementary metal-oxide-
semiconductor (CMOS) sensor with a color filter array (CFA)
to capture one primary color component for each pixel [1].
. Huang),
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Such images are called mosaic images. Fig. 1 shows 11 typical
CFA structures. The first 10 CFA structures [2] in Fig. 1 are
red–green–blue (RGB) CFAs in which the Bayer CFA [3] is the
most well-known structure; the last CFA structure, i.e. the
Hirakawa CFA [4], is a non-RGB CFA in which six colors are
considered and each one is a linear combination of red,
green, and blue components.

Most of the digital cameras can produce full RGB color
image in JPEG file format [5] from the captured mosaic image
through a series of image processing operations, such as
demosaicing, noise removal, white balance control, resizing,
and image compression. The produced JPEG files are con-
venient for media storage. However, some of the above digital
camera's operations may result in image quality degradation,
the resultant images are unsuitable for professional users, e.g.
photographers, artists, and graphic designers. Besides the JPEG
file format, many digital cameras also offer the raw image
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Fig. 1. Ten typical RGB CFA structures: (a) Bayer CFA, (b) Lukac and Plataniotis CFA, (c) Yamanaka CFA, (d) diagonal stripe CFA, (e) vertical stripe CFA,
(f) modified Bayer CFA, (g) HVS-based CFA, (h) type I pseudo-random CFA, (i) type II pseudo-random CFA, (j) type III pseudo-random CFA, and
(k) Hirakawa CFA.
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format, which directly records mosaic images captured from
CCD or CMOS sensor and without applying any digital
camera's operations, to avoid the quality degradation.
Recently, the raw image format has become popular among
professional users because they can select better image
algorithms instead of the ones used in digital cameras. As
the popularity of the raw image format, more and more
researchers focus on mosaic images and several related
algorithms have been developed, such as compression
[6–8], super-resolution [9,10], and demosaicing [11–14].

Given a mosaic image, its CFA structure is required to be
known in advance from the header in TIFF-EP format for
image manipulations. If, however, the prior header informa-
tion is unknown for the input mosaic image, e.g. the header
may be lost due to network packet loss in transmission or
storage damage, the related image manipulations cannot
work well. In such a header-less situation, Chiu et al. [15]
proposed a spatial domain-based total average square differ-
ence minimization approach for identifying the CFA structure
of the mosaic image. However, their method is rather time-
consuming and the identification accuracy is dependent on
the window size used. Therefore, it is necessary to design a
new approach to substantially reduce the computational cost
and enhance the identification accuracy, leading to the main
motivation of this research.

For an input mosaic image whose CFA structure is not
available, this paper presents a novel efficient method for
identifying its CFA structure using the frequency domain
approach. The proposed method consists of two schemes:
(1) the four-step training-based scheme to build up the
representative spectra as the model maps for the concerned
CFA structures and (2) the three-step matching scheme to
identify the CFA structure of the input header-less mosaic
image. In the four-step training-based scheme, suppose
there are n training mosaic images for the ith CFA structure,
0r ir10. In the first step, the Fourier transform is per-
formed on every training mosaic image to obtain the high-
pass spectrum map. In the second step, the high-energy
blocks in each high-pass spectrum map are located and the
coefficients in every high-energy block are reserved, but
those in the non-high-energy block are discarded. In the
third step, a successive thresholding approach is proposed
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to extract the significant coefficients in every high-energy
block, obtaining the significant spectrum map. In the fourth
step, for the ith CFA structure, an outlier-pruning approach
is proposed to build up the model map based on these n
significant spectrum maps. We thus build up the 11 model
maps for the 11 concerned CFA structures. In the first step of
the proposed three-step matching scheme, we resize the
input mosaic image to the same size as the model map and
then obtain the corresponding significant spectrum map
as the query map. In the second and third steps, based
on the Bhattacharya distance criterion, a matching
strategy is proposed to identify the corresponding CFA
structure of the query map from the model maps. In
addition, the computational complexity analysis of the
proposed method is presented. For comparison, the
computational complexity analysis of the comparative
method is also exploited. Experimental results demon-
strate that when compared with Chiu et al.'s spatial
domain approach, the proposed frequency domain-
based identification method has low computational cost
and high identification accuracy merits for the input
Fig. 2. Ten training color images used in the
mosaic image with an arbitrary CFA structure for which
there is no prior header information.

