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a b s t r a c t 

Considering a mosaic video, in which each mosaic image could be captured by any of the 

existing eleven RGB color filter array (CFA) structures and each mosaic pixel contains only 

one primary color, this paper proposes a novel spatial and temporal correlation-based re- 

versible data hiding (RDH) method. In the proposed RDH method, an intellectual switching 

strategy to select the spatial correlation-based or the temporal prediction scheme to maxi- 

mize the quality improvement of the marked mosaic videos under fixed embedding capac- 

ity. Based on eight test mosaic videos, the experimental results demonstrate that in terms 

of peak signal-to-noise ratio (PSNR), color PSNR (CPSNR), structure similarity (SSIM) index, 

motion-based video integrity evaluation (MOVIE) index, and human perceptual effect, the 

proposed RDH method clearly outperforms the spatial correlation-based RDH method by 

Yang et al. and the other four state-of-the-art RDH methods. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Hiding data in a host image is an active research topic in the multimedia area. A large number of data hiding methods

have been proposed for gray and color images. In particular, reversible data hiding (RDH) techniques that can completely

recover the original image have attracted great interests for military, medical, and archival applications recently. The first

RDH method was developed by Barton in 1997 [1] . Following Barton’s concept, more and more studies [3 –5 , 10 , 12 , 14 , 35]

have focused on how to increase the embedding capacity and/or enhance the quality of marked images. 

The development in RDH can be roughly divided into three categories, namely the compression domain-based category,

the encrypted domain-based category, and the image domain-based category [24] . In the compression domain-based cate-

gory, the hidden data is embedded into the compressed coefficients such as the discrete cosine transform (DCT) coefficients

[3 , 7 , 13 , 17] , wavelet transform coefficients [10] , or vector quantization (VQ) indices [4 , 5] . In the encrypted domain-based cat-

egory, the hidden data is embedded into the encrypted image, and the original image can be recovered from the decrypted

image [38–40] directly. The image domain-based RDH methods embed the hidden data into image pixels. It generally yields
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Fig. 1. Eleven typical RGB CFA structures. (a) Bayer CFA. (b) Lukac and Plataniotis CFA. (c) Yamanaka CFA. (d) diagonal stripe CFA. (e) vertical stripe CFA. 

(f) modified Bayer CFA. (g) HVS-based CFA. (h) type I pseudo-random CFA. (i) type II pseudo-random CFA. (j) type III pseudo-random CFA. (k) Fujifilm CFA. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

higher embedding capacity and better quality of marked images than the compression domain-based and encrypted domain-

based methods. In the image domain-based RDH method, difference expansion (DE) approach [12 , 22 , 27 , 29] and histogram

modification approach [14 , 21 , 26] are two popular approach. When compared with the histogram modification approach that

might have the highest peak signal-to-noise ratio (PSNR) lower bound but might have limited embedding capacity, the DE

approach embeds more hidden data into the images and can achieve acceptable quality of marked images. 

With the advances in digital color camera technology, for reducing hardware cost, the single-sensor digital color cameras

with various RGB color filter array (CFA) structures have been developed, where each mosaic pixel in the captured CFA image

consists of only one primary color. The eleven typical RGB CFA structures [18 , 19] are shown in Fig. 1 , in which the cameras

Canon EOS-6D and Fujifilm X-Pro1 adopt the Bayer CFA structure [2] in Fig. 1 (a) and the Fujifilm CFA structure in Fig. 1 (k),

respectively. By applying the universal demosaicking process [9 , 20 , 34] to an RGB CFA image, the reconstructed (or called

demosaicked) RGB full-color image can be obtained. However, for the Bayer CFA image, a quality-oriented demosaicking

process [31 , 37] is needed to reconstruct the full-color image. 

1.1. The weakness in existing RDH methods for mosaic images and the motivation 

Although the above-mentioned RDH methods are designed to deal with gray and color images, they can also be applied

to the RGB mosaic images by embedding hidden data into each split color plane, e.g. the R color plane, B color plane,

G 1 color plane constituted by the left-upper G pixels, and G 2 color plane constituted by the right-lower G pixels for the

Bayer mosaic image. However, this straightforward approach often degrades the quality of the marked mosaic images. In

the experiment section, some experimental results are shown to justify the above weakness for four related RDH methods.

In the past, only two RDH methods [32 , 33] have been developed to deal with mosaic images. In [32] , based on the color

difference idea, Yang et al. presented a spatial correlation-based RDH method for Bayer CFA images and experimental results

showed that their proposed method produces better quality of marked CFA images than the related methods [22 , 26 , 27]

under the same embedding capacity. Later, in [33] , Yang et al. slightly extended their previous RDH work from the Bayer

CFA structure to four CFA structures and their RDH method can also be applied to the mosaic videos by embedding hidden

data into each mosaic image of the mosaic video. The motivation of this research are threefold: (1) develop a novel spatial

and temporal correlation-based RDH method for mosaic videos such that the proposed switching mechanism can select the

best strategy, the spatial correlation-based RDH or the temporal correlation-based RDH, to minimize the prediction error,

(2) determine the embedding extraction order and the extraction order in the mosaic video such that the embedding and

extraction steps are assured to be correct, and (3) extend the proposed temporal and spatial correlation-based RDH method

to handle more CFA structures, say 11 CFA structures, by exploiting the universal CFA properties. 

1.2. Contributions 

In this paper, we propose a novel spatial and temporal correlation-based RDH method to handle up to above-mentioned

eleven existing CFA structures of mosaic videos. In addition, an intellectual switching mechanism is proposed to select

which scheme, the spatial correlation-based prediction scheme or the temporal correlation-based prediction scheme, as the

prediction scheme to minimize the prediction error such that the proposed RDH method can achieve the maximal quality

improvement. Further, the proposed RDH method can assure the correctness of the embedding and extraction phases. Based

on eight typical test videos, four are low-motion videos and the other four are high-motion ones, we first generate 88 CFA

mosaic videos. The experimental results demonstrate that under the same embedding capacity, the proposed RDH method

delivers significant quality improvement in terms of the peak signal-to-noise ratio (PSNR), color PSNR (CPSNR), structure

similarity (SSIM) index [30] , motion-based video integrity evaluation (MOVIE) index [23] , and human perceptual effect, of

the marked CFA images and reconstructed marked RGB full-color videos. For example, the average PSNR gain of the proposed
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Fig. 2. The depiction of the 2-set partition for the Bayer CFA structure. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

method over Yang et al.’s method [33] is 3.67 dB and the average MOVIE improvement ratio is 36%. In addition, based on

eight Bayer CFA test videos, the proposed RDH method is clearly superior to four related RDH methods [6 , 22 , 26 , 27] . 

