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A b s t r a c t - - I n  this paper, a block representation for products of hyperbolic Householder transform, 
which is rich in matrix-matrix multiplications, is presented. Not only the representation is derived 
by a rather  straightforward way, but  it also extends the previous results [1,2] to the complex domain. 
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1. I N T R O D U C T I O N  

The Householder transform [3] is very useful in matrix computations and signal processing [4]. 
In order to increase the performance of the Householder transform for QR factorization on vector 
supercomputers like CRAY series, Bischof and Van Loan [5] presented the first block Householder 
transform in terms of W Y  representation, which is rich in matrix-matrix multiplications, i.e., 
BLAS 3 operation [6]. Later, Schreiber and Van Loan [1] proposed a compact W Y  representation. 
Puglisi [2] presented an improved algorithm for involving more BLAS 3 operations based on the 
Woodbury-Morrison formula. We refer the reader to [7,8] for numerical behaviors of the compact 
representation. 

In this paper, a block representation for products of hyperbolic Householder transform, which 
is rich in matrix-matrix multiplications, is presented. Not only the representation is derived by a 
rather straightforward way instead of using the Woodbury-Morrison formula, but it also extends 
the previous results [1,2] to the complex domain. 
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In Section 2, we first introduce the form for the complex Householder transform by Chung 

and Yan [9], then propose an alternative form and this form will be used to derive the block 

representation for the hyperbolic Householder transform. 

2. T H E  C O M P L E X  H O U S E H O L D E R  T R A N S F O R M  

In [10], the complex Hermitian transform has been developed. Recently, Venkaial, Krishna, 

and Paulraj [11] also extended the real Householder transform [3] to the complex domain C n. 
They first guessed the transform H being H = I - (1 + (a*z/z*a))(zz*/z*z),  where a, b 6 C n 

and z = a - b, then it was verified that H a  = b and H is unitary. Later, Xia and Suter [12] 
proved the necessary part of the Householder transform [11]. If a*a ~ a ' b ,  they first guessed that 

H - I -  (1 +y) (zz* /z*z) ,  where y is a complex number, then it was shown that y = - ( z ' b / z ' a ) .  

In the work of Chung and Yah [9], a complex Householder transform, H = I - (zz*/z*a),  

is given. This transform still satisfies the requirements H a  = b and H is unitary. Specifically, 
the transform is shown by a straightforward derivation although the two forms in [11,12] can 
be simplified to I - (zz*/z*a). Let • be a diagonal matrix with diagonal entries +1 and -1 .  

Suppose it satisfies a*4ba = b*(I)b and (I)a ~ b, where a, b c C n. In the hyperbolic Householder 

transform [13,14], we want to find a hypernormal matrix H such that  H a  = b and H * ~ H  = ~ .  

According to the derivation in [9], we obtain 

H = / t ( a ,  b) = (I) - zz____~* where z = (I)a - b. 
z * a '  

Note that  the above hyperbolic Householder transform is equal to the complex Householder 

transform when (I) = I.  
For deriving the block representation of the hyperbolic Householder transform, we use an 

alternative form, H = (I)//(a, (I)b) = I - (I)wtw*, for hyperbolic Householder transform, where 

w -- (I)a - (I)b and t = ( 1 / w ' a ) .  This alternative form also satisfies H a  -- b and H * ( P H  = (~ (see 

the Appendix). 

3. T H E  B L O C K  H Y P E R B O L I C  H O U S E H O L D E R  T R A N S F O R M  

As what follows, some notations follow those used in [4]. Suppose Q m  = H 1 H 2 . . .  H m  is a 
product of these m (< n) alternative n × n hyperbolic Householder matrices as described in 

t - 1  • Section 2. Let Q m  = I - ~ 2 Y m T m Y *  and H m + l  -=- I - tgyra+l ra+lYm+l, where Yra is a n x m 
matrix, Tra is a m x m matrix, yra+l = ~am+l - 4)bra+l (a~+l(I)am+l -- b ~ + l ~ b m + l  and 