The rest of this paper is organized as follows. In
Section 2, we first present the proposed four-step train-
ing-based scheme for constructing the model map for each
CFA structure, and then present the three-step matching
scheme to identify the CFA structure of the input mosaic
image without prior header information. Furthermore, the
computational complexity analyses of the proposed
method and the comparative method are presented.
Section 3 gives the empirical results of the identification
performance in terms of the computational cost and the
identification accuracy. Concluding remarks are given in
Section 4.

2. Proposed CFA identification method

For an input mosaic image whose CFA structure is not
available, this section presents a novel efficient frequency
domain-based method to identify its CFA structure. In the first
subsection, a four-step training-based scheme is proposed to
proposed four-step training scheme.
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build up the model maps for the 11 concerned CFA structures.
In the second subsection, the proposed three-step matching
scheme is presented to identify the CFA structure of the input
mosaic image. In the third subsection, the related computa-
tional complexity analyses are provided.

2.1. Proposed four-step training-based scheme to construct
the model map for every CFA structure

The purpose of the proposed four-step training-based
scheme is to build up the 11 model maps for the concerned
CFA structures based on a set of training mosaic images.
Initially, let the n RGB training full color images be denoted by
I0, I1,…, and In�1, each with size w�h. According to the 11
typical CFA structures as shown in Fig. 1, the corresponding n
mosaic images for each CFA structure are generated and used
to construct the model map. For convenience, let Ipk,
0rpr10 and 0rkrn, denote the kth training mosaic
image for the pth CFA structure. To explain how the proposed
training scheme works, we select 10 full RGB color images
from Rich Franzen's website [16] as shown in Fig. 2 to
generate training mosaic images. For each image in Fig. 2,
the corresponding 11 different mosaic images are generated
by reserving only one color for each pixel. Specifically, for
mosaic images with CFA structures in Fig. 1(a)–(j), the color of
each pixel is selected from red, green, or blue component in
the RGB domain; for those with the non-RGB CFA structure in
Fig. 1(k), the color of each pixel is obtained from the linear
combination of red, green, and blue components. Totally 10
full RGB color images can generate 110 training mosaic images
for constructing the model maps.

In the first step, the training mosaic image Ipk is
transformed to the frequency domain representation Fpk
by using the Fourier transform:

Fpkðu; vÞ ¼
Xw�1

x ¼ 0

Xh�1

y ¼ 0

Ipkðx; yÞe� j2πððu=wÞxþðv=hÞyÞ ð1Þ

for 0rurw�1 and 0rvrh�1. Next, the spectrum map
Spk is obtained by

Spkðu; vÞ ¼ logðjFpkðu; vÞjþ1Þ ð2Þ
Consequently, the pth CFA, 0rpr10, yields n spectrum
maps, Sp0, Sp1, …, and Spn�1.

Fig. 3 shows the 11 resultant spectrum maps of Fig. 2(a).
It can be observed that the spectrum distributions in the
central low frequency region are similar, so that this region
of these spectrum maps cannot be used to distinguish one
CFA structure from the others. Therefore, the central low
frequency region of Spk can be discarded by using the
following high-pass filter:

Spk u; vð Þ

¼ 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�w

2

� �2
þ v�h

2

� �2
s

rr �min h;wð Þ

Spkðu; vÞ otherwise

8>><
>>:

ð3Þ
where the value of r is in ½0;1� and we set it to 0.3
empirically. By Eq. (3), it yields the high-pass spectrum
map which is denoted by Sp;hpk .
In the second step, a block-based incremental approach
is proposed to further locate the high-energy blocks of
Sp;hpk . The energy density value of a b� b block Bp;hp

k ðub; vbÞ,
where b is set to 16 empirically and ðub; vbÞ denotes the
upper-left position of that block, is in ½0;1� and is calcu-
lated by

