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a b s t r a c t

Using discrete representation of line segments, recently Lee and Park presented an efficient
discrete Hough transform (DHT) to improve the robustness of the standard HT (SHT). How-
ever, the DHT has much higher computational complexity than the SHT. In this paper, we
present an orientation-based DHT (ODHT) which consists of two strategies, the parameter
space-selection strategy and the voting space-reduction strategy, to substantially reduce
the computational complexity of the DHT. Besides its low computational merit, the pro-
posed ODHT can also improve the detection accuracy of the DHT. Experimental results
demonstrated that the proposed ODHT leads to 79:26% average execution-time improve-
ment ratio and better detection accuracy when compared with the state-of-the-art DHT by
Lee and Park.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Detecting lines from a digital image is very important in pattern recognition and computer vision [1–3]. The detected
lines are very useful in many applications, such as document analysis [4], content-based image and video retrieval [5], auton-
omous vehicle navigation [6], and so on. Most of the existing line detection methods are based on the standard Hough trans-
form (SHT) technique [7] which is first invented Duda and Hart. In the SHT, each edge point in the ðx; yÞ-space is mapped into
the ðq; hÞ-space where q denotes the normal distance and h denotes the normal angle. Usually, the mapped parameter space
is realized by a 2-D accumulator array. Because all edge points are considered in the voting process on the whole accumu-
lator array, the voting process is time-consuming and the memory requirement for realizing the accumulator array is huge.
Therefore, many improved HT-based methods [8–16] and randomized HT-based methods [17–23] have been developed.

Besides considering the execution-time and memory costs, the representation of the continuous ðq; hÞ-space often affects
the detection accuracy. Recently, using a new discrete representation of line segments, Lee and Park [24] presented an effi-
cient discrete Hough transform (DHT) to improve the detection accuracy of the SHT. Experimental results showed that their
proposed DHT is more suitable for detecting isolated lines than the SHT. However, the DHT takes much more execution-time
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than the SHT due to six parameter spaces used in the voting process. Besides that, we also observe that the accuracy of the
DHT may be degraded when many edge points are clustered in a small region, e.g. caption in the image.

In this paper, we propose an orientation-based DHT (ODHT) to substantially reduce the computational complexity of the
DHT. In the ODHT, for each edge point, we propose a space-selection strategy to filter out five inappropriate parameter
spaces among the six possible spaces in constant time, while retaining the appropriate parameter space instead of consid-
ering all six parameter spaces as in the previous DHT. Further, a voting space-reduction strategy is proposed to reduce the
voting space in the selected parameter space. The proposed parameter space-selection and voting space-reduction strategies
lead to significant computation-saving and accuracy-improvement merits for line detection when compared with the pre-
vious DHT. In addition, the computational complexity analyses for the previous DHT and our proposed ODHT are provided
to show the low computational cost merit of our proposed ODHT. Experimental results confirm the execution time-saving
and high accuracy advantages of our proposed ODHT.

The rest of this paper is organized as follows. In Section 2, the previous DHT by Lee and Park is introduced. In Section 3,
our proposed ODHT is presented. Experimental results are demonstrated in Section 4. Some concluding remarks are
addressed in Section 5.

2. The current work by Lee and Park: the DHT

Considering a line segment ‘ in the edge map of the input image, first the segment is extended to intersect two boundaries
of the edge map and the two intersection points, e1 and e2, are used as the two parameters of ‘. Since e1 and e2 may be lying
on the top and bottom boundaries, the left and right boundaries, the top and left boundaries, the top and right boundaries,
the bottom and left boundaries, and the bottom and right boundaries, the DHT constructs, respectively, six parameter spaces,
namely, the ðyl; yrÞ-space, ðxt ; xbÞ-space, ðxt ; ylÞ-space, ðxt; yrÞ-space, ðxb; ylÞ-space, and ðxb; yrÞ-space, for line detection.

