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In  this  paper,  we  present  an  efficient  RDH  algorithm  based  on  a new  gradient-based  edge  direction  pre-
diction (GEDP)  scheme.  Since  the  proposed  GEDP  scheme  can  generate  more  accurate  prediction  results,
the prediction  errors tend  to form  a sharper  Laplacian  distribution.  Therefore,  the proposed  algorithm  can
guarantee  larger  embedding  capacity  and  produce  better  quality  of  marked  images.  The  determination
of  appropriate  thresholds  is  also  a  critical  issue  for a RDH  algorithm,  so  we  design  a  new  systematic  way
to tackle  this  problem.  In  addition,  a modified  embedding  order  determination  strategy  is  presented  to
eywords:
ifference expansion
dge direction
mbedding capacity
arked image quality

rediction
eversible data hiding

reduce  the  distortion  of  a marked  image.  Based  on typical  test  images,  experimental  results  demonstrate
the  superior  properties  of  the  proposed  algorithm  in  terms  of  embedding  capacity  and  marked  image
quality.

© 2012 Elsevier Inc. All rights reserved.
. Introduction

Reversible data hiding (RDH) techniques can embed hidden data
n a host image as well as allow the recovery of the original image

ithout any distortion after extracting the hidden data (Honsinger
t al., 2001). They are widely applied to the field of sensitive images,
uch as military, medical, and art work images, since the complete
econstruction of original images is required. For the RDH issue, the
wo most important measures are embedding capacity and qual-
ty degradation of a marked image. Therefore, a successful RDH
lgorithm not only can achieve large embedding capacity, but also
inimize the distortion introduced by the embedding process.
Previously, many RDH methods were developed. Vleeschouwer

t al. (2003) presented an RDH algorithm for media asset manage-
ent based on circular interpretation of bijective transformations.
ian (2003) presented an RDH algorithm based on an integer Haar
avelet transform (Mallat, 1999) and difference expansion, and
lattar (2004) developed an RHD algorithm using the difference

∗ Corresponding author.
E-mail addresses: wjyang@mail.ntust.edu.tw (W.-J. Yang),

lchung01@gmail.com (K.-L. Chung).
1 Supported by the National Science Council of the R. O. C. under contract NSC98-

221-E-011-102-MY3..

164-1212/$ – see front matter ©  2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2012.09.041
expansion on vectors formed by successive pixels. Kamstra and
Heijmans’ algorithm (Kamstra and Heijmans, 2005) fixed the image
distortion problem that is existing in Tian’s algorithm (Tian, 2003).
Tsai et al. (2005) proposed an RDH algorithm for binary images.
Ni et al. (2006) and Chang et al. (2006) developed RDH algorithms
based on the peak-valley pairs of an image histogram and the out-
come of side match vector quantization, respectively. Chang and
Lu (2006) presented an RHD algorithm, which uses the indices
of the codewords to embed hidden data, for side match vector
quantization-compressed images. For joint photographic experts
group (JPEG) images, Chang et al.’s RHD algorithm (Chang et al.,
2007) embedded the hiding data in the medium-frequency part
of the quantized discrete cosine transformation (DCT) coefficients.
For vector quantization-compressed images, Chang and Lin (2007)
presented an RHD algorithm based on a de-clustering strategy.
Sachnev et al. (2007) enhanced the embedding capacity of Alattar’s
algorithm (Alattar, 2004) by exploiting quad pixels to embed hid-
den data and simplifying the location map. Using LOCO-I predictor
(Weinberger et al., 1996), Thodi and Rodriguez (2007) presented
a high capacity RDH algorithm based on the concept of predic-
tion error expansion. For block truncation coding-compressed color

images, Chang et al. (2008) developed an RHD algorithm utiliz-
ing the common bitmap to embed hidden data. Kim et al. (2008)
presented a novel difference expansion transform to improve
the capacity and quality performance of Kamstra and Heijmans’

dx.doi.org/10.1016/j.jss.2012.09.041
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:wjyang@mail.ntust.edu.tw
mailto:klchung01@gmail.com
dx.doi.org/10.1016/j.jss.2012.09.041
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lgorithm (Kamstra and Heijmans, 2005). Lin et al. (2008) pre-
ented a multilevel RHD algorithm that modifies the difference
mage histogram and uses the peak value to embed hidden data.
hang et al. (2009) developed an RHD algorithm based on the joint
eighboring coding technique for images compressed by vector
uantization. Tai et al. (2009) presented an improved RHD algo-
ithm to solve the problem of communicating multiple peak points
o recipients in Lin et al.’s  algorithm (Lin et al., 2008). Without
sing the threshold, Lin et al. (2010) enhanced the quality perfor-
ance of Alattar’s algorithm (Alattar, 2004) by embedding hidden

ata in the smooth areas determined through the proposed quad of
uads structure. Sachnev et al. (2009) presented an efficient RDH
lgorithm by combining the sorting and error prediction concepts.
or Chinese character data, Wang et al. (2009) developed an RDH
lgorithm using left-right and up-down Chinese character repre-
entation. Based on the interpolation technique, Luo et al.’s RHD
lgorithm (Luo et al., 2010) used the differences between interpo-
ation values and actual pixel values to embed hidden data. Hwang
t al. (2010) proposed a histogram shifting-based RHD algorithm
xploiting the diamond prediction scheme and sorting strategy.
ased on the spectral-spatial correlation in the color difference
omain (Chung et al., 2008; Pei and Tam, 2003), Yang et al. (2012)
eveloped the first RHD algorithm designed specifically for color
lter array mosaic images.

After examining the previously developed RDH algorithms using
he prediction errors and difference expansion, we know that the
mbedding capacity and marked image quality depend on the pre-
iction scheme employed in the RDH algorithm. In this paper, we
evelop an improved RDH algorithm based on a new gradient-
ased edge direction prediction (GEDP) scheme. We  try to model
he prediction errors as a sharper Laplacian distribution. Therefore,
he proposed algorithm can achieve larger embedding capacity and
roduce better quality of marked images. Since the determination
f appropriate thresholds is also a critical issue for an RDH algo-
ithm, we design a new systematic way to tackle this problem. In
ddition, we propose a modified version of the embedding order
trategy which is better than one proposed by Sachnev et al. (2009)
o improve the outcome. Eighteen images are used to evaluate the
elated performance and the results indicate that the proposed RDH
lgorithm is superior to four existing RHD algorithms, namely Tai
t al.’s algorithm (Tai et al., 2009), Thodi and Rodriguez’s algorithm
Thodi and Rodriguez, 2007), Luo et al.’s algorithm (Luo et al., 2010),
nd Sachnev et al.’s algorithm (Sachnev et al., 2009). We  compare
he proposed RHD algorithm with the above four RHD algorithms
ue to the following two reasons. First, like the proposed algo-
ithm, the four compared algorithms are based on the concepts
f prediction error expansion and histogram modification. Second,
hey are regarded as the state-of-the-art RHD algorithms. Note that
ince all the RDH algorithms mentioned above are discussed in an
ttack-free environment, out work follows the same environment
ssumption.