The remainder of this paper is organized as follows. In Section 2 , we present the proposed spatial and temporal

correlation-based prediction scheme for eleven existing CFA structures. In Section 3 , the embedding and extraction phases of

the proposed RDH method are presented in detail. In addition, a real example is provided to assist the understanding of the

proposed method. In Section 4 , experimental results are presented to show the significant quality merits of the proposed

RDH method. Concluding remarks are given in Section 5 . 

2. Proposed spatial and temporal correlation-based prediction scheme 

In this section, firstly, we introduce the spatial correlation-based prediction scheme in [33] for the concerned CFA struc-

tures. Secondly, we propose the temporal correlation-based prediction scheme for the same CFA structures. Thirdly, we take

a real video example to provide the statistic foundation to show why proposed spatial and temporal correlation-based pre-

diction scheme has better prediction accuracy when compared with the spatial correlation-based prediction scheme. 

2.1. Existing spatial correlation-based prediction scheme 

Without loss of generality, we only present the spatial correlation-based prediction scheme for green pixels in a Bayer

mosaic image. As shown in Fig. 2 , the green pixels are partitioned into two disjoint sets, G 0 and G 1 , and they alternate

between two consecutive rows. We can predict the color difference values of the G 0 pixels by those in G 1 and vice versa. The

merit of the 2-set partition strategy is that embedding hidden data in the G 0 pixels does not affect those in G 1 . Therefore,

we can recover the original predicted color difference values of the G 0 pixels through G 1 ’s information in the extraction

process. 

Consider the pixel G 0 ( i, j ) at location ( i, j ). To predict the color difference value of G 0 ( i, j ), we utilize G 0 ( i, j )’s neighboring

information within a k × k window W ij centered at G 0 ( i, j ). Empirically, W ij has to contain at least two G 1 pixels so that the

prediction of the color difference value of the target pixel can be more effective; otherwise, we enlarge W ij until it contains

at least two G 1 pixels. Let K G 1 
, κR , and κB be the numbers of G 1 , R (including R 0 and R 1 ), and B (including B 0 and B 1 ) in

W ij , respectively. The prediction errors of the G-R and G-B color differences are defined by {
�D G −R ( i, j ) = D G −R ( i, j ) − D̄ G −R ( i, j ) 
�D G −B ( i, j ) = D G −B ( i, j ) − D̄ G −B ( i, j ) 

, (1) 

where ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

D G −R ( p, q ) = G ( p, q ) − 1 
K R 

∑ 

( x,y ) ∈ W pq 

R ( x, y ) 

D G −B ( p, q ) = G ( p, q ) − 1 
K B 

∑ 

( x,y ) ∈ W pq 

B ( x, y ) 

D̄ G −R ( i, j ) = 

1 
K G 1 

∑ 

( x,y ) ∈ W i j 

D G −R ( x, y ) 

D̄ G −B ( i, j ) = 

1 
K G 1 

∑ 

( x,y ) ∈ W i j 

D G −B ( x, y ) 

, (2) 

For k = 3, we have four G 1 pixels, two R pixels, and two B pixels in W ij . Table 1 summarizes the precise numbers of G

pixels, R pixels, and B pixels required in the k × k window W ij when computing the prediction errors of the G-R and G-B

color differences of the concerned nine CFA structures, except for the too complicated type II pseudo-random and HVS-based

CFA structures shown in Fig. 1 (i) and 1(g). 

Since a smoother color difference local patch implies a better prediction, we use the local variances of the G-R and G-B

color differences to determine the smoother color difference local patch at position ( i, j ). The local variances are calculated



K.-L. Chung et al. / Information Sciences 420 (2017) 386–402 389 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by ⎧ ⎪ ⎨ 

⎪ ⎩ 

σ 2 
G −R ( i, j ) = 

1 
K G 

∑ 

( x,y ) ∈ W i j 

(
D G −R ( x, y ) − D̄ G −R ( i, j ) 

)2 

σ 2 
G −B ( i, j ) = 

1 
K G 

∑ 

( x,y ) ∈ W i j 

(
D G −B ( x, y ) − D̄ G −B ( i, j ) 

)2 (3)

Thus, the final prediction error of pixel G 0 ( i, j ) is determined by selecting the one predicted by color difference local

patch with a smaller local variance 

�D G ( i, j ) = 

{
�D G −R ( i, j ) i f σ 2 

G −R ( i, j ) < σ 2 
G −B ( i, j ) , 

�D G −B ( i, j ) otherwise. 
(4)

Similarly, the color difference prediction errors of pixel R( i, j ) and pixel B( i, j ) can be obtained by {
�D R ( i, j ) = �D R −G ( i, j ) = D R −G ( i, j ) − D̄ R −G ( i, j ) 
�D B ( i, j ) = �D B −G ( i, j ) = D B −G ( i, j ) − D̄ B −G ( i, j ) 

. (5)

Note that only the R-G (red-green) and B-G (blue-green) color difference local patches are considered for the R and B

pixels, respectively, because G pixels are the majority in the three color channels. 

2.2. Proposed spatial and temporal correlation-based prediction scheme 

This section proposes a novel spatial and temporal correlation-based prediction scheme. For easy exposition, firstly, we

present how to find the best matched block in the ( t + 1) th image from the current block in the t th image such that the

matched block-pair has the minimal sum of absolute difference (SAD). Note that for assuring the correctness of the extracted

hidden data, we search the best matched block in the next image, not in the previous one. Secondly, we propose a switching

strategy to determine the spatial correlation-based prediction scheme or the temporal correlation-based prediction scheme

for the embedding hidden bit. 