De Bp;hp
k ub; vbð Þ

� �

¼ 1

b2
Xb�1

k ¼ 0

Xb�1

l ¼ 0

ξ Sp;hpk ubþk; vbþ lð Þ;μp;hp
k

� �
ð4Þ

where μp;hp
k denotes the average spectrum value of the

high-pass spectrum map Sp;hpk and the function ξ is defined
by

ξðx; tÞ ¼ 1; xZt

0 otherwise

�
ð5Þ

By Eq. (4), Bp;hp
k ðub; vbÞ is defined to be the high-energy

block if the condition DeðBp;hp
k ðub; vbÞÞZTE is held, where TE

is in ½0;1� and is set to 0.7 empirically. To locate the high-
energy blocks of Sp;hpk , the calculation of DeðBp;hp

k ðub; vbÞÞ is
started from ub ¼ vb ¼ 0. If the block Bp;hp

k ðub; vbÞ is a high-
energy block, we reserve all coefficients of that block and
then increase ub by ub ¼ ubþ16 to determine whether or
not the next block is the high-energy block. Otherwise, if
the block Bp;hp

k ðub; vbÞ is not a high-energy block, we set the
coefficients in the first column of the block to 0 s and then
increase ub by ub ¼ ubþ1 to repeat the above energy
density calculation process for the next block. Such an
incremental calculation method can reduce the average
computational cost. When the condition ub4w�b is held,
we set ub¼0 and vb ¼ vbþb, and repeat the same high-
energy block determination process for the first block in
the next row. The above process is continuously performed
until all blocks have been processed. The final resultant
spectrum map, denoted by Sp;hek , is called the high-energy
spectrum map. After completing the high-energy block
determination for the 10n high-pass spectrum maps, in
the third step, the coefficients in every high-energy block
will be reserved, but those in the non-high-energy block
will be discarded.

In the third step, a successive thresholding approach is
proposed to extract the significant coefficients in every
high-energy block of Sp;hek . Let Sp;hek;i denote the current
significant spectrum map at the i-th iteration which is
formulated as

Sp;hek;iþ1ðu; vÞ ¼
Sp;hek;i ðu; vÞ; Sp;hpk;i ðu; vÞZTp;he

k;i

0 otherwise

(
ð6Þ

where the initial condition is Sp;hek;0 ðu; vÞ ¼ Sp;hek ðu; vÞ and the
adaptive threshold Tp;he

k;i is equal to the average value of
nonzero coefficients in Sp;hek;i . Empirically, nine iterations are
enough to filter out those insignificant coefficients and
retain the significant ones in each high-energy block of
Sp;hek . Let Sp;sk denote the final resultant significant spectrum
map after finishing the above successive thresholding
process by Eq. (6). For the pth CFA structure, 0rpr10,
the final n significant spectrum maps are denoted by Sp;s0 ,
Sp;s1 , …, and Sp;sn�1.
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In the fourth step, for the pth CFA structure, 0rpr10, the
corresponding model map will be constructed based on the n
significant spectrum maps obtained from the third step. For
each position (u,v), we extract the related n significant
coefficients Sp;s0 ðu; vÞ, Sp;s1 ðu; vÞ, …, and Sp;sn�1ðu; vÞ from the n
significant spectrum maps and these extracted n coefficients
form a histogram. Totally we have (w�h) histograms for each
CFA structure. Pruning the outliers of each of (w� h) histo-
grams, we can construct the model map of the pth CFA
structure by

Mp u; vð Þ

¼
Pn�1

k ¼ 0 S
p;s
k ðu; vÞ � ξðSp;sk ðu; vÞ;μp;sðu; vÞþκσp;sðu; vÞÞPn�1
k ¼ 0 ξðSp;sk ðu; vÞ;μp;sðu; vÞþκσp;sðu; vÞÞ

ð7Þ

where the function ξ has been defined in Eq. (5); μp;sðu; vÞ and
σp;sðu; vÞ denote, respectively, the average and the standard
deviation of the n coefficients, Sp;s0 ðu; vÞ, Sp;s1 ðu; vÞ, …, and
Fig. 3. Spectrum maps of the 10 mosaic images generated from Fig. 2(a) acc
corresponding 10 spectrum maps for Fig. 1(a)–(k).
Sp;sn�1ðu; vÞ; κ ¼ 1 empirically. After performing the fourth step
for the 11 CFA structures, it yields the 11 model maps,M0; M1;

…, and M10. Fig. 4 shows the final resultant 11 model maps
based on the 10 training images as shown in Fig. 2. We
observe that except for the two model maps in Fig. 4(g) and
(i), the other nine model maps are quite different. In fact, the
model maps in Fig. 4(g) and (i) are still slightly different. In the
next subsection, a Bhattacharya distance criterionwill be used
to measure the difference level between all model map pairs.
Then, an identification scheme is presented to identify the CFA
structure of each header-less mosaic image.