Suppose the edge map, obtained by the Canny edge detection operator [25], is of size W � H. Fig. 1 depicts the mapping
for each edge point from the ðx; yÞ-space, 0 6 x < W and 0 6 y < H, to six parameter spaces. Let p1 and p2 denote the two
points on the line segment and each edge point can be transformed to a line segment or a curve in the parameter space. As
shown in Fig. 1(a), substituting the coordinates of p1 and p2 into Eq. (1), we can map the two edge points p1 and p2 in the
ðx; yÞ-space to the two line segments s1 and s2, respectively, in the ðyl; yrÞ-space for 0 6 yl; yr < H. It is shown that the
two mapped line segments s1 and s2 are intersected in the ðyl; yrÞ-space because p1 and p2 are collinear. According to Eqs.
(2)–(6), the above mapping process from the ðx; yÞ-space to the other five parameter spaces is shown in Fig. 1(b)–(f), respec-
tively, and it is clear that in the five parameter spaces, s1 and s2 have no intersection point. Note that in the ðxt ; yrÞ-space,
ðxb; ylÞ-space, and ðxb; yrÞ-space, only one of s1 and s2 appears in the parameter space.

yr ¼
y� yl

x
ðW � 1Þ þ yl ð1Þ

xb ¼
x� xt

y
ðH � 1Þ þ xt ð2Þ

yl ¼ �
y

x� xt
xt ð3Þ

yr ¼
y

x� xt
ðW � 1� xtÞ ð4Þ

yl ¼ H � 1� y� H þ 1
x� xb

xb ð5Þ

yr ¼
y� H þ 1

x� xb
ðW � 1� xbÞ þ H � 1 ð6Þ

In the DHT, one 2-D accumulator array is used to realize each parameter space and each cell in the array is initialized to 0.
In the voting process, each edge point is mapped to a line segment or a curve in each array of the parameter space and simul-
taneously the value of each related cell is increased by 1. After voting for all edge points, say M edge points, and performing
the Gaussian smoothing in each parameter space, each detected line is reported when the number of votes in the cell is larger
than the specified threshold.

Due to considering six parameter spaces, the voting process in the DHT is time-consuming. Besides that, it may detect
false lines when many edge points are clustered in a small region. For example, as shown in Fig. 2(a), the caption marked
with a blue ellipse produces a set of clustered edge points in the edge map (see Fig. 2(b)). The false detected lines by the
DHT are shown at the bottom of Fig. 2(c) due to the affect of these clustered edge points.

In the next section, based on the orientation of each edge point, we want to propose an Oð1Þ-time, i.e. constant time,
space-selection strategy to select the appropriate parameter space from the six parameter spaces considered in the previous
DHT. Instead of using the traditional Hough space in the DHT, we propose a reduced Hough space strategy to accelerate the
voting process. Based on the proposed two strategies, each detected line is composed of edge points with similar orienta-
tions, and thus the shortcoming of detecting false lines caused by the clustered edge points can be avoided. Besides the com-
putation-saving merit, the detection accuracy can be improved by our proposed line detection method.
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3. The proposed orientation-based DHT: the ODHT

Before presenting the proposed orientation-based DHT, the ODHT, we first describe how to calculate the orientation of
each edge point. For the edge point p ¼ ðx; yÞ with gray value f ðx; yÞ, the orientation of p can be computed by

Fig. 1. The mapping from ðx; yÞ-space to six parameter spaces. (a) ðyl; yrÞ-space. (b) ðxt ; xbÞ-space. (c) ðxt ; ylÞ-space. (d) ðxt ; yrÞ-space. (e) ðxb; ylÞ-space. (f)
ðxb; yrÞ-space.

Fig. 2. False lines detected by the DHT. (a) Train image. (b) Edge map of the Train image. (c) False lines detected by the DHT.
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hx;y ¼ tan�1 ryf ðx; yÞ
rxf ðx; yÞ ð7Þ

where 0 6 hx;y < p;ryf ðx; yÞ and rxf ðx; yÞ denote the gradients in the x-axis and y-axis, respectively, and their values have
been provided by the edge detector in advance. Given one edge point p and the calculated orientation hx;y, we now describe
the proposed parameter space-selection strategy to select the appropriate parameter space from the six parameter spaces.
The proposed parameter space-selection strategy can be done in constant time.

Return to Fig. 1. We substitute e1 ¼ ð0; ylÞ and e2 ¼ ðW � 1; yrÞ into the normal distance equation q ¼ x cos hx;y þ y sin hx;y

to derive q ¼ yl sin hx;y and q ¼ ðW � 1Þ cos hx;y þ yr sin hx;y, respectively. It yields the same normal distance with three dif-
ferent forms:

q ¼ x cos hx;y þ y sin hx;y ¼ yl sin hx;y ¼ ðW � 1Þ cos hx;y þ yr sin hx;y ð8Þ

Dividing each right-hand side of Eq. (8) by sin hx;y, it yields

yl ¼ yþ x cot hx;y ð9Þ

yr ¼ yþ ðx�W þ 1Þ cot hx;y ð10Þ

Putting the edge point p ¼ ðx; yÞ into Eqs. (9) and (10), the rule of the proposed parameter space-selection strategy is listed in
Eq. (11). The rule can determine the appropriate parameter space for the edge point p, say the ða; bÞ-space, in constant time
among the six parameter spaces.