Let G 

t 
0 
( i, j ) be the G 0 pixel at position ( i, j ) in the t th image of the CFA video, and let M 

t 
i j 

be the u × u mosaic block

centered at position ( i,j ). For M 

t 
i j 
, we perform a block matching process to find the best matched block M 

t+1 
i ∗ j ∗ within a v × v

search window range centered at position ( i ∗, j ∗) in the ( t + 1)th image such that the following SAD criterion is minimized

and ( i ∗, j ∗) is given by 

( i ∗, j ∗) = argmin 

( i ′ , j ′ ) 

i + � v / 2 � ∑ 

i ′ = i −� v / 2 � 

j+ � v / 2 � ∑ 

j ′ = j−� v / 2 � 
SAD 

(
M 

t 
i j , M 

t+1 
i ′ j ′ 

)
, (6)

with 

SAD 

(
M 

t 
i j , M 

t+1 
i ′ j ′ 

)
= 

� u/ 2 � ∑ 

�i = −� u/ 2 � 

� u/ 2 � ∑ 

� j= −� u/ 2 � 

∣∣C t ( i + �i, j + � j ) − C t 
(
i ′ + �i, j ′ + � j 

)∣∣ (7)

where C t ( i, j ) represents the color value at position ( i, j ) in the t th image. Here, the color patterns of M 

t 
i j 

and M 

t+1 
i ∗ j ∗ must

be the same. Besides, G 0 pixels are not included in the above SAD calculation process since the G 0 set is currently used for

error prediction. Fig. 3 gives a real example to illustrate how to find the best matched block M 

t+1 
i ∗ j ∗ of M 

t 
i j 

for the Fujifilm CFA

structure. Empirically, setting u = 3 and v = 32 leads to good performance to all the test images. After determining the best

matched position ( i ∗,j ∗), the prediction error of the proposed temporal correlation-based prediction scheme is defined by 

D G ( i, j ) = G 

t 
0 ( i, j ) − G 

t+1 
0 ( i ∗, j ∗) (8)

Combining the temporal and spatial correlations, given a threshold θ SAD, the final prediction error is determined by ⎧ ⎪ ⎨ 

⎪ ⎩ 

�D G ( i, j ) by Eq . ( 8 ) i f SAD 

(
M 

t 
i j 
, M 

t+1 
i ′ j ′ 

)
< θSAD , 

( temporal correlation ) 
�D G ( i, j ) by Eq . ( 4 ) otherwise. 

( spatial correlation ) 

(9)

In Eq. (9) , if SAD ( M 

t 
i j 
, M 

t+1 
i ′ j ′ ) is smaller than a specified threshold θ SAD , which is set to be 20 empirically to achieve

good performance, it indicates the time domain difference between the corresponding blocks is small, and the temporal

correlation-based prediction scheme is selected; otherwise, the spatial correlation-based prediction scheme is selected. To

help the reader understand the proposed process, the flowchart of the proposed spatial and temporal correlation-based

prediction scheme is illustrated in Fig. 4 . 
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Fig. 3. The depiction of block matching to find the best matched block M 

t+1 
i ∗ j ∗ of M 

t 
i j 

for the Fujifilm CFA structure. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. The flowchart of the spatial and temporal correlation-based prediction scheme. 

 

 

 

 

 

2.3. Statistic distribution to show the prediction error reduction merit of the proposed scheme 

We first give a real example, as shown in Fig. 3 , to illustrate the prediction error reduction merit of the proposed error

prediction scheme. It’s known that the computation for SAD has to exclude the pixels belonging to the G 0 set. In Fig. 3 (b),

we obtain SAD ( M 

t 
i j 
, M 

t+1 
i ∗ j ∗ ) = 6 ( = |41 − 41| + |74 − 76| + |74 − 74| + |100 − 101| + |74 − 72| + |41 − 41| + |100 − 101|).

According to Eq. (9) , because SAD ( M 

t 
i j 
, M 

t+1 
i ∗ j ∗ )( = 6 ) < θSAD ( = 20 ) , we select the temporal correlation-based prediction scheme

and the prediction error is �D ( i, j ) = 1( = 72 − 71 ) . For this example, if we select the spatial correlation-based prediction
G 
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Fig. 5. Two Laplacian distributions for (a) Yang et al.’s spatial domain-based prediction scheme and (b) the proposed temporal-spatial based prediction 

scheme (source data from “Akiyo” Bayer CFA video, bpp = 0.1–0.7). 

Fig. 6. The flow of the proposed RDH method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

scheme [28] , by Eqs. (1) and (2) , it yields two larger prediction errors, �D G −R ( i, j ) = D G −R ( i, j ) − D̄ G −R ( i, j ) = −28 − ( −26 ) =
−2 and �D G −B ( i, j ) = −1 . 67 . 

Further, we take the Akiyo video, which is a low-motion video, as the example. Therefore, we expect the prediction error

between adjacent frames in the video is low, and it is suitable for embedding data by exploiting the temporal correlation-

based prediction approach. Fig. 5 (a) plots the Laplacian distribution of the prediction errors for Yang et al.’s prediction

scheme [33] , in which X-axis denotes the prediction error and the Y-axis denotes the number of pixels occurred. Fig. 5 (b)

illustrates the Laplacian distribution of the prediction errors for the proposed prediction scheme. We clearly observe that

Fig. 5 (b) is much sharper than Fig. 5 (a), and the sharper statistic distribution of the proposed prediction scheme implies a

better prediction error reduction effect. On the other hand, it leads to the embedding capacity and marked video quality

merits of the proposed prediction scheme. 

3. The propsed RDH method 

In this section, we present the embedding and extraction phases of the proposed RDH method. Fig. 6 illustrates the

flow of the proposed RDH method. In the embedding phase, the hidden data are embedded in the CFA images according to

the order: I 1 → I 2 → …→ I t → …→ I n , where I t is the t th image and n is the number of images. For the t th image I t , the color

sets are processed in the following order: G 

t 
0 

→ G 

t 
1 

→ R 

t 
0 

→ R 

t 
1 

→ B 

t 
0 

→ B 

t 
1 
. In the extraction phase, the embedded data are

extracted from the CFA images in the reverse order: I n → I n -1 → …→ I t → …→ I 1 , and the color sets to be processed in each

frame are also arranged in the reverse order: B 

t 
1 

→ B 

t 
0 

→ R 

t 
1 

→ R 

t 
0 

→ G 

t 
1 

→ G 

t 
0 
. In the embedding phase, when embedding

data into the current color set, e.g. G 0 , the proposed prediction scheme, as shown in Fig. 4 , is performed on the current

color set. 
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Algorithm 1. Hidden data embedding. 

Input: The original t th CFA image and a hidden data set H . 

Output: The marked t th CFA image. 

Step 1: For the pixel G t 0 ( i, j ) , apply Eq. (7) to find M 

t 
i j 

’s best matched block M 

t+1 
i ∗ j ∗ at position ( i ∗ , j ∗) in the ( t + 1)th image. 

Step 2: Determine �D G ( i, j ) based on the temporal and spatial correlations given in Eq. (9) . 