• a , ara+l ~ bin+l), and t m + l  = Ym+l m+l The derivation to the block representation of Q m H r a + l  

is shown as follows. 
Let Q m + l  = Q m H m + l ,  then we have 

Q m + l  ( I  ~ Y , ~ T m Y m ) ( I  -1  * = - - ( ~ y r a + l t m + l y m + l )  = I - ~ E ,  (1) 

where E Y r a T m Y ~  - 1  , = + Y m + l t m + l Y m +  1 -- Y m T m Y m f f 2 Y m + l t m l + l Y ~ n + l  . Since the leftmost side of 
each term of E is Y,~ or ym+l; the rightmost side of each term of E is Y,~ or Ym+l, we let 

E = rm+lTm+lrm+l ,  

where 

Ym+1 = ( Y m  Ym+l) and T i n + l =  C 

Hence,  we have 

Y, * + y m + l C Y  m + D * Y m + l T m + l Y m + 1  = Y m A Y ~ n  + m B Y m + l  Ym+l Ym+l 

t - 1  . • y ,  . . . .  ~ t - 1  • = Y m T m Y m  + Ym+l ,~+lYm+l - mlmZ,~ Ym+l re+lYre+l, 

(2) 
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-1 where A = Tin, B = - T m Y ~ t m l l y m + 1 ,  C = 0, and D = t,~+l. It  follows tha t  

Tm+I = (To m -TmY~nOt~l+lYm+lt~n1+l ) "  

By (1)-(3), we have 

Q m + l  = I - ~ Y m + I T m + I Y * + I .  

Equat ion  (4) extends the previous result [1] to the complex domain.  

By  induction,  we have Qk = I - ~YkTkY~ for k = 1, 2 . . . .  , where 

Yk = ( Yl Y2 "'" Yk ), 

Tk = ( T ; - 1  --Tk-lYt~_l~t-~lYk~tk 1 ] , 

and T1 = t~ -1. By  (3), we also have 

( r ~  1 " ) 
rm~_ 1 -- gm (I)ym+ 1 . 

l~rn+l 

Let Sk = Tk -1 for k = 1 , 2 . . . ,  then it follows tha t  Qk = I - ~YkS[IY~,  where 

( S k - 1  Y£*_ 1 (I)yk)  with $1 = t l .  Sk = T~ -1 = 0 tk ' 

Now we consider sk,,j, the ij  ent ry  of Sk, by (5), it is given by 

Sk,i3 ~- S j , i j  = y~(I)ya, 1 < i < j <_ k, 

S k , i j  -~ S i , i j  ---- O, 1 < j < i <_ k, 

8k,i i  -~ Si,ii  z ti" 

That is, we have 

(3) 

(4) 

(5) 

A P P E N D I X  

w * a  + a*w = ((I)(a - b ) )*a  + a * ( ~ ( a  - b))  = a*(I)a - b*(I)a + a* (I)a - a*(I)b, 

w * ~ w  = ( ~ ( a -  b ) ) * ~ ( ~ ( a -  b))  = ( a -  b ) * ~ ( a -  b)  

= a * ~ a -  a * ~ b  - b * ~ a  + b * ~ b  

w * a  + a*W - w*(I)w = a*(I)a - b*(I)b = 0, 

it yields to 

( ) . (  ww., ( 
H * ( I ) H  I • w w *  (I) I = (I) - + - -  

1 
-- - - ( I ) j  

w*a w * a ]  
w * a + a * w -  * w 

= (I) - w (I) w w *  = (I). 
(w*a) (a*w)  

Finally, H a  = b can be verified as follows: 

H a =  ( / - ( I ) W W * )  a = a - ( I ) w = a - ( a - b ) = b ' w * a  

1 w* (I)w ) 
w * a  ( w ' a )  ( a ' w )  ww* 

and 

From 

Sk = d i a g ( t l , t 2 , . . . , t k )  + Ak, 

*(15 where Ak = [aij] and aij = Yi y j  for 1 < i < j < k; a i j  = 0 otherwise. The  above block 
representat ion,  Qk = I - gpYkS[lY~, is the same as the one [2] when (I) = I .  On the other  hand, 

our block representat ion also extends the previous result [2] to the complex domain.  
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