The three main contributions of this work are as follows. First,
e develop a new GEDP scheme to reduce the prediction errors,

nd it is the most crucial factor that influences the performance
f an RDH algorithm. Second, we design a new systematic way to
etermine the appropriate thresholds which can provide enough
sable capacity to embed hidden data and some overheads as well
s generate the best quality of a marked image. Finally, a modified
mbedding order determination strategy is proposed to reduce the
istortion of a marked image.

The rest of this paper is organized as follows. In Section 2,
 brief review to the four state-of-the-art prediction error-based

HD algorithms is given. In Section 3, we present the proposed
EDP scheme and discuss the Laplacian distribution of the predic-

ion errors. In Section 4, we describe the proposed RDH algorithm.
ection 5 reports the experimental results to demonstrate the
 and Software 86 (2013) 567– 580

advantages of our RDH algorithm. Finally, concluding remarks are
drawn in Section 6.

2. Previous works

Before presenting the proposed GEDP scheme and RHD algo-
rithm, in this section, we briefly review the four state-of-the-art
prediction error-based RHD algorithms proposed by Tai et al.
(2009), Thodi and Rodriguez (2007), Luo et al. (2010),  and Sachnev
et al. (2009), respectively. The four RHD algorithms are based on
the concepts of prediction error expansion and histogram modifica-
tion. They utilize prediction schemes to predict the pixel values and
embed hidden data in the image by modifying the corresponding
prediction errors.

Tai et al.’s RHD algorithm (Tai et al., 2009) scans an image by
an inverse s-order and uses the last scanned pixel value as the pre-
diction value of the current pixel. After constructing the histogram
formed by the prediction errors, the hidden data are embedded by
the histogram modification. Without using the location map, Tai
et al.’s algorithm directly contracts the histogram from both sides
to ensure that the embedding hidden data does not cause the over-
flow and underflow problems. Their algorithm also utilizes a binary
tree structure to resolve the problem of communicating multiple
peak points to recipients, which is the major drawback in Lin et al.’s
algorithm (Lin et al., 2008).

Thodi and Rodriguez (2007) first utilizes the LOCO-I predictor
(Weinberger et al., 1996), which is based on the mutual relation
in the neighborhood of a pixel, to predict the value of each pixel.
Then, they embed the hidden data in an image by using the combi-
nation of the prediction error expansion and the histogram shifting
scheme. Furthermore, instead of using the location map, a two-pass
testing method with a flag bit stream is presented to resolve the
overflow or underflow problem, leading to enhancing the embed-
ding capacity.

In Luo et al.’s RHD algorithm (Luo et al., 2010), pixel values
are predicted by using the interpolation scheme. Then, the pixels
with prediction errors falling into the two  highest peaks of the his-
togram are exploited to embed hidden data by using the additive
error expansion. To prevent the overflow or underflow problem,
Luo et al.’s RHD algorithm only uses the pixels whose values are
within the range of 1 through 254 to embed the hidden data, and
it utilizes a boundary map  to resolve ambiguous problem when
embedding a hidden bit in the pixel with value 1 or 254.

Sachnev et al.’s algorithm (Sachnev et al., 2009) predicts pixel
values by averaging the gray values of the four neighboring
pixels in a rhombus shape. The hidden data are embedded in
the pixels whose corresponding prediction errors are within the
range of the two thresholds, Tn and Tp, by using the difference
expansion. Furthermore, in order to enhance the marked image
quality performance, the shifting scheme by Thodi and Rodriguez
(2007) is utilized and the embedding order is determined by a
sorting strategy based on the local variances calculated by the
differences between neighboring pixel pairs. According to our
experiments, Sachnev et al.’s algorithm can embed more data
with less distortion when compared with existing RDH algo-
rithms.

Since the embedding capacity and marked image quality of the
above prediction error-based RDH algorithms greatly depend on
the employed prediction scheme, we  can enhance the embedding
and quality performance of an RHD algorithm by improving the
prediction accuracy. Therefore, in what follows, we first present

a more accurate GEDP scheme to predict the pixel values, and
then based on the GEDP scheme, the proposed RDH algorithm with
larger embedding capacity and better quality of marked images is
developed.
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ig. 1. Depiction of pixels in �˛ and �ˇ , where � denotes �˛ and ◦ denotes �ˇ .

. Proposed GEDP scheme and Laplacian distribution of
rediction errors

In Section 3.1,  we first present the proposed GEDP scheme to
alculate the prediction errors, and then in Section 3.2, we  discuss
he Laplacian distribution of the prediction errors and its potential
mbedding benefits.

.1. Proposed GEDP scheme

For ease of explanation, the gray value of the pixel located at
osition (i, j) of an input image is denoted as xi,j , and we use Fig. 1
o present the proposed GEDP scheme. As shown in Fig. 1, all the
ixels are partitioned into two sets marked by symbols “�” and “◦”,
espectively. We  denote the two sets as �˛ and �ˇ, respectively.
ince the pixels in �˛ and �ˇ disjoint to each other, we can predict
he gray values in �˛ by using those in �ˇ and vice versa. Since
he proposed GEDP scheme for the two sets is the same, we  only
iscuss the case of �˛.

Note that we partition the pixels into two sets due to the follow-
ng reasons. Since the pixels in the two sets disjoint to each other,
mbedding hidden data in the pixels in one set would not affect
hose in the other one. Therefore, the extraction process can first
eobtain the precise predicted gray values of the pixels in �˛ from
he pixels in �ˇ and vice versa. Then, the reobtained predicted gray
alues are utilized to assist in extracting the hidden data and recov-
ring the original gray values. Furthermore, in the proposed RHD
lgorithm, the embedding order of the pixels in �˛ is determined
y the pixels in �ˇ; conversely, the embedding order of the pixels

n �ˇ is determined by the pixels in �˛. Due to the mutual inde-
endence of the pixels in �˛ and �ˇ, the original embedding order
an be maintained after the embedding process.