Step 3: Embed H into the pixel G t 0 ( i, j ) based on the difference expansion concept as follows 

�D G ( i, j ) = 

⎧ ⎨ 

⎩ 

�D G ( i, j ) + θerr + 1 i f �D G ( i, j ) > θerr 

�D G ( i, j ) − θerr − 1 i f �D G ( i, j ) < −θerr − 1 

2 · �D G ( i, j ) + h otherwise 

(10) 

where h ∈ {0, 1} is a binary bit of H to be embedded, and θ err is a prediction error threshold to decide whether h is embedded in G t 0 ( i, j ) or 

not. 

Step 4: Let G t 
0 
( i, j ) be the marked pixel value at position ( i, j ) after embedding. Compute G t 

0 
( i, j ) based on the following two cases 

Case 1: (temporal correlation) 

If SAD ( M 

t 
i j 
, M 

t+1 
i ∗ j ∗ ) < θSAD , G 

t 
0 
( i, j ) = �D G ( i, j ) + G t+1 

0 
( i ∗, j ∗) . (11) 

Case 2: (spatial correlation) 

Otherwise, G t 
0 
( i, j ) = ⎧ ⎨ 

⎩ 

�D G ( i, j ) + 

1 
K R 

∑ 

( x,y ) ∈ W i j 

R ( x, y ) + 

1 
K G 

∑ 

( x,y ) ∈ W i j 

D G −R ( x, y ) i f σ 2 
G −R ( i, j ) < σ 2 

G −B ( i, j ) 

�D G ( i, j ) + 

1 
K B 

∑ 

( x,y ) ∈ W i j 

B ( x, y ) + 

1 
K G 

∑ 

( x,y ) ∈ W i j 

D G −B ( x, y ) otherwise 
(12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. The embedding phase 

Given the t th image, we apply the difference expansion technique [27] to embed a hidden data set H in the color set

G 

t 
0 

first. If G 

t 
0 

cannot consume all hidden data, we embed the remainder of H into the next color set G 

t 
1 
, and so on. The

embedding procedure is detailed in Algorithm 1 as follows. For a concise presentation, only G 

t 
0 

is addressed in the proposed

method. Other color sets are processed in the same way. After processing all the color sets in the t th frame, we then proceed

to the ( t + 1)th image and repeat the above embedding procedure starting from the color set G 

t+1 
0 

to embed the remainder.

The prediction error threshold θ err shown in Eq. (10) controls the embedding capacity in RDH. Using a higher θ err can

increase the probability to embed hidden data into pixels. θ err is set to 0 initially. If we cannot embed all hidden data into

the CFA video, θ err is increased by one and restart the embedding procedure again. The process is repeated until all hidden

data are embedded into the CFA video. 

3.2. The extraction phase 

In the extraction phase, we start from the n th image to process the CFA video in the reverse order, where in the n th

image, we only take the spatial correlation-based prediction scheme to extract the hidden data because there is no next

image frame for reference. In the t th image frame, we process the color sets in the following order: B 

t 
1 

→ B 

t 
0 

→ R 

t 
1 

→ R 

t 
0 

→
G 

t 
1 

→ G 

t 
0 
, and then continue to process the ( t −1)th image frame. To be consistent, we again take G 

t 
0 

for illustration in the

extraction procedure, as listed in Algorithm 2 . 

3.3. Real embedding and extraction example 

We utilize the same example in Section 2.3 to explain how the proposed embedding and extraction algorithm works.

Consider to embed the hidden data h = 1 into the pixel G 

t 
0 
( i, j ) . Assume the temporal correlation-based embedding scheme

is applied and �D G ( i, j ) = 1 , θerr = 2 . According to Step 3 of Algorithm 1 , since −θerr − 1 < �D G ( i, j ) < θerr , h can be em-

bedded in the pixel G 

t 
0 
( i, j ) and we have �D G ( i, j ) = 3 . At Step 4, the marked pixel value becomes G 

t 
0 
( i, j ) = �D G ( i, j ) +

G 

t+1 
0 

( i ∗, j ∗) = 3 + 71 = 74 . To extract the hidden data and recover from the marked pixel G 

t 
0 
( i, j ) , we find that the tem-

poral correlation-based scheme is selected based on the SAD criterion and we calculate �D G ( i, j ) = G 

t 
0 
( i, j ) − G 

t+1 
0 

( i ∗, j ∗) =
74 − 71 = 3 at Step 2 of Algorithm 2 . Since −2 θerr − 2 ≤ �D G ( i, j ) ≤ 2 θerr + 1 , it means the hidden data is embedded in the

pixel. At Step 3, the hidden data is h = 1 ( = �D G ( i, j ) mod 2 = 3 mod 2 = 1 ) . Finally, the recovered pixel value G 

t 
0 
( i, j ) is

equal to 72 (= �D G ( i, j ) + G 

t+1 
0 

( i ∗, j ∗) = 1 + 71 = 72 ). 

3.4. Computational complexity analysis 

The time complexity of the two algorithms are proportional to the size of the hidden data set. For simplicity, we assume

one binary bit to be processed, and give the following analysis for the embedding algorithm, i.e., Algorithm 1 . At Step 1,

the block matching technique is performed for a pixel. Recall the block size and search window range are u × u and v × v ,
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Algorithm 2. Hidden data extraction. 

Input: The marked t th CFA image. 

Output: The hidden data set H and recovered t th CFA image. 

Step 1: For the marked pixel G t 
0 
( i, j ) , apply Eq. (7) to find the best matched block of M 

t 
i j 

at position ( i ∗ , j ∗) in the ( t + 1)th image, namely M 

t+1 
i ∗ j ∗ . 