2.2. Proposed three-step matching scheme for identifying
arbitrary CFA structures

In this subsection, based on the constructed 11 model
maps and the difference level between all model map
pairs, a three-step matching scheme is proposed to identify
the CFA structure of any header-less mosaic image Ihℓ with
ording to the 10 CFA structures as shown in Fig. 1. (a)–(k) denote the
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size w0 � h0. Before describing the details of the proposed
three-step matching scheme, we first sketch the purpose of
each step in the scheme. In the first step, wewill first generate
the significant spectrum map Sshℓ of Ihℓ and then calculate the
normalized local energy of each block in the significant
spectrum map to obtain the query map. According to the
query map, the second step will find the best matched model
map from the 11 based on the Bhattacharya distance criterion.
If the CFA structure of the matched model map belongs to the
CFA set f0;1;2;3;4;5;7;9;10g, then the CFA structure is
reported as the output of the query map; otherwise, we
proceed to the third step. In the third step, a set-based
approach is presented to further determine whether the CFA
structure of the query map is 6 or 8. We now describe the
details of the proposed three-step matching scheme.

In the first step, we want to resize the input mosaic
image Ihℓ to the same size of the model map and transform
the resized mosaic image to the query map. We first
Fig. 4. The 10 constructed model maps of Fig. 2 for the 10 CFA structures: (a) Baye
CFA, (e) vertical stripe CFA, (f) modified Bayer CFA, (g) HVS-based CFA, (h) type
random CFA, and (k) Hirakawa CFA.
describe how to resize the input mosaic image with size
w0 � h0 to be of size w� h. If w04w, we crop the last w0 �w
columns of Ihℓ; otherwise, i.e. w0ow, we pad Ihℓ with
additional w�w0 columns produced by periodically
repeating the last columns of Ihℓ. The two cases, h04h
and h0oh, are handled in a similar way. The resized image
of Ihℓ is denoted by Irhℓ. Next, we perform the first three
steps of the model map construction process, which has
been described in the last subsection, on the resized
mosaic image Irhℓ. After that, the significant spectrum
map Sshℓ of the mosaic image is obtained. Further, we
partition Sshℓ into a set of b� b blocks and for each block
Bs
hℓðub; vbÞ, where ðub; vbÞ denotes the upper-left position of

the block, the normalized local energy of that block is
calculated by

E Bs
hℓ ub; vbð Þ� 	¼Pb�1

k ¼ 0
Pb�1

l ¼ 0 S
s
hℓðubþk; vbþ lÞPw�1

u ¼ 0
Ph�1

v ¼ 0 S
s
hℓðu; vÞ

: ð8Þ
r CFA, (b) Lukac and Plataniotis CFA, (c) Yamanaka CFA, (d) diagonal stripe
I pseudo-random CFA, (i) type II pseudo-random CFA, (j) type III pseudo-
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Because of
P

ðub ;vbÞAPOb
EðBs

hℓðub; vbÞÞ ¼ 1, where POb denotes
the set of upper-left positions of all b� b blocks, we have
0rEðBs

hℓðub; vbÞÞr1. After completing the computation of
Eq. (8) for all blocks of the significant spectrum map, we
then obtain the query map which is still denoted by Sshℓ for
convenience. Note that in implementation, the above
normalized local energy computation process has been
performed on each block for all model maps in advance
and the calculated normalized local energy of each block
in the model map can be reused again and again. The
resultant model map is still denoted by Mp for
convenience.