ða;bÞ-space ¼

ðyl; yrÞ-space; if 0 6 yl < H and 0 6 yr < H

ðxt ; ylÞ-space; if 0 6 yl < H and yr < 0
ðxb; ylÞ-space; if 0 6 yl < H and yr P H

ðxt ; yrÞ-space; if yl < 0 and 0 6 yr < H

ðxb; yrÞ-space; if yl P H and 0 6 yr < H
ðxt ; ybÞ-space; otherwise

8>>>>>>>><
>>>>>>>>:

ð11Þ

For easy exposition, we assume the selected ða; bÞ-space to be the ðyl; yrÞ-space and present a faster voting process which
works on the reduced ðyl; yrÞ-space instead of the whole ðyl; yrÞ-space. Putting the angle interval ½hx;y � D; hx;y þ D� into Eq.
(9) yields

yl;1 ¼
0; if ya < 0
ya; otherwise

�
ð12Þ

and

yl;2 ¼
H � 1; if yb >¼ H

yb; otherwise

�
ð13Þ

where

ya ¼ yþ x�minðcot ðhx;y � DÞ; cot ðhx;y þ DÞÞ; ð14Þ

yb ¼ yþ x�maxðcot ðhx;y � DÞ; cot ðhx;y þ DÞÞ ð15Þ

and D ¼ 20 empirically. According to Eqs. (12)–(15), the voting process can be confined to the reduced ðyl; yrÞ-space for
yl;1 6 yl 6 yl;2 and 0 6 yr < H without degrading the line detection accuracy. By the same argument, the above voting
space reduction strategy can be applied to the other selected parameter spaces.

In the next section, the computational complexity analysis is first provided to show that the proposed parameter space
selection strategy and the voting space reduction strategy have much less computational complexity when compared with
the previous DHT. Finally, some related experiments are carried out to demonstrate the computation and accuracy merits of
the proposed method for line detection.

4. Computational complexity analysis and experimental results

In this section, we first compare the required computational complexity between the previous DHT and the proposed
ODHT. Then, based on six test images, some experimental results are demonstrated to confirm the computational superiority
of the proposed ODHT.

4.1. Computational complexity analysis

Without loss of generality, suppose that the input image is of size N � N and the obtained edge map by using the Canny
edge detector has M edge points. The previous DHT performs the voting process for each edge point on six parameter spaces,
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ðyl; yrÞ-space, ðxt ; xbÞ-space, ðxt ; ylÞ-space, ðxt ; yrÞ-space, ðxb; ylÞ-space, and ðxb; yrÞ-space, and each space is realized by the cor-
responding quantized parameter space with Nq � Nq cells for Nq 6 N. Here, we set Nq ¼ N for easy explanation. In the voting
process, Eqs. (1)–(6) are called at most N times to transform each edge point to a line segment or a curve in one of the six
parameter spaces. Consequently, in the worst case, the voting process in the previous DHT takes Oð6NMÞ time for all M edge
points.

Instead of considering all six parameter spaces in the previous DHT, our proposed ODHT only works on the selected
parameter space with N � N cells, say the ðyl; yrÞ-space, for the edge point at location ðx; yÞ with orientation hx;y. We further
use Eqs. (12)–(15) to reduce the size of the selected parameter space from N � N to N0 � N where N0 ¼ yl;2 � yl;1 þ 1 and
N0 6 N. Thus, the proposed ODHT performs Eq. (1) at most N0 times instead of N times in the previous DHT to accumulate
the number of votes for the mapped line segment in the ðyl; yrÞ-space. Thus, the expected value of N0 can be measured by

E½N0� ¼ 1
180� N2

XN�1

x¼0

XN�1

y¼0

X89

hx;y¼�90

ðyl;2 � yl;1 þ 1Þ: ð16Þ

As shown in Fig. 3, after calculating E½N0� for 1 6 N 6 200, we have E½N0� � 0:46N. Since the voting processes are similar for
all six spaces, it yields that the proposed ODHT takes Oð0:46NMÞ time to perform the voting process for all M edge points. The
above complexity analysis reveals the computation-saving advantage of the proposed ODHT and we have the following
proposition.

Proposition 1. The theoretical time complexity improvement ratio of the proposed ODHT over the previous DHT is 0:92
¼ 6MN�0:46MN

6MN

� �
.