Step 2: Determine �D G ( i, j ) based on the following two cases 

Case 1: (temporal correlation) 

If SAD ( M 

t 
i j 
, M 

t+1 
i ∗ j ∗ ) < θSAD , �D G ( i, j ) = G t 

0 
( i, j ) − G t+1 

0 
( i ∗, j ∗) . (13) 

Case 2: (spatial correlation) 

Otherwise, �D G ( i, j ) = ⎧ ⎨ 

⎩ 

G t 
0 
( i, j ) − 1 

K R 
∑ 

( x,y ) ∈ W i j 

R ( x, y ) − 1 
K G 

∑ 

( x,y ) ∈ W i j 

D G −R ( x, y ) i f σ 2 
G −R ( i, j ) < σ 2 

G −B ( i, j ) 

G t 
0 
( i, j ) − 1 

K B 
∑ 

( x,y ) ∈ W i j 

B ( x, y ) − 1 
K G 

∑ 

( x,y ) ∈ W i j 

D G −B ( x, y ) otherwise 
(14) 

Step 3: If −2 θerr − 2 ≤ �D G ( i, j ) ≤ 2 θerr + 1 , extract the hidden data by 

h = �D G ( i, j ) mod 2 . (15) 

Step 4: Recover the prediction error of the original pixel �D G ( i, j ) by 

�D G ( i, j ) = 

⎧ ⎨ 

⎩ 

�D G ( i, j ) − θerr − 1 i f �D G ( i, j ) > 2 θerr + 1 

�D G ( i, j ) + θerr + 1 i f �D G ( i, j ) < −2 θerr − 2 

� �D G ( i, j ) / 2 � otherwise 

(16) 

Step 5: Recover the marked pixel to the original pixel value G t 0 ( i, j ) based on the following two cases 

Case 1: (temporal correlation) 

If SAD ( M 

t 
i j 
, M 

t+1 
i ∗ j ∗ ) < θSAD , G 

t 
0 ( i, j ) = �D G ( i, j ) + G t+1 

0 
( i ∗, j ∗) . (17) 

Case 2: (spatial correlation) 

Otherwise, G t 0 ( i, j ) = ⎧ ⎨ 

⎩ 

�D G ( i, j ) + 

1 
K R 

∑ 

( x,y ) ∈ W i j 

R ( x, y ) + 

1 
K G 

∑ 

( x,y ) ∈ W i j 

D G −R ( x, y ) i f σ 2 
G −R ( i, j ) < σ 2 

G −B ( i, j ) 

�D G ( i, j ) + 

1 
K B 

∑ 

( x,y ) ∈ W i j 

B ( x, y ) + 

1 
K G 

∑ 

( x,y ) ∈ W i j 

D G −B ( x, y ) otherwise 
(18) 

Fig. 7. Eight test videos. (a) Akiyo. (b) News. (c) Dance. (d) Supervisor. (e) Football. (f) Highway. (g) NFL. (h) Basketball. 

 

 

 

 

 

 

 

 

 

 

respectively; the time complexity is thus O( u 2 v 2 ). Steps 2–4 all take a constant time O(1) despite which correlation-based

prediction scheme is used. Similarly, Algorithm 2 takes O( u 2 v 2 ) time for block matching in Step 1 and O(1) in remaining

steps. It is clear that both algorithms have the same time complexity O( u 2 v 2 ), which is dominated by the block matching

technique. The selection of u and v makes the tradeoff between the algorithm accuracy and efficiency. In this study, we

favor the efficiency and prefer to use the small block size, i.e. u = 3, and use the typical search window size, i.e. v = 32, in

the experiments. 

4. Experimental results 

To evaluate the performance among the proposed RDH method and some related RDH methods, thorough experiments

are carried out to justify the quality merit of the proposed RDH method. As shown in Fig. 7 , eight videos are taken from

the website in [36] and YouTube as the test videos. They are further divided as low-motion videos (Akiyo, News, Dance, and

Supervisor) and high-motion videos (Football, Highway, NFL, and Basketball). For each video, we excerpt ten consecutive

images and generate eleven CFA videos based on Fig. 1 , and a total of 88 videos are served as the test videos. The frame



394 K.-L. Chung et al. / Information Sciences 420 (2017) 386–402 

Table 1 

The values of K G 1 , K R , and K B used in Eq. (2) for 

nine CFA structures (‘2/3’ means it can be 2 or 3 

depending on the structure). 

RGB CFA K G 1 K R K B 

Bayer 4 2 2 

Lukac and Plataniotis 3 2/3 2/3 

Yamanaka 2 3 3 

Diagonal stripe 2 3 3 

Vertical stripe 2 3 3 

Modified Bayer 4 2 2 

Type I pseudo-random 4 2 2 

Type III pseudo-random 3 3 2 

Fujifilm 4 2 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resolutions vary in different videos: for Akiyo, News, Highway, and Football, each frame is of size 352 × 288; for Dance and

NFL, each frame is of size 768 × 512; for Supervisor and Basketball, each frame is of size 1280 × 720. The proposed method

was implemented by C ++ and run on a Windows 7 operating system with Intel Core i7 4790 CPU and 4GB RAM. 

4.1. PSNR and SSIM quality comparison of marked CFA images 

Under the same embedding capacity, two image quality metrics, PSNR and SSIM, are used to measure the quality be-

tween the marked CFA image and the original CFA image. For a marked image I with size M × N , the embedding capacity is

measured by 

Capacity ( I ) = 

# { hid d en bits } 
MN 

, (19) 

where #{ hidden bits } denotes the number of hidden bits embedded in the marked image. The PSNR metric is calculated by

PSNR ( I ) = 10 lo g 10 
255 

2 MN ∑ M−1 
i =0 

∑ N−1 
j=0 

(
V ( i, j ) − V̄ ( i, j ) 

)2 
, (20) 

where V ( i, j ) and V̄ ( i, j ) are the original and marked CFA pixel values at position ( i, j ). 

Recall that in Section 2.2 , the threshold θ SAD is used to determine which correlation, temporal or spatial, is selected as

the prediction scheme. The threshold θ SAD is actually a key parameter influencing the image quality of the marked mosaic

video. We have tried various θ SAD ranging from 0 to 60. Particularly, when setting θ SAD = 0, all mosaic pixels are predicted

by the spatial correlation-based prediction scheme. On the contrary, setting a larger θ SAD will increase the probability to

select the temporal correlation-based prediction scheme. Fig. 8 plots PSNR under various θ SAD for the eight test videos. Each

subfigure shows eleven curves corresponding to the eleven CFA structures of the test video, each of which represents the av-

erage PSNR from 0.1bpp to 0.7bpp capacity. In each test video, these CFA structures demonstrate close trends and variations

along with θ SAD . In fact, we find θ SAD has different impacts on low-motion videos in Figs. 7 (a)–(d) and high-motion videos

in Figs. 7 (e)–(h). We see a burst improvement on PSNR when θ SAD > 0 for low-motion videos, and it generally converges to

a stable status when θ SAD ≥ 20, indicating a good positive effect by integrating the spatial and temporal correlations. Such

an integration still works well for high-motion videos, but the effect is not as much as that in the low-motion videos. The

reason is that one block in the high-motion video may move and vary rapidly, so it is difficult to find the best matched

block such that the SAD is small enough. Hereinafter, we set θ SAD = 20 for the remaining experiments. Although it is not

optimal choice for every video, it leads to the best quality in average in our experiment. 