In the second step, we use the query map Sshℓ to find the
best matched model map Mj among the 11 model maps.
Because Sshℓ and Mj are represented by two normalized
local energies of blocks which can be viewed as two
normalized histograms, the similarity between Sshℓ and
Mj can be measured by the similarity of the two normal-
ized histograms. In the proposed method, the Bhatta-
charya distance [17], which is an efficient metric for
histogram matching, is used to determine the best
matched model map Mj for the query map Sshℓ by

j¼ arg min
0rpr10

BDðSshℓ;MpÞ ð9Þ

where BDðSshℓ;MpÞ denotes the Bhattacharya distance
between Sshℓ and Mp and is defined by

BDðMs
hℓ;M

pÞ ¼ 1�
X

ðub ;vbÞAPOb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðBs

hℓðub; vbÞÞEðBpðub; vbÞÞ
q !1=2

ð10Þ

The lower the value of BDðMs
hℓ;M

pÞ, the higher the
similarity between the query map Sshℓ and the model
map Mp.

In the second step, we use the query map Sshℓ to find the
best matched model map Mj of the 11 model maps by

j¼ arg min
0rpr10

BDðSshℓ;MpÞ ð11Þ

where BDðSshℓ;MpÞ denotes the Bhattacharya distance [17]
between Sshℓ and Mp and is defined by

BDðMs
hℓ;M

pÞ ¼ 1�
X

ðub ;vbÞAPOb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðBs

hℓðub; vbÞÞEðBpðub; vbÞÞ
q !1=2

ð12Þ
Table 1
The Bhattacharya distance values of all model map pairs.

Model map M0 M1 M2 M3 M4 M5

M0 0 0.76182 0.76547 1 0.99536 0.9
M1 0.76182 0 0.99597 1 0.99621 0.9
M2 0.76547 0.99597 0 1 0.99586 0.9
M3 1 1 1 0 1 1
M4 0.99536 0.99621 0.99586 1 0 0.9
M5 0.99343 0.99526 0.99413 1 0.99508 0
M6 0.97859 0.95597 0.95864 1 0.992 0.9
M7 0.99353 0.99533 0.99422 1 0.99515 0.8
M8 0.82405 0.93641 0.91843 1 0.99346 0.8
M9 0.99195 0.99413 0.99281 1 0.99387 0.9
M10 0.8331 0.91976 0.93011 1 0.82542 0.9
The lower the value of BDðMs
hℓ;M

pÞ, the higher the simi-
larity between the query map Sshℓ and the model map Mp.
After determining the best matched model map Mj by Eq.
(12), two cases are needed to be considered. The first case
is that MjAfM0;M1;M2;M3;M4;M5;M7;M9;M10g and the
second is that MjAfM6;M8g. Table 1 illustrates the distin-
guishability level, i.e. the difference level, between all
model map pairs, ðMk;MlÞ for 0rk; lr10, in terms of the
Bhattacharya distance. From Table 1, we observe that
when distinctive k and l are in f0;1;2;3;4;5;7;9;10g, the
Bhattacharya distance value of BDðMk;MlÞ is always
greater than 0.75. It reveals that if the best matched model
map belongs to the first case, the corresponding CFA
structure can be definitely reported as the output of the
query map. However, Table 1 indicates that the Bhatta-
charya distance value is less than 0.58, so the third step is
necessary to further distinguish the HVS-based CFA struc-
ture (corresponding to M6) from the type II pseudo-
random CFA structure (corresponding to M8). The above
distinguishability analysis is coincident with the visual
observation from Fig. 4.

In the third step, it is known that the best matched model
map does not belong to the set for the first case, i.e.
j=2f0;1;2;3;4;5;7;9;10g, so further spectrum comparison
is required to determine whether the corresponding CFA
structure is the HVS-based CFA or the type II pseudo-random
CFA, i.e. j¼6 or j¼8. Suppose the temporary CFA structure of
the best matched model map obtained in the second step is
j¼6. Now we want to confirm whether j should remain as 6
or be changed to 8. Let a b� b block, where b is the same as
the one used in the proposed training scheme, i.e. b¼16, in
the spectrummap be a significant block when its normalized
local energy value is larger than 0. We take each significant
block Bs