From Fig. 1, it is obvious that the predicted gray value of the cen-
ral pixel at position (i, j) can be determined by its four neighboring
ixels with movement � = {(i ± 1, j), (i, j ± 1)}.  Note that the pix-

ls on the boundary of the image are dealt with using the mirroring
ethod. To better predict the gray value, instead of predicting such

 value by averaging the gray values of the four neighboring pix-
ls (Sachnev et al., 2009), we assign four proper weights based on

ig. 2. Two  SI mask pairs. For the pixels at position (m, n) ∈ �˛ , (a) the horizontal mask 

ask  and (d) the vertical mask.
 and Software 86 (2013) 567– 580 569

gradient information and edge direction to the four corresponding
neighboring pixels. The proposed gray value prediction method is
called GEDP scheme. The proposed GEDP scheme can predict gray
values more accurately, and it would result in larger embedding
capacity and better marked image quality.

To keep the independence between the pixels in �˛ and �ˇ, the
proposed GEDP scheme adopts two hybrid mask pairs which are the
combination of Sobel masks and interpolation masks (abbreviated
as SI mask pairs), as shown in Fig. 2, to extract the gradient informa-
tion. The detailed derivations of the two SI mask pairs are shown in
Appendix A. After running the proper SI masks on a 5 × 5 subimage
centered at position (m, n), the horizontal gradient response �hm,n

and the vertical gradient response �vm,n can be obtained.
Considering the neighboring pixel located at position (i − 1, j), if

the magnitude of the vertical gradient response is large, i.e., there
is a horizontal edge passing through it, it indicates that this pixel
should make less contribution to predict the gray value of the cen-
tral pixel; otherwise, it should make more contribution. Therefore,
the weight of the pixel at position (i − 1, j) can be determined
by wi−1,j = (1/(1 + |�vi,j| + 2|�vi−1,j| + |�vi−2,j|)). Similarly, the
weights of the other three neighbors can be determined by wi+1,j =
(1/(1 +

∑2
k=0ık|�vi+k,j|)), wi,j−1 = (1/(1 +

∑2
k=0ık|�hi,j−k|)), and

wi,j+1 = (1/(1 +
∑2

k=0ık|�hi,j+k|)), where ık = 2 if k = 1; other-
wise ık = 1. Based on the four weights, the predicted gray value
pi,j can be determined by

pi,j = (
∑

(u,v)∈�

wu,v)−1
∑

(u,v)∈�

wu,vxu,v, (1)

where � = {(i ± 1, j), (i, j ± 1)}. Further, we can calculate the pre-
diction error ei,j at position (i, j) by

ei,j = xi,j − pi,j. (2)

3.2. Laplacian distribution of prediction errors and its potential
embedding benefits

Since xi,j and pi,j in Eq. (2) are usually very close to each other,
ei,j is close to zero and the prediction errors with zero mean tend
to follow a Laplacian distribution (Parzen, 1960):

P(e) =
√

2
2�e

exp

(
−
√

2|e|
�e

)
, (3)

where the random variable e denotes the prediction error ignor-
ing the position parameter; �e is the standard deviation of the
prediction errors. At present, we discuss the potential embedding
benefits of the proposed RDH algorithm using the GEDP scheme
from the Laplacian distribution. The performance of a prediction
error-based RDH algorithm has a strong relation with the shape

of the corresponding Laplacian distribution histogram. The sharper
the Laplacian distribution histogram, i.e., more prediction errors
closing zero and smaller variance, the better will be the RDH algo-
rithm’s data embedding performance (Sachnev et al., 2009).

and (b) the vertical mask. For the pixels at position (m,  n) /∈ �˛ , (c) the horizontal
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Fig. 3. For the Couple image, the corresponding histograms of the prediction errors obtained from (a) Tai et al.’s scheme, (b) Thodi and Rodriguez’s scheme, (c) Luo et al.’s
s
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x′i,j = e′i,j + pi,j. (5)

We  now provide a theoretical analysis of the proposed scheme in
terms of the expected value of the embedding distortion. According

Table 1
The standard deviations and peak values of the five histograms in Fig. 3.

Scheme Standard deviation Peak value

Tai et al. (2009) 14.501 (8.228; 56.74%) 22,701 (3754; 16.54%)
cheme, (d) Sachnev et al.’s scheme, and (e) the proposed scheme.

We  compare our algorithm with four RDH algorithms proposed
y Tai et al. (2009),  Thodi and Rodriguez (2007),  Luo et al. (2010),
nd Sachnev et al. (2009),  respectively. Based on the Couple image,
ig. 3(a)–(e) illustrates the five histograms of the prediction errors
btained from the four prediction schemes employed in compared
DH algorithms and the proposed GEDP scheme, respectively. In
ddition, the standard deviations and peak values of the above
ve histograms are shown in Table 1. Clearly, the histogram in
ig. 3(e) is sharper than any one in Fig. 3(a)–(d); and Table 1 also
emonstrates that the histogram obtained from the proposed GEDP
cheme has the smallest standard deviation and the highest peak
alue. Furthermore, for the standard deviations and peak values in
able 1, the related improvements and the corresponding improve-
ent ratios of the proposed GEDP scheme over four concerned

rediction schemes are shown in the parentheses. From the table,
t is obvious that the proposed GEDP scheme produces more than
6.16% standard deviation reduction ratio and 14.28% peak value

ncrease ratio, implying the proposed GEDP scheme can achieve a
ore accurate prediction and result in smaller prediction errors.

t leads to significant quality and embedding capacity benefits of
he proposed RDH algorithm. Experimental results in Section 5 will
onfirm the two benefits of the proposed RDH algorithm.