In what follows, under the embedding capacity ranging from 0.1 bpp to 0.7 bpp, we first compare the PSNR performance

among the concerned RDH methods. For fairness, we extend Yang et al.’s spatial correlation-based RDH method [33] so

that it could handle the concerned eleven CFA structures. Tables 2 and 3 list the PSNR results of the proposed method and

Yang et al.’s method for low-motion video “Akiyo” and high-motion video “NFL”. The PSNR improvement of the proposed

method is 0.82–9.8 dB for “Akiyo” and 0.7 dB–1.7 dB for “NFL”. Table 4 shows that the average PSNR gain of the proposed

method is 3.67 dB when compared to Yang et al.’s method. Moreover, Tables 5 and 6 indicate that the proposed method

yields significant PSNR improvement, 7.24 dB, for the four low-motion videos, but the proposed method yields only 0.11 dB

PSNR improvement for the four high-motion videos. 

Besides PSNR, the SSIM index is also included to evaluate the structure similarity quality of the marked CFA images. The

SSIM index is defined by 

SSIM ( x, y ) = 

( 2 μx μy + c 1 ) ( 2 σxy + c 2 ) (
μ2 

x + μ2 
y + c 1 

)(
σ 2 

x + σ 2 
y + c 2 

) (21) 

where x and y denote the marked CFA image and the original CFA image, respectively; μx and μy denote the average pixel

values of x and y , respectively; σ 2 
x and σ 2 

y denote the variances of x and y , respectively; σ xy is the co-variance of x and y ,
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Fig. 8. The PSNR against θ SAD for the eight test videos. 
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Table 2 

The PSNRs for video “Akiyo”. 

CFA Method Capacity (bpp) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Bayer Yang 55.3698 52.0354 49.9321 47.5723 45.2523 43.849 42.2859 

Proposed 63.6153 58.5352 57.1967 55.3092 54.0431 53.0548 52.2126 

Lukac and Plataniotis Yang 55.5298 52.0996 49.7759 47.3777 44.9787 43.4319 41.3304 

Proposed 63.6408 58.5700 57.2282 55.3258 54.0378 53.0217 52.1217 

Yamanaka Yang 55.5415 52.0042 49.0016 46.283 43.8024 41.1208 35.9728 

Proposed 63.6657 58.5850 57.1776 55.211 53.8854 51.2516 47.2764 

Diagonal stripe Yang 54.6208 50.9973 49.1998 46.6418 44.0846 41.6438 39.7468 

Proposed 62.4897 58.8470 56.7308 55.0605 53.6583 52.7231 51.9646 

Vertical stripe Yang 56.6619 53.1071 51.0226 49.7826 48.0578 45.6301 44.3647 

Proposed 62.6653 59.0248 56.9039 55.4028 54.0825 53.1996 52.483 

Modified Bayer Yang 55.0420 51.7199 49.7815 47.3582 45.0258 43.4685 41.3731 

Proposed 63.5830 58.5051 57.1687 55.2769 54.0377 53.0643 52.2089 

HVS-based Yang 54.5315 51.2136 49.3164 46.8354 44.4392 42.9433 40.8411 

Proposed 63.4503 58.9740 57.1741 55.4411 54.1808 53.2067 52.3148 

Type I Pseudo-random Yang 54.1689 50.9892 49.2169 46.7084 44.3291 42.8849 40.8021 

Proposed 62.8725 59.0472 56.8763 55.5353 54.0652 53.1575 52.2052 

Type II Pseudo-random Yang 55.2171 51.8609 49.8999 47.5398 45.2624 43.8804 42.3426 

Proposed 63.6536 58.5448 57.2329 55.3376 54.1220 53.1694 52.3558 

Type III Pseudo-random Yang 54.6039 51.3913 48.4467 46.9534 4 4.014 4 42.307 40.1128 

Proposed 63.2238 58.9374 56.5662 55.4690 54.0266 52.8301 50.1648 

Fuji RGB Yang 54.8481 51.4262 48.4193 45.7955 43.3298 40.9832 36.5279 

Proposed 63.7390 58.7503 57.1166 55.4059 53.9436 51.4782 48.6385 

Average Yang 55.1127 51.7148 49.3870 47.0703 44.7117 42.7676 40.2770 

Proposed 63.3545 58.7409 57.0437 55.3279 54.0117 52.7597 51.1696 

Table 3 

The PSNRs for video “NFL”. 

CFA Method Capacity (bpp) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Bayer Yang 57.1167 53.9446 52.0734 50.5676 48.2910 46.6722 44.2470 

Proposed 57.8780 55.3970 53.7458 52.2552 50.8657 47.8759 44.5701 

Lukac and Plataniotis Yang 56.9071 53.7095 51.8467 50.2188 47.9125 45.3176 42.6720 

Proposed 57.6893 55.1412 53.5223 51.9851 50.1105 46.5227 43.4816 

Yamanaka Yang 56.8675 53.5273 51.7606 48.9290 46.1404 41.3071 35.3411 

Proposed 57.8494 55.3174 53.625 51.3401 46.8744 42.1599 35.8343 

Diagonal stripe Yang 57.0272 53.2382 51.0718 49.5737 47.2715 44.5959 42.2278 

Proposed 58.5256 55.4072 53.5294 52.125 50.8197 47.7797 44.5928 

Vertical stripe Yang 57.8429 54.1928 51.9997 50.5393 48.3071 45.6304 44.0496 

Proposed 58.7969 55.7081 53.891 52.5397 51.3269 48.6009 46.0874 

Modified Bayer Yang 57.0846 53.8254 52.1123 50.6785 48.1973 46.7756 44.0930 

Proposed 57.7374 55.1452 53.5837 52.2281 51.0640 48.1853 44.8811 

HVS-based Yang 56.8625 53.4713 51.3073 4 9.976 8 47.4990 44.9983 42.3929 

Proposed 56.9654 53.9026 52.0737 50.6948 47.7816 45.1414 42.4811 

Type I Pseudo-random Yang 57.1354 53.9040 52.0172 50.5311 48.1530 45.8549 44.2098 

Proposed 57.6355 54.9612 53.2725 51.8848 50.2922 47.2904 44.4589 

Type II Pseudo-random Yang 56.7861 53.1230 51.1810 49.8416 47.3940 44.9612 42.3883 

Proposed 57.1466 53.8692 51.9511 50.5135 47.5596 44.9952 42.2797 

Type III Pseudo-random Yang 57.0013 53.5102 51.5724 50.2025 47.8082 44.5347 41.1164 

Proposed 57.8886 54.8113 53.0135 51.7353 48.8014 45.7635 42.0782 

Fuji RGB Yang 56.4877 53.3415 51.5574 48.7221 45.8585 41.4106 34.9120 

Proposed 56.7966 54.1561 52.4979 49.1926 45.5641 41.4730 35.1121 

Average Yang 56.9772 53.5892 51.6485 49.8662 47.3642 44.5102 41.1916 

Proposed 57.6855 54.8617 53.1399 51.4673 49.0456 45.7759 41.9519 
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Table 4 

The average PSNRs for the eight test 

videos. 