hℓðub; vbÞ in Sshℓ and examine the co-located blocks
B6ðub; vbÞ and B8ðub; vbÞ in M6 and M8, respectively. If
B6ðub; vbÞ is not a significant block but B8ðub; vbÞ is, then it
offers one vote to M8; on the contrary, if B6ðub; vbÞ is a
significant block but B8ðub; vbÞ is not, then it offers one vote
to M6. In what follows, a set-based approach is proposed to
realize the voting process. Let POs

hl;sb, PO
6
sb, and PO8

sb denote
the sets of upper-left positions of the significant blocks in Sshℓ,
M6, and M8, respectively. By using POd8

sb ¼ PO8
sb ðPO6

sb \ PO8
sbÞ,

where‘\’ and ‘\ ’ are the complement and intersection
operations, respectively, we can count the number of sig-
nificant blocks in Sshℓ whose co-located blocks in M8 are
significant but insignificant in M6. The favorite level of M8 as
M6 M7 M8 M9 M10

9343 0.97859 0.99353 0.82405 0.99195 0.8331
9526 0.95597 0.99533 0.93641 0.99413 0.91976
9413 0.95864 0.99422 0.91843 0.99281 0.93011

1 1 1 1 1
9508 0.992 0.99515 0.99346 0.99387 0.82542

0.92846 0.83885 0.85246 0.99157 0.98206
2846 0 0.96061 0.57329 0.98272 0.94862
3885 0.96061 0 0.94207 0.99019 0.98231
5246 0.57329 0.94207 0 0.98658 0.9153
9157 0.98272 0.99019 0.98658 0 0.9686
8206 0.94862 0.98231 0.91530 0.9686 0
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the best matched model map can be defined by

FL8hl ¼
jPOs

hl;sb \ POd8
sb j

jPOd8
sb j

ð13Þ

where jPOj denotes the size of set PO and 0rFL8hlr1. If
FL8hlrTFL, where TFL ¼ 0:275 empirically, the CFA structure
of the query map is determined to be j¼8; otherwise, the
CFA structure of the query map remains as j¼6. When the
temporary CFA structure of the best matched model map
obtained in the second step is j¼8, it can be handled in a
similar way.
Table 2
Accuracy comparison of the proposed method and Chiu et al.'s method.

CFA structures Proposed method Chiu et al.'s method

First
set (%)

Second
set (%)

Third
set (%)

First
set (%)

Second
set (%)

Third
set
(%)

Bayer CFA 100 100 100 100 100 97
Lukac and

Plataniotis
CFA

100 100 100 100 100 100

Yamanaka CFA 100 100 100 100 100 98
Diagonal stripe

CFA
100 100 100 100 100 100

Vertical stripe
CFA

100 100 100 100 100 100

Modified Bayer
CFA

100 100 100 100 100 100

HVS-based CFA 100 100 100 100 100 100
Type I pseudo-

random
CFA

100 100 100 100 100 100

Type II
pseudo-
random
CFA

100 100 100 100 100 100

Type III
pseudo-
random
CFA

100 100 100 100 100 100

Hirakawa CFA 100 100 100 98 96 95

Average 100 100 100 99.8 99.6 99.1

Table 3
Execution-time comparison of the proposed method and Chiu et al.'s method in

CFA structures Proposed method

First set Second set

Bayer CFA 210.61 193.23
Lukac and Plataniotis CFA 210.95 194.77
Yamanaka CFA 211.45 195.78
Diagonal stripe CFA 206.34 193.45
Vertical stripe CFA 206.83 191.37
Modified Bayer CFA 211.89 192.91
HVS-based CFA 209.94 193.19
Type I pseudo-random CFA 208.89 194.11
Type II pseudo-random CFA 208.11 192.99
Type III pseudo-random CFA 208.96 192.18
Hirakawa CFA 211.85 194.96

Average 209.62 193.54
Using the above three–step matching scheme, the CFA
structure of the input mosaic image can be identified
according to the best matched model map. Note that the
proposed method can only identify the CFA structure
considered in the proposed four-step training scheme.
For the CFA structures which are not included in Fig. 1,
we need to generate the corresponding training mosaic
images from the full RGB color images and perform the
proposed four-step training scheme for constructing the
model maps. After combining the former 11 model maps
with the newly constructed ones, we could identify all
concerned CFA structures using the proposed three-step
matching scheme.