. Proposed RHD algorithm

In Section 4.1,  we first describe the embedding and extraction
trategies. In Section 4.2,  we propose a modified version of the
mbedding order strategy to improve the outcome; and in Section

.3, we design a new systematic way to determine the appropriate
hreshold values, that can guide the data hiding process. Finally,
he whole procedure of the proposed RDH algorithm is presented
n Section 4.4.
4.1. Embedding and extraction strategies

After obtaining the prediction error ei,j by the proposed GEDP
scheme mentioned in Section 3.1, the hidden bit h can be embedded
in the pixel xi,j via the difference expansion technique. To reduce
the overall distortion, we only use the pixels whose prediction
errors are within the range [Tn, Tp] to embed the hidden data. Thus,
the prediction error ei,j can be modified based on the following rule:

e′i,j =

⎧⎪⎨
⎪⎩

ei,j + Tp + 1 if ei,j > Tp

ei,j + Tn if ei,j < Tn

2ei,j + h otherwise,

(4)

where h ∈ {0, 1} is the current scanned hidden bit; Tp (≥ 0) and
Tn (≤ 0) are two thresholds. In Section 4.3,  we  shall show a new
systematic way to determine the appropriate values of Tp and Tn.
After embedding the hidden data, the original pixel xi,j is perturbed
to the marked pixel x′i,j as follows:
Thodi and Rodriguez (2007) 8.345 (2.072; 24.83%) 22,732 (3723; 16.38%)
Luo et al. (2010) 8.443 (2.170; 25.70%) 21,731 (4724; 21.74%)
Sachnev et al. (2009) 7.482 (1.209; 16.16%) 23,149 (3306; 14.28%)
The proposed 6.273 26,455



stems

t
e
o
(

w
p
h
e

w
E
s
h
i
b
fi
s
a
w

S
h
v
x
p
v

d

F

a

F

c
r
p
r
e

i,j (u,v)∈�

quently, a pixel with small local variance indicates that it is located
in a homogeneous area, so the embedding order of the pixels in �˛

is based on their local variances sorted in ascending order.
W.-J. Yang et al. / The Journal of Sy

o the previous explanation in Section 3.2, we model the prediction
rrors as a Laplacian distribution with zero mean. The probability
f a specific prediction error can be calculated by Eq. (3).  From Eq.
4) and (5),  the embedding distortion D(e) can be obtained by

D(e) =

⎧⎪⎨
⎪⎩

Tp + 1 if e > Tp

−Tn if e < Tn

|e + h| otherwise,

(6)

here h ∈ {0, 1} and e denotes the prediction error ignoring the
osition parameter. We  assume that the two  events, h = 0 and

 = 1, are equiprobable. Consequently, the expected value of the
mbedding distortion E(D(e)) can be calculated by

E(D(e)) = (Tp + 1)
255∑

e=Tp+1

P(e) − Tn

Tn−1∑
e=−255

P(e)

+1
2

[
Tp∑

e=Tn

P(e)|e| +
Tp∑

e=Tn

P(e)|e + 1|
]

,

(7)

here the probability density function P(e) has been defined in
q. (3).  From Eq. (7),  it is clear that the embedding distortion is
trongly dependent on the distribution of prediction errors. Table 1
as shown that the standard deviation of the Laplacian distribution

n our scheme is smallest and it implies that the Laplacian distri-
ution obtained by our scheme is the sharpest. Accordingly, for a
xed threshold pair, (Tp; Tn), the value of E(D(e)) in our proposed
cheme is the smallest. Therefore, the proposed RDH algorithm may
chieve the best quality of marked images. Experimental results
ill confirm this argument.

The extracting strategy is the inverse of the embedding strategy.
ince the pixels in �˛ and �ˇ disjoint to each other, embedding
idden data in the pixels in �˛ would not affect those in �ˇ and
ice versa. From Fig. 1 and Eq. (1),  it is clear that the central pixel
i,j is in �˛, but the predicted gray value pi,j is determined by the
ixels in �ˇ. Therefore, we can reobtain the precise predicted gray
alue pi,j by Eq. (1) at the extraction side.

Given a marked pixel x′i,j , the modified can be calculated pre-
iction error e′i,j by

e′i,j = x′i,j − pi,j, (8)

rom e′i,j , the hidden bit h can be extracted by

h = e′i,j mod  2 if e′i,j ∈ [2Tn, 2Tp + 1], (9)

nd the original prediction error ei,j can be obtained by

ei,j =

⎧⎪⎨
⎪⎩

e′i,j − Tp − 1 if e′i,j > 2Tp + 1

e′i,j − Tn if e′i,j < 2Tn

	e′i,j/2
 otherwise.

(10)

inally, recovery the original gray value xi,j by

xi,j = ei,j + pi,j. (11)

Note that using prediction errors to embed hidden data may
ause an overflow or underflow problem for some pixels. We  must

esolve the problem before executing the embedding or extraction
rocesses. The two-pass testing method utilized in previous algo-
ithms (Thodi and Rodriguez, 2007; Sachnev et al., 2009) with an
xtra flag bit stream can be used to resolve the problem.
 and Software 86 (2013) 567– 580 571

4.2. Modified embedding order determination strategy

Instead of using embedding order determination strategy by
Sachnev et al. (2009),  in this sub-section, we present a modified
embedding order determination strategy, which directly uses local
variances formed by the neighboring gray values of targeted pixels,
to determine the embedding order. The proposed modified embed-
ding order determination strategy can achieve less distortion of a
marked image.

It is believed that embedding hidden data in pixels which have
smaller prediction errors would cause less distortion. To reduce
the distortion of a marked image, the embedding order of the
targeted pixels needs be changed (Kamstra and Heijmans, 2005;
Sachnev et al., 2009). Since a pixel located in a homogeneous area
usually implies that its prediction error is small, we let such a
pixel have a higher priority for embedding a hidden bit. In Sach-
nev et al.’s algorithm (Sachnev et al., 2009), the embedding order
is determined by using sorting strategy according to their cor-
responding local variances formed by the differences between
the neighboring pixel pairs. However, when a pixel is located
in a nonhomogeneous area, i.e., the four differences between
neighboring pixel pairs are large, its corresponding local vari-
ance may  be small. Thus, the pixel would have a higher priority
for embedding a hidden bit, but it would cause larger distor-
tion.