As shown in the next subsection, the experimental results show that the ratio of the time spent in the voting process over
the total time spent in the previous DHT is 90% on average. A more accurate estimated time complexity improvement ratio
of the proposed ODHT over the previous DHT is estimated by 92%� 90% ¼ 82:8%. We have the following result.

Proposition 2. The more precise estimated time improvement ratio of the proposed ODHT over the previous DHT is 82:8%.
In next subsection, experimental results will show that the practical average execution-time improvement ratio is very

close to the estimated time improved ratio mentioned in Proposition 2.

4.2. Experimental results

As shown in Fig. 4, six test images, the 251� 251 Window image, the 256� 256 Road image, the 400� 224 Bridge image,
the 490� 603 Tower image, the 482� 307 Train image, and the 481� 322 Card image are used to compare the time perfor-
mance between the previous DHT and the proposed ODHT. By using the Canny edge detector, the six edge maps of Fig. 4 are
shown in Fig. 5. For fairness, the execution-time requirement includes the extra time requirement for computing the orien-
tations of all edge points (see Eq. (7)). All the related experiments are implemented on an Intel Core i7 3615QM with CPU
2.3 GHz and 16 GB RAM. The operating system used is Mac OS X Mavericks and the C++ programing language with OpenCV
library is used to implement the concerned two line detection methods.

After running the two methods on the six test images, the resultant detected lines by the previous DHT and the proposed
ODHT are shown in Figs. 6 and 7, respectively. For the first four test images, the two methods have the same accuracy;

0 20 40 60 80 100 120 140 160 180 200
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Fig. 3. Ratios of E½N0 � over N for different values of N.
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however, for the last two test images, the Train image and the Card image, the previous DHT detects some false lines marked
by the blue ellipses due to some clustered edge points. Because of taking the edge orientation information into account, the
proposed ODHT has better accuracy for the last two images. The average execution-time improvement ratios of the proposed

Fig. 4. Six test images. (a) Window image. (b) Road image. (c) Bridge image. (d) Tower image. (e) Train image. (f) Card image.

Fig. 5. Edge maps of six test images. (a) Window image. (b) Road image. (c) Bridge image. (d) Tower image. (e) Train image. (f) Card image.

K.-L. Chung et al. / Applied Mathematics and Computation 237 (2014) 430–437 435



Author's personal copy

ODHT over the previous DHT are listed in Table 1 where the notation ‘ms’ denotes milliseconds. The table indicates that the
average execution-time improvement ratio of the proposed ODHT over the previous DHT is 79.26% and is very close to the
estimated time improved ratio 82:8% as mentioned in Proposition 2. The experimental results therefore justify the detection
accuracy and execution-time advantages of our proposed ODHT.

Fig. 6. Detected lines by the previous DHT. (a) Window image. (b) Road image. (c) Bridge image. (d) Tower image. (e) Train image. (f) Card image.

Fig. 7. Detected lines by the proposed ODHT. (a) Window image. (b) Road image. (c) Bridge image. (d) Tower image. (e) Train image. (f) Card image.

436 K.-L. Chung et al. / Applied Mathematics and Computation 237 (2014) 430–437
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5. Conclusion

For line detection, this paper has presented the proposed orientation-based DHT, the ODHT, which consists of the param-
eter space-selection strategy and the voting space reduction strategy, to reduce the computational cost and increase the
detection accuracy performance of the state-of-the-art DHT. According to the orientation information of each edge point,
the proposed parameter space-selection strategy takes only constant time to select the appropriate parameter space from
the six parameter spaces. Using the orientation information also results in better detection accuracy performance. Further,
the proposed voting space-reduction strategy is adopted to narrow down the selected parameter space to speed up the vot-
ing process in a banded parameter space. We also provide the theoretical and estimated computational analyses for the two
concerned methods to show the low computational cost merit of the proposed ODHT. The experimental results demon-
strated that with better detection accuracy, the proposed ODHT can achieve 79:26% average execution-time improvement
ratio, which is very close to the estimated execution-time improvement ratio, when compared with the DHT.
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Table 1
Execution-time performance comparison between the previous DHT and the proposed ODHT.

Image Window Road Bridge Tower Train Card

DHT 26 20 117 140 240 145
ODHT 7 6 20 27 35 24

Improvement ratio (DHT-ODHT)/DHT 73.08% 70.00% 82.91% 80.71% 85.41% 83.44%

Average 79.26%
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