2.3. Computational complexity analysis

In this subsection, the computational complexity ana-
lysis of the proposed method is offered. For comparison,
the computational complexity analysis of the state-of-the-
art method by Chiu et al. is also exploited.

Since the model maps constructed by the proposed
four-step training-based scheme can be reused, we only
focus on the computational complexity analysis in the
three-step matching scheme. Without loss of generality,
instead of using the image size w� h as the problem size
parameter, let the image size be N�N for ease of analysis.

In the first step of the matching scheme, it takes OðN2Þ
time to resize the input mosaic image to the same size of
the model map. Then it takes Oð2N2 log2 NÞ time to per-
form the Fourier transform on the resized mosaic image,
yielding the corresponding spectrum map. Next, consider-
ing the worst case, the block-based incremental approach
can be done in Oðb2 � N2=bÞð ¼OðbN2ÞÞ, i.e. Oð16N2Þ for
b¼16, time to locate all the high energy blocks of the
spectrum map. It is obvious that the time complexity of
the block-based incremental approach would be higher
when b416. However, in our implementation, we observe
that b¼16 is sufficient to accurately locate the high-energy
blocks in all high-pass spectrum maps, so that the corre-
sponding time complexity can be written as Oð16N2Þ. Next,
it takes Oð9N2Þ time to extract the significant coefficients
in every high-energy block of the spectrum map. It yields
the significant spectrum map. Further, it takes OðN2Þ time
terms of milliseconds.

Chiu et al.'s method

Third set First set Second set Third set

194.23 22,876.21 25,854.08 85,022.56
194.68 22,872.90 25,765.96 84,739.96
198.16 22,878.78 25,763.89 85,169.55
193.88 22,873.65 25,761.19 84,885.17
192.98 22,873.88 25,832.85 85,021.59
194.17 22,878.12 25,766.05 84,564.49
199.87 22,879.31 25,766.95 84,678.81
194.52 22,876.71 25,780.62 85,008.06
201.12 22,875.71 25,765.93 85,893.82
199.18 22,879.45 25,825.66 85,127.81
194.85 22,880.65 26,054.96 84,612.96

196.15 22,876.85 25,812.56 84,974.98
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to calculate the normalized local energy for all blocks, and
we obtain the resultant query map.

In the second step of the matching scheme, based on
the Bhattacharya distance criterion, it takes Oð11N2=b2Þ,
i.e. Oð11N2=256Þ, time to find the best matched model map
of the query map. The third step of the matching scheme
needs Oð3N2=b2Þ, i.e. Oð3N2=256Þ, time to determine
whether the CFA structure is the HVS-based CFA (with
respect to structure 6) or the type II pseudo-random CFA
(with respect to structure 8). Consequently, the overall
time complexity required in the three-step matching
scheme is bounded by Oð16N2þ2N2 log2 NÞ. When
No256, the time bound can be rewritten as Oð16N2Þ;
otherwise, the time bound is written as Oð2N2 log2 NÞ. Due
to the fact that the size of the mosaic images captured by
modern digital cameras is usually larger than 256�256,
the overall computational complexity of the proposed
method can be simplified to Tours ¼Oð2N2 log2 NÞ. Consid-
ering the worst case for N¼4096, which covers nearly all
possible resolutions of modern digital cameras, we thus
have Tours ¼ Oð24N2Þ.

The computational complexity of Chiu et al.'s spatial
domain-based method is analyzed as follows. To deter-
mine the CFA structure of the input mosaic image, Chiu et
al.'s method assigns the primary color component of each
pixel according to the considered CFA structure among the
11 CFA structures and then calculates the average square
difference between each pixel and its neighboring pixels
with the same primary color component within the W�W
window. The overall average square difference can be
calculated by summing up the average square differences
of all pixels in the input mosaic image under the con-
sideration of one specific CFA structure, taking OðW2N2Þ
time in total. After calculating the total average square
differences for the concerned 11 CFA structures, the CFA
structure with the minimal total average square difference
is selected as the final output. Their method takes
Oð11W2N2Þ time to determine the CFA structure of the
input mosaic image. Because of Oð24N2ÞoOð11W2N2Þ for
W42, it is obvious that the proposed method has lower
computational complexity than Chiu et al.'s method.
3. Experimental results