To resolve the above priority mistake problem, we  directly use
the local variances formed by the neighboring gray values of tar-
geted pixels in �˛ to determine the embedding order. Given a pixel
xi,j , its local variance �2

i,j
can be calculated by

�2
i,j
= 1

4

∑
(u,v)∈�

[xu,v − xi,j]
2, (12)

where x = (1/4)
∑

xu,v and � = {(i ± 1, j), (i, j ± 1)}. Conse-
Fig. 4. The flowchart of the (Tp; Tn)-determination process.
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Table 2
The expected value of the distortion caused by embedding a hidden bit under different prediction errors.

w
d
i
t
p

F
(

Prediction error e 0 −1 1 −2 2 

Expected value 1
2

1
2

3
2

3
2

5
2

One thing to be noted is that embedding data in the pixels in �˛

ould not affect the ones in �ˇ because the pixels in �˛ and �ˇ

isjoint to each other. Further, the embedding order of the pixels

n �˛ is determined by the pixels in �ˇ, and vice versa. Therefore,
he original sorted order can be maintained after the embedding
rocess.

ig. 5. Eighteen test images: (a) Couple, (b) House, (c) Jet, (d) Boat, (e) Street, (f) Wood, (g
n)Sailboat, (o) Lighthouse, (p) Child, (q) Boating, and (r) Woman.
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4.3. New systematic way to determine the appropriate threshold
values
The embedding capacity and the quality of marked images
are affected by two thresholds, Tp and Tn. Thus, it is important
to determine the related values of Tp and Tn that can provide

) Barbara, (h) Map, (i) Tiffany, (j) Cameraman, (k) Payaso, (l) Harbor, (m) Window,



stems

e
p
a
m
w
d
o
h
fl
T
b
b
w
a
p
2
w

F
(

W.-J. Yang et al. / The Journal of Sy

nough usable capacity to embed the intended data as well as
roduce the best quality of a marked image. In Sachnev et al.’s
lgorithm (Sachnev et al., 2009), the precise approach to deter-
ine the appropriate threshold values is not discussed. At present,
e propose a systematic process to determine Tp and Tn. Before
etermining the appropriate thresholds, the total number of bits
f intended data should be known in advance. When embedding
idden data P in an image, besides P, other overheads, such as a
ag bit stream F and a header stream H, should also be embedded.
hus, the total number of bits of intended data t can be calculated
y t = |P| + |H| + |F|,  where |P|, |H|, and |F|  denote the bit num-
ers of P, H,  and F, respectively. In addition, the header stream,
hich records size of the hidden data, the size of flag bit stream,
nd the values of two thresholds, is embedded in the first |H|
ixels of an image by using the LSB replacement method (Tian,
003). Under this circumstance, an extra correction bit stream
ith the length |H| is needed to record the LSB values replaced

ig. 6. The PSNR versus the Capacity curves of the five compared RDH algorithms for the 

h)  Map, (i) Tiffany, (j) Cameraman, (k) Payaso, (l) Harbor, (m) Window, (n) Sailboat, (o) L
 and Software 86 (2013) 567– 580 573

by the header in order to achieve the purpose of the reversible data
hiding. Therefore, the embedding process starts from the (H + 1)th
pixel.

To guarantee the best quality of a marked image, we analyze
the embedding distortion caused by embedding a hidden bit h in a
pixel.

Theorem 1. The expected value of the distortion caused by embed-
ding one hidden bit h in a pixel with the prediction error ε (≥ 0) or the
one caused by embedding h in a pixel with the prediction error −ε − 1
is ε + (1/2) when the two events,  h = 0 and h = 1, are equiprobable.

Proof. See Appendix B.
Based on Theorem 1, Table 2 shows the expected value of the
distortion caused by embedding one hidden bit under different
prediction errors. From the table, it is clear that using pixels
with larger positive prediction errors and larger negative predic-
tion errors to embed hidden data would result in serious quality

test images: (a) Couple, (b) House, (c) Jet, (d) Boat, (e) Street, (f) Wood, (g) Barbara,
ighthouse, (p) Child, (q) Boating, and (r) Woman.
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Fig. 6. 

egradation of marked images. Thus, the absolute values of the
wo thresholds should be as small as possible. In addition, when
wo prediction errors have the same absolute values, the distortion
esulting from difference expansion embedding based on the neg-
tive one would be less than that based on the positive one. Hence,
he negative prediction error has higher priority for embedding
he hidden bit. When the threshold pair (Tp; Tn), where |Tn| = |Tp|,
annot provide enough usable capacity, the new threshold pair
Tp; Tn − 1) is prior to be selected.

According to the above analysis, the (Tp; Tn)-determination pro-
ess consists of four steps:

tep 1: Set (Tp; Tn) ← (0; 0) and Flag ← n.
tep 2: Based on the current (Tp; Tn), calculate the usable capacity
c provided by the input image.
tep 3: If the condition c ≥ t holds, where t is the total number

of bits of intended data, then output (Tp; Tn) as the appro-
priate threshold pair and stop; otherwise, go to Step 4.
inued).

Step 4: If the condition Flag = n holds, perform the operation
Tn ← Tn − 1 and set Flag ← p; otherwise, perform the
operation Tp ← Tp + 1 and set Flag ← n. Then, go to
Step 2.

Following the above process, the threshold pairs (Tp; Tn)’s will be
set to (0; 0), (0; −1), (1; −1), (1; −2), and so on. This process will con-
tinue on until the intended data can be embedded. The flowchart
of the (Tp; Tn)-determination process is shown in Fig. 4.

For illustration, consider the case where the total number
of bits of intended data is t = 1024 and the usable capacities
based on (Tp; Tn) = (0; 0) and (Tp; Tn) = (0; −1) are c(0;0) = 754 and
c(0;−1) = 1278, respectively. Following Step 1, we,  respectively,
set (Tp; Tn) and Flag to be (0; 0) and n, initially. The rationale

behind (Tp; Tn) and Flag is that the absolute values of the two
thresholds should be as small as possible and the new threshold
pair (Tp; Tn − 1) is prior to be selected when |Tn| = |Tp|. Accord-
ing to Step 2, based on (Tp; Tn) = (0; 0), we  obtain c(0;0) = 654.
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ollowing Step 3, for c(0;0) < t which implies the usable capacity
s insufficient for embedding the intended data, we  thus cannot
et (0; 0) as the appropriate threshold pair and should adjust
Tp; Tn). From Step 4, for Flag = n, we perform Tn ← Tn − 1 = −1
nd obtain (Tp; Tn) = (0; −1); then we set Flag ← p. After adjusting
Tp; Tn), we repeat Step 2 and Step 3 to examine whether the new
Tp; Tn) = (0; −1) can provide enough usable capacity to embed
he intended data. Thus, based on (Tp; Tn) = (0; −1), we obtain
(0;0) = 1278, and then for c(0;−1) ≥ t which implies the usable
apacity is sufficient for embedding the intended data, we  output
0; −1) as the appropriate threshold pair and stop.
.4. Complete procedure of the proposed RDH algorithm

We now describe how the proposed RDH algorithm operates.
iven an input image, we first divide all the pixels into two  sets,
ued).