Capacity (bpp) Yang Proposed 

0.1 55.0760 57.9804 

0.2 51.5567 54.4516 

0.3 49.1051 52.1575 

0.4 46.8115 50.3450 

0.5 44.3870 48.5479 

0.6 41.9303 46.5296 

0.7 39.2397 43.8163 

Average 46.8723 50.5469 

Table 5 

The average PSNRs for low-motion videos. 

Capacity (bpp) Yang Proposed 

0.1 55.1337 60.7897 

0.2 51.8958 57.4763 

0.3 49.4780 55.5056 

0.4 46.9777 53.9877 

0.5 44.3466 52.5564 

0.6 41.6155 50.7484 

0.7 38.5073 47.5808 

Average 46.8507 54.0921 

Table 6 

The average PSNRs for high-motion 

videos. 

Capacity (bpp) Yang Proposed 

0.1 55.0183 55.1711 

0.2 51.2176 51.4270 

0.3 48.7322 48.8094 

0.4 46.6453 46.7024 

0.5 44.4275 44.5394 

0.6 42.2452 42.3109 

0.7 39.9720 40.0518 

Average 46.8940 47.0017 

Table 7 

The mean SSIM indexes of Yang et al.’s method and 

the proposed method for the eleven CFA structures 

(embedding capacity = 0.7 bpp). 

RGB CFA Structure Yang Proposed 

Bayer 0.9787 0.9841 

Lukac and Plataniotis 0.9737 0.9823 

Yamanaka 0.9696 0.9772 

Diagonal stripe 0.9707 0.9827 

Vertical stripe 0.9833 0.9873 

Modified Bayer 0.9800 0.9869 

HVS-based 0.9757 0.9850 

Type I Pseudo-random 0.9814 0.9865 

Type II Pseudo-random 0.9741 0.9838 

Type III Pseudo-random 0.9736 0.9830 

Fuji RGB 0.9637 0.9764 

Average 0.974946 0.983202 

 

 

 

 

and c 1 and c 2 are small constants. Under the embedding capacity with 0.7 bpp, Table 7 lists the mean SSIM indices of the

original and marked CFA videos. When compared with Yang et al.’s method, the average SSIM improvement of the proposed

method is 0.008256 ( = 0.983202–0.974946) for the concerned eleven CFA patterns. 

4.2. CPSNR and MOVIE quality comparison of reconstructed RGB full-color images and videos 

For screen display, the marked CFA images and videos should be transformed to the reconstructed RGB full-color ones.

Therefore, the CPSNR and MOVIE metrics are used to evaluate the quality of the reconstructed full-color image and video,
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Table 8 

The mean CPSNRs of Yang et al.’s method and the 

proposed method for the eleven CFA structures (em- 

bedding capacity = 0.7 bpp). 

CFA Structure Yang Proposed 

Bayer 37.7438 38.3932 

Lukac and Plataniotis 35.8715 36.6332 

Yamanaka 33.5685 35.0750 

Diagonal stripe 35.8993 36.9699 

Vertical stripe 29.5055 29.5386 

Modified Bayer 36.6755 37.5132 

HVS-based 34.8291 35.4294 

Type I Pseudo-random 37.4683 38.0836 

Type II Pseudo-random 34.5453 35.1181 

Type III Pseudo-random 35.3593 36.4185 

Fuji RGB 33.2689 35.0023 

Average 34.9759 35.8341 

Table 9 

The mean MOVIE indexes of Yang et al.’s method and 

the proposed method for the eleven CFA structures 

(embedding capacity = 0.7 bpp). 

CFA Structure Yang Proposed 

Bayer 0.0 0 0 084 0.0 0 0 050 

Lukac and Plataniotis 0.0 0 0142 0.0 0 0 069 

Yamanaka 0.0 0 0415 0.0 0 0177 

Diagonal stripe 0.0 0 0208 0.0 0 0115 

Vertical stripe 0.0 0 0577 0.0 0 0586 

Modified Bayer 0.0 0 0129 0.0 0 0 083 

HVS-based 0.0 0 0218 0.0 0 0148 

Type I Pseudo-random 0.0 0 0 099 0.0 0 0 067 

Type II Pseudo-random 0.0 0 0273 0.0 0 0199 

Type III Pseudo-random 0.0 0 0212 0.0 0 0118 

Fuji RGB 0.0 0 0445 0.0 0 0181 

Average 0.0 0 0255 0.0 0 0163 

Table 10 

The average PSNRs of eight Bayer CFA test videos among the concerned RDH methods. 

Capacity (bpp) Sachnev et al. [22] Tai et al. [26] Thodi and Rodriguez [27] Chang et al. [6] Yang et al. [33] Proposed 

0.1 56.7578 52.8378 53.6566 58.0388 55.3350 58.2564 

0.2 51.5576 49.5941 50.3604 53.9380 51.7355 54.6003 

0.3 49.8357 46.8960 47.4325 51.2114 49.3930 52.3412 

0.4 47.5602 44.6994 45.2981 4 8.4 898 47.2407 50.5659 

0.5 46.0171 42.0940 43.8529 45.4099 45.1871 48.9758 

0.6 43.9662 40.4649 42.2391 42.9044 43.1278 47.2808 

0.7 41.2378 37.4706 40.4969 39.6645 41.0738 45.1148 

Average 48.1333 44.8652 46.1909 4 8.64 80 47.5847 51.0193 

 

 