For comparing the identification performance of the
proposed frequency domain-based method and Chiu et
al.'s spatial domain-based method, three test image sets
are used to generate the test mosaic images to conduct the
experiments. The first test set consists of 14 color images
of size 512�768, which are adopted from the Kodak
lossless true color image suite [16]. The second test set
consists of 106 color images of size 576�768 adopted
from [18], while the third test set consists of 100 color
images of size 1200�1200 adopted from the website [19].
Totally 2420 test mosaic images were generated for the 11
CFA structures. All the experiments were implemented on
an IBM compatible computer with Intel Core 2 duo E7400
CPU of 2.8 GHz, 2GB RAM, and Microsoft Windows XP
operating system. The two concerned methods were
realized by Borland Cþþ Builder 6.0.
As mentioned in the last section, among the 24 color
images on the website, the first 10 images, as shown in
Fig. 2, are used to generate the model maps for the 11 CFA
structures, and the remaining 14 images are used as the
test images. In fact, we select 5–15 images from the 24
color images for model map generation and find that the
model maps generated from 10 color images are sufficient
to identify the CFA structures of the 2420 test mosaic
images. To determine the parameters used in the proposed
method, we tune the values of r and TE from 0 to 1 with
step 0.1, the value of b from 8 to 32, and the value of κ from
0.5 to 2 with step 0.5, to find the optimal solution.
Experiment results show that setting r¼0.6, TE¼0.7,
r¼0.3, b¼16, and κ ¼ 1 can maximize the identification
accuracy of the proposed method. In the third step of the
proposed four-step training-based scheme, the number of
iterations required in the successive thresholding
approach is determined in the same way, and the number
of iterations is tuned from 3 to 15. Empirically, nine
iterations are enough.

After performing the proposed method and Chiu et al.'s
method on the three sets of test mosaic images, for each
CFA structure, the identification accuracy was measured by
the ratio of the number of correctly identified test mosaic
images over the number of total images. To determine the
window size, W�W, used in Chiu et al.'s method, we
consider W from 7 to 31 and select W¼21 for maximizing
the identification accuracy performance. The accuracy
performance comparison is demonstrated in Table 2 which
reveals that the proposed method can correctly identify
the CFA structures for all test mosaic images. Chiu et al.s
method works perfectly for the first and second test
mosaic image sets; however, for the third set, their method
reports few wrong outputs for the Bayer CFA and Diagonal
stripe CFA. The execution-time performance comparison is
shown in Table 3 and indicates that the proposed method
takes much less execution-time when compared with Chiu
et al.'s method. On average, the proposed method only
needs 1% of execution-time required in Chiu et al.'s
method to identify the CFA structure for one mosaic image.

In Table 3, the proposed method spends more exe-
cution-time on the first test mosaic image set than that on
the other two sets. This is because that the images in the
first set have higher saturation, i.e. there are higher
difference values among the R, G, B color channels than
that in the other two sets, resulting in more high-energy
blocks to be processed by the proposed method. Experi-
mental results have demonstrated the high identification
accuracy and low computational cost merits of our pro-
posed frequency domain-based identification method.

4. Conclusions

This paper has presented the proposed novel frequency
domain-based method for identifying the CFA structure of
the input header-less mosaic images with an arbitrary CFA
structure. The proposed method first builds up the 11
model maps for the 11 concerned CFA structures by
performing the four-step training-based scheme on a set
of training mosaic images. According to the 11 constructed
model maps, the three-step matching scheme is proposed
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to identify the corresponding CFA structure of the input
mosaic image. In addition, detailed computational com-
plexity analysis of the proposed method is provided. For
comparison, the computational complexity analysis of the
state-of-the-art comparative method is also provided.
Based on 2200 test mosaic images, the experimental
results demonstrate that the proposed method can quickly
and exactly identify the correct CFA structure for every test
mosaic image. When compared with the state-of-the-art
spatial domain-based method by Chiu et al., the proposed
method has superior performance in identification accu-
racy and has significant execution-time improvement.
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