�˛ and �ˇ. Then, the hidden data are evenly separated into two
parts. The embedding process requires that we  first embed one part
of hidden data in the pixels in �˛, and then repeat the embedding
process to embed the other part in the pixels in �ˇ. The extraction
process is the inverse of the embedding process. Since the embed-
ding and extraction processes for the pixels in �˛ and �ˇ are the
same, we  only show the case related to �˛. Note that the size of
the header stream is known in advance for both the embedding and
extraction parts.

The embedding process for the pixels in �˛ involves six steps.
Step 1: Preserve the first |H| pixels in �˛.
Step 2: From the (|H| + 1)th pixel to the last pixel, calculate the

prediction error for each pixel by using the proposed
GEDP scheme described in Section 3.1.
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Table 3
Under the constraints of PSNR � 50 dB, the comparison results in terms of the SHD (bit) for the eighteen test images.

Algorithm Couple image House image Jet image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 14,391 49.998 28,442 50.000 30,854 49.999
Thodi and Rodriguez (2007) 28,573 49.998 43,384 50.001 45,788 50.008
Luo  et al. (2010) 29,108 50.004 64,230 50.000 72,172 50.005
Sachnev et al. (2009) 37,756 49.997 75,028 50.003 76,130 50.001
The  proposed 41,346 50.001 86,696 50.001 86,880 50.001

Algorithm Boat image Street image Wood image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 17,642 50.003 16,462 50.004 5819 49.996
Thodi and Rodriguez (2007) 38,902 50.000 33,135 50.001 33,213 50.002
Luo  et al. (2010) 46,144 49.997 42,788 50.004 22,942 50.003
Sachnev et al. (2009) 53,588 50.005 54,426 50.003 31,150 49.996
The  proposed 55,896 50.002 62,526 50.001 44,046 50.002

Algorithm Barbara image Map  image Tiffany image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 11,691 50.003 7885 49.999 17,904 49.999
Thodi and Rodriguez (2007) 28,023 50.001 19,870 50.002 37,879 50.003
Luo  et al. (2010) 36,446 49.995 23,100 50.003 51,386 50.003
Sachnev et al. (2009) 44,728 50.000 26,406 49.999 56,892 50.003
The  proposed 46,628 50.004 28,846 50.001 61,610 49.997

Algorithm Cameraman image Payaso image Harbor image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 89,653 49.999 11,324 49.998 10,171 49.999
Thodi and Rodriguez (2007) 93,768 50.002 37,172 50.003 23,383 49.998
Luo  et al. (2010) 175,636 50.000 51,910 50.002 28,346 50.005
Sachnev et al. (2009) 166,200 49.997 62,920 49.996 34,794 50.004
The  proposed 192,152 49.998 68,502 50.004 37,808 50.003

Algorithm Window image Sailboat image Lighthouse image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 38,875 50.000 28,232 50.003 27,433 49.998
Thodi and Rodriguez (2007) 55,705 50.002 37,355 49.996 41,051 50.004
Luo  et al. (2010) 84,468 50.005 44,308 49.999 44,572 49.999
Sachnev et al. (2009) 87,850 50.000 56,630 50.004 53,634 49.993
The  proposed 101,190 50.004 62,920 50.002 61,866 50.001

Algorithm Child image Boating image Woman  image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 32,047 49.997 14,994 50.002 21,023 49.998
Thodi and Rodriguez (2007) 42,545 50.003 23,592 49.997 36,883 50.001
Luo  et al. (2010) 61,688 50.004 29,998 50.002 55,346 50.004
Sachnev et al. (2009) 64,650 50.003 41,084 50.002 64,518 50.000
The  proposed 72,120 49.996 45,384 50.004 68,450 50.003

Algorithm Average SHD SHD improvement ratio

Tai et al. (2009) 23,602.33 188.31%
Thodi and Rodriguez (2007) 38,901.17 74.93%

S

S

Luo et al. (2010) 53,588.22 

Sachnev et al. (2009) 60,465.78 

The proposed 680,48.11

tep 3: Determine the embedding order by the modified embed-
ding order determination strategy described in Section

4.2.

tep 4: Determine two appropriate thresholds by the new sys-
tematic way described in Section 4.3,  and then get the
flag bit stream.
26.98%
12.54%

Step 5: Use the LSB replacement method to embed the header
stream in the first |H| pixels, and then obtain the correc-

tion bit stream.

Step 6: According to the embedding order of the pix-
els, embed the correction bit stream, the flag
bit stream, and the hidden data in the pixels
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Table 4
Under the constraints of PSNR � 45 dB, the comparison results in terms of the SHD (bit) for the eighteen test images.

Algorithm Couple image House image Jet image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 27,918 45.005 58,720 44.999 66,319 44.990
Thodi  and Rodriguez (2007) 50,478 45.007 75,864 44.999 87,372 44.999
Luo  et al. (2010) 59,774 44.998 105,124 44.998 130,050 45.004
Sachnev et al. (2009) 69,026 45.005 121,792 45.003 137,890 44.998
The  proposed 73,666 44.999 135,322 45.001 146,016 45.002

Algorithm Boat image Street image Wood image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 47,316 45.001 38,102 44.993 14,391 44.997
Thodi and Rodriguez (2007) 71,172 45.004 56,360 45.001 59,506 44.999
Luo  et al. (2010) 87,038 45.004 79,330 45.004 46,930 45.003
Sachnev et al. (2009) 96,210 45.004 93,144 45.005 60,088 45.002
The  proposed 98,858 45.002 105,332 45.002 80,484 45.002

Algorithm Barbara image Map  image Tiffany image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 31,247 45.003 19,660 44.996 43,725 44.999
Thodi  and Rodriguez (2007) 50,672 45.005 33,816 45.000 67,816 45.001
Luo  et al. (2010) 70,888 45.002 46,956 45.005 98,832 44.997
Sachnev et al. (2009) 81,164 45.004 49,840 45.004 101,714 45.002
The  proposed 82,528 44.999 55,058 45.000 105,700 44.997