 

respectively. The CPSNR metric is calculated by 

CPSNR = 

1 

n 

n ∑ 

t=1 

10 lo g 10 
255 

2 

CMSE ( t ) 
, (22) 

where 

CMSE ( t ) = 

1 

3 W H 

W H ∑ 

p=1 

∑ 

C∈ { R , G , B } 

[
V 

t 
C ( p ) − ˜ V 

t 
C ( p ) 

]2 
, (23) 

where V t 
C 
(p) and 

˜ V t 
C 
(p) denote pixel value of the component C ∈ {R, G, B} of the p th pixel in the t th image for the original

RGB full-color video and the reconstructed RGB full-color video demosaicked by [34] , respectively. Table 8 lists the mean CP-

SNRs for Yang et al.’s and the proposed methods under the embedding capacity with 0.7 bpp. It indicates that the proposed

method has 0.8582 (35.8341–34.9759) dB CPSNR improvement. 
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Fig. 9. The visual effect comparison for the reconstructed full-color marked images for “Akiyo” (Bayer CFA, embedding capacity 0.7 bpp): (a) the original 

image; (b) the magnified sub-image of the original image; (c) the magnified sub-image of the reconstructed full-color marked image by Yang et al.’s 

method; (d) the magnified sub-image of the reconstructed full-color marked image by the proposed method. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

Finally, we adopt the MOVIE index metric [23] to evaluate the quality performance of the reconstructed full-color

videos by the concerned RDH methods. The MOVIE index can be used to calculate the spatial and temporal distortion

with respect to the reconstructed full-color video and the original full-color video. The reconstructed and original full-

color videos are decomposed using spatio-temporal Gabor filters. The spatial distortion for expressing the image quality

and the temporal distortion for expressing the motion quality are measured separately, and then are combined to obtain

an overall assessment score as the MOVIE index. A lower MOVIE index means a better video quality of the reconstructed

full-color video. In Table 9 , under the embedding capacity with 0.7 bpp, the proposed RDH method does show the sub-

stantial video quality improvement of the reconstructed full-color videos, and the MOVIE index improvement ratio is 36%

( = (0.0 0 0255 −0.0 0 0163) / 0.0 0 0255). 
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Fig. 10. The second visual effect comparison for the reconstructed full-color marked images for “Akiyo” (Bayer CFA, embedding capacity 0.7 bpp): (a) the 

original image; (b) the magnified sub-image of the original image; (c) the magnified sub-image of the reconstructed full-color marked image by Yang 

et al.’s method; (d) the magnified sub-image of the reconstructed full-color marked image by the proposed method. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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4.3. Quality assessment discussion on vertical stripe and bayer CFA patterns 

From the above quality assessments, we find that the vertical stripe CFA usually obtains the best PSNR and SSIM perfor-

mance for the marked CFA images while the Bayer CFA wins, in terms of CPSNR and MOVIE, for the reconstructed full-color

images and videos, respectively. To investigate this phenomenon, we first examine the error prediction scheme for the two

CFA structures and find that the vertical stripe CFA generally yields smaller prediction errors than the Bayer CFA in average.

However, the vertical stripe CFA sometimes obtains very high prediction errors, for example, when it meets slanted lines

in images. On the other hand, the Bayer CFA refers to more pixels at various locations in error prediction, so its prediction

errors may be a little higher but less variant. The characteristics thus make the two CFA structures having distinguishing

performances in data hiding and demosaicking. In data hiding, it embeds data in partial image pixels with small prediction

errors (i.e., smaller than θ err ). On the contrary, demosaicking employs all image pixels despite their prediction errors. This

is why the vertical stripe CFA behaves better in data hiding, and the Bayer CFA outperforms in demosaicking. 

4.4. PSNR vs. embedding capacity comparison among the proposed RDH method and the related five methods for Bayer CFA 

structure 

Besides Yang et al.’s RDH method [33] , the other four RDH methods [6 , 22 , 26 , 27] are included to compare the proposed

RDH method. Although the four RDH methods are originally designed to deal with gray images, we have made some modi-

fication so that they can tackle the Bayer CFA images. We partition each image of the Bayer CFA video into four color planes,

the R (including R 0 and R 1 ) plane, B (including B 0 and B 1 ) plane, G 0 plane, and G 1 plane. The concerned comparative meth-

ods are applied to each color plane individually, and then the four marked color planes are combined to generate a whole

marked mosaic image. Table 10 lists the average PSNRs of eight Bayer CFA test videos among the concerned RDH methods,

showing the proposed method has the best average PSNR performance when compared with the other RDH methods. 

4.5. Visual effect comparison of reconstructed full-color marked images 

A subjective evaluation is also carried out to demonstrate the visual superiority of the proposed method. Fig. 9 gives

the first visual example of the reconstructed full-color marked images, i.e. the demosaicked marked images, by Yang et al.’s

method and the proposed method under the embedding capacity 0.7 bpp. Fig. 9 (b) illustrates the magnified one of the sub-

image highlighted by a red rectangle in Fig. 9 (a), and the corresponding reconstructed full-color sub-image by Yang et al.’s

method and the proposed method are shown in Fig. 9 (c) and (d), respectively. The regions marked by red ellipses in Fig.

9 (c) and (d) reveal that the proposed method displays fewer color artifacts than those of Yang et al.’s method. In other

words, the proposed method can achieve better visual quality and its reconstructed full-color marked image is closer to the

original image. For Fig. 10 , the proposed method has the same visual benefits. The readers are suggested to refer to the

related experiment results [28] . 

5. Conclusion 

In this paper, we have presented the proposed novel RDH method combining spatial prediction and temporal prediction

for mosaic videos with eleven CFA structures. Based on eight training CFA videos, a suitable threshold θ SAD is determined

and is used as a switch to intellectually select the temporal correlation-based prediction scheme or the spatial correlation-

based prediction scheme in the proposed RDH method. Experimental results show that the proposed method has significant

objective and subjective quality improvement on the marked CFA images and on the reconstructed full-color marked videos

when compared with the spatial correlation-based method. In addition, based on eight test Bayer CFA videos, the proposed

RDH method is clearly superior to five related RDH methods. One future research issue is to dynamically determine an

optimal θ SAD for each test mosaic video. Another future research issue is to extend the results of this paper to other CFA

structures with four color channels, such as Sony RGBW CFA [25] , Kodak CFA [8] , and Hirakawa CFA [11] . The other research

issue is to apply the feature selection mechanisms [15 , 16] to identify the smooth areas and the textural areas in the mosaic

image to assist the RDH method for increasing the quality improvement. 
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