Algorithm Cameraman image Payaso image Harbor image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 164,993 44.999 26,581 45.003 25,559 45.002
Thodi  and Rodriguez (2007) 192,597 45.001 65,536 44.999 40,134 45.002
Luo  et al. (2010) 237,498 45.001 101,452 44.999 55,660 45.005
Sachnev et al. (2009) 235,556 45.004 114,298 44.999 59,512 44.999
The  proposed 255,192 45.004 120,064 44.998 65,698 45.002

Algorithm Window image Sailboat image Lighthouse image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 75,759 44.997 53,739 44.998 60,843 45.005
Thodi  and Rodriguez (2007) 108,265 44.999 69,337 45.005 77,070 45.000
Luo  et al. (2010) 140,458 45.002 77,336 45.001 82,948 44.999
Sachnev et al. (2009) 162,268 44.998 96,288 45.001 102,764 44.999
The  proposed 172,516 45.004 103,550 45.004 113,508 45.004

Algorithm Child image Boating image Woman image

SHD PSNR SHD PSNR SHD PSNR

Tai et al. (2009) 58,484 45.004 29,097 44.997 40,632 45.002
Thodi  and Rodriguez (2007) 78,381 44.996 39,845 44.998 65,536 44.999
Luo  et al. (2010) 102,238 44.995 59,800 45.003 102,790 45.005
Sachnev et al. (2009) 115,554 44.998 74,844 45.000 116,052 44.999
The  proposed 119,802 44.997 80,562 44.999 117,968 44.996

Algorithm Average SHD SHD improvement ratio

Tai et al. (2009) 49,060.28 130.08%
Thodi and Rodriguez (2007) 71,653.17 57.54%
Luo et al. (2010) 93,616.78 20.58%

s

Sachnev et al. (2009) 104,889.11 

The proposed 112,879.11

in �˛ by the embedding strategy described in

Section 4.1.

The extraction process for the pixels in �˛ is comprised of five
teps:
7.62%

Step 1: Extract the header stream from the first |H| pixels to get

the size of the hidden data, the size of flag bit stream, and
the values of two  thresholds.

Step 2: From the (H + 1)th pixel to the last pixel, calcu-
late the modified prediction error for each pixel
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Table 5
The average execution-time (seconds) comparison among the concerned five RHD algorithms.

Capacity (bpp)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Tai et al. (2009) 0.0110 0.0196 0.0235 0.0280 0.0319 0.0391 0.0422
Thodi and Rodriguez (2007) 0.0555 0.1098 0.1617 0.2140 0.2659 0.3195 0.3711
Luo  et al. (2010) 0.1024 0.1848 0.2847 0.4018 0.5371 0.6923 0.8773
Sachnev et al. (2009) 0.0962 0.1413 0.1874 0.2419 0.3062 0.3809 0.4946
The  proposed 0.3107 0.4174 0.5076 0.6136 0.7332 0.9076 1.1523

Table 6
The average marked image quality performance comparison between our RDH algorithm with the embedding order determination strategy by Sachnev et al. (2009) and the
one  with the proposed modified embedding order determination strategy.

Capacity (bpp)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

With the embedding order determination strategy by Sachnev et al. (2009)
4.841

5.063
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54.1488 50.3938 47.2909 4
With  the proposed modified embedding order determination strategy

54.5575 50.6542 47.5471 4

by using the proposed GEDP scheme described in
Section 3.1.

tep 3: Determine the extraction order based on the modified
embedding order determination strategy described in
Section 4.2.

tep 4: According to the extraction order of the pixels, extract
the correction bit stream, the flag bit stream, and the hid-
den data from the pixels in �˛ by the extracting strategy
described in Section 4.1.

tep 5: Recover the LSB values of the first |H| pixels by the cor-
rection bit stream.

. Experimental results

To test the effectiveness of the proposed RDH algorithm, we
sed eighteen test images shown in Fig. 5 to conduct experiments.
e  compared our proposed RDH algorithm with four existing RDH

lgorithms, namely Tai et al.’s algorithm (Tai et al., 2009), Thodi
nd Rodriguez’s algorithm (Thodi and Rodriguez, 2007), Luo et al.’s
lgorithm (Luo et al., 2010), and Sachnev et al.’s algorithm (Sachnev
t al., 2009). The size of each test image was 512 × 512. All the
ve algorithms were implemented on an IBM compatible computer
ith an Intel Core 2 Duo CPU T9600@2.8 GHz and a 2.96 GB RAM.

he operating system was MS-Windows XP; the program devel-
pment environment was Visual Studio C++2005; and the hidden
ata were generated by the function rand() in C++language.

The comparisons were based on two performance measures,
he peak signal-to-noise ratio (PSNR) and the Capacity. The PSNR

easures the quality of the marked image whereas the Capacity,
easured in bits per pixel (bpp), represents the amount of hidden

ata. The PSNR of a marked image of size M × N is defined as

PSNR = 10 log10
2552

(1/MN)
∑M−1

i=0

∑N−1
j=0 [xi,j − x′i,j]

2
, (13)

here xi,j and x′i,j denote the gray values of the pixels at position
i, j) in an original image and a marked image, respectively. The
arger the PSNR, the better will be the image quality. The Capacity
f a marked image of size M × N is defined as

Capacity = #{hidden bits}
MN

, (14)
here #{hidden bits} denotes the number of hidden bits. The larger
he Capacity, the higher will be the embedding capacity.

Fig. 6 illustrates the PSNR versus the Capacity curves generated
y the five RDH algorithms. From the figure, it is obvious that with
2 42.8878 41.0570 39.2666

9 43.0663 41.1983 39.3204

the same Capacity, the proposed RDH algorithm yields the best
quality of marked images among the five RDH algorithms. Next,
we demonstrate capacity advantage of the proposed RDH algo-
rithm. Tables 3 and 4 show the comparison results in terms of the
size of hidden data (SHD) under the constraints of PSNR � 50 dB
and PSNR � 45 dB, respectively. From the two  tables, it is clear that
based on the eighteen test images, the proposed RDH algorithm can
embed the most amount of hidden data under the same marked
image quality. On average, under the constraint of PSNR � 50 dB,
the SHD improvement ratio of the proposed algorithm over Tai
et al.’s algorithm, Thodi and Rodriguez’s algorithm, Luo et al.’s
algorithm, and Sachnev et al.’s algorithm can, respectively, achieve
188.31%, 74.93%, 26.98%, and 12.54%; and under the constraint of
PSNR � 45 dB, the SHD improvement ratio of the proposed algo-
rithm over Tai et al.’s algorithm, Thodi and Rodriguez’s algorithm,
Luo et al.’s algorithm, and Sachnev et al.’s algorithm can, respec-
tively, achieve 130.08%, 57.54%, 20.58%, and 7.62%, implying that
the improvement of the proposed algorithm is significant.

Based on the eighteen test images, Table 5 shows the average
execution-time performance comparison among the five con-
cerned RHD algorithms. Although the proposed RHD algorithm
has some execution-time degradation, the above results demon-
strate the proposed RHD algorithm can achieve the best embedding
capacity and marked image quality. Furthermore, even though for
the case of Capacity = 0.7 bpp, the average execution time of the
proposed RHD algorithm is only 1.1523 seconds, indicating that the
proposed RHD algorithm is effective and applicable.

Finally, we discuss the influence of the proposed modified
embedding order determination strategy discussed in Section 4.2
upon the marked image quality performance in terms of the
average PSNR. Based on the same eighteen test images, Table 6
demonstrates that under the same Capacity, our RHD algorithm
with the proposed modified embedding order determination strat-
egy has better average quality of marked images than the one
with the embedding order determination strategy by Sachnev et al.
(2009), especially in the case of low Capacity.

6. Conclusions

We  have presented an improved RDH algorithm based on the
proposed GEDP scheme. The contribution of this work is threefold.

First, because the embedding capacity and marked image quality
are dependent on the prediction accuracy in RDH algorithm, we
develop a new GEDP scheme to generate more accurate predic-
tion results. The prediction errors derived by the proposed GEDP
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end to form a sharper Laplacian distribution, and it implies that
he proposed RDH algorithm can yield larger embedding capacity
nd produce better quality of marked images. Second, it is a critical
ssue to determine the appropriate thresholds, TP and Tn, which can
rovide enough usable capacity to embed the hidden data and some
verheads as well as generate the best quality of a marked image, so

 new systematic way is developed to tackle this problem. Finally,
e present a modified embedding order determination strategy

o reduce the distortion of a marked image. By experimenting on
ighteen test images, the results demonstrate the superior proper-
ies of the proposed algorithm in terms of embedding capacity and
mage quality when compared with four existing state-of-the-art
lgorithms (Luo et al., 2010; Sachnev et al., 2009; Tai et al., 2009;
hodi and Rodriguez, 2007). The proposed RDH algorithm can be
articularly applied to the field of sensitive images, such as mili-
ary, medical, and artwork images, where the total reconstruction
f the original images is imperative.

ppendix A. Derivations of SI masks

In this appendix, we introduce the detailed derivations of the SI
asks, which combine Sobel masks (Gonzalez and Woods, 1992)

nd bilinear interpolation masks. Since derivation for the pixels in
˛ is the same as that for the pixels in �ˇ, we  only consider the

ase of �˛.
Fig. A.1(a) and (b) illustrates the 3 × 3 horizontal and verti-

al masks, respectively. After running the horizontal and vertical
asks on a 3 × 3 subimage centered at position (m, n), the hori-

ontal gradient response �hm,n and the vertical gradient response
vm,n can be calculated by

�hm,n =
1∑

k=−1

�k[xm+k,n+1 − xm+k,n−1]

�vm,n =
1∑

k=−1

�k[xm+1,n+k − xm−1,n+k],

(A.1)

here �k = 2 if k = 0; �k = 1, otherwise. To make Sobel masks
orkable on the pixels in �˛, bilinear interpolation mask is used

o obtain missing pixels. Given all the pixels in �˛, a full image can
e reconstructed by the following rule:

xm,n =

⎧⎪⎪⎨
⎪⎪⎩

xm,n if xm,n ∈ �˛

1
4

∑
(m′,n′)∈�

xm′,n′ otherwise,
(A.2)
here � = {(m ± 1, n), (m, n ± 1)}.  Then, combining Eqs. (A.1) and
A.2), the following equations are derived:

ig. A.1. Two Sobel masks. (a) The horizontal mask. (b) The vertical mask.
 and Software 86 (2013) 567– 580 579

if xm,n ∈ �˛, it yields

�hm,n = 1
4

⎧⎪⎨
⎪⎩

6

[ ∑
k∈{±1}

xm+k,n+1 − xm+k,n−1

]
+2

[
xm,n+2 − xm,n−2

]
⎫⎪⎬
⎪⎭

�vm,n = 1
4

⎧⎪⎨
⎪⎩

6

[ ∑
k∈{±1}

xm+1,n+k − xm−1,n+k

]
+2

[
xm+2,n − xm−2,n

]
⎫⎪⎬
⎪⎭ ;

(A.3)

otherwise,

�hm,n = 1
4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

∑
k1∈{±2}

xm+k1,n+1 − xm+k1,n−1

+
∑

k2∈{±1}
xm+k2,n+2 − xm+k2,n−2

⎤
⎥⎥⎦

+10
[

xm,n+1 − xm,n−1
]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

�vm,n = 1
4

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

∑
k1∈{±2}

xm+1,n+k1
− xm−1,n+k1

+
∑

k2∈{±1}
xm+2,n+k2

− xm−2,n+k2

⎤
⎥⎥⎦

+10
[

xm+1,n − xm−1,n

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(A.4)

From Eqs. (A.3) and (A.4), two SI mask pairs can be obtained. Note
that the coefficients of SI masks are normalized into integers for
avoiding floating point computation.

Appendix B. Proof of Theorem 1

From Eq. (6),  we know that when the hidden bit h is embed in a
pixel, the embedding distortion D(e) is |e + h|. Since h ∈ {0, 1} and
e is within the range [Tn, Tp], we  have the following equation:

D(e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e if 0 ≤ e ≤ Tp and h = 0

−e if Tn ≤ e < 0 and h = 0

e + 1 if 0 ≤ e ≤ Tp and h = 1

−e − 1 if Tn ≤ e < 0 and h = 1.

(B.1)

Because the two events, h = 0 and h = 1, are equiprobable, we have
Pro(h = 0) = Pro(h = 1) = (1/2). Thus, the expected value of the dis-
tortion caused by embedding h in a pixel with the prediction error
ε is ε + (1/2) (= (1/2)ε  + (1/2)(ε  + 1)); for pixel with the predic-
tion error −ε − 1, the embedding distortion is also ε + (1/2) (=
(1/2)[−(−ε − 1)] + (1/2)[−(−ε − 1) − 1]). This completes the proof.
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