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We show how to transform the B-splhre surface fitting problem 
into suffix computations of continued fractions. Then a parallel 
substitution scheme is used to compute the suffix values on a 
newly proposed mesh-of-unshuffle network. The derived parallel 
algorithm allows the surface interpolation at m x n points to be 
solved in O(log m log n) time using O(mnl(log m log n)) proces- 
sors. The algorithm is cost-optimal in the sense that number of 
processors times execution time is minimized. The problem can be 
even more quickly solved in O(log m + log n) time if @(mn) 
processors are used in the network. o 1991 Academic press, I~C. 

1. INTRODUCTION 

The task of surface fitting is to construct a smooth 
surface that fits a given set of m x n points in the space. 
Surface fitting is important in graphics, image processing, 
pattern recognition, and computer-aided geometric de- 
sign [ 1, 3, 61. B-spline surface interpolation is a good 
fitting tool because a local shape change of the surface 
affects only its vicinity. Some sequential methods for effi- 
cient surface interpolation in O(mn) time using B-splines 
have been proposed 121. Recently, on the basis of the 
cyclic reduction technique, Cheng and Goshtasby [4] pre- 
sented a parallel algorithm to do B-spline surface fitting in 
O(log mn) time using O(mn) processors. However, their 
computation model is rather abstract; no configuration of 
processors’ network was specified. 

In this paper, we convert the B-spline surface fitting 
problem into suffix computations of continued fractions 
that correspond to some tridiagonal systems of linear 
equations. Then, a substitution scheme for computing the 
suffix values on a newly proposed mesh-of-unshuffle net- 
work is introduced. The parallel algorithm so derived al- 
lows the surface fitting problem to be solved in @log m 
log n) time using O(mnl(log m log n)) processors. It 
achieves cost optimality in the sense that number of pro- 
cessors times execution time is minimized. Moreover, if 
O(mn) processors are used in the network, the problem 
can be more quickly solved in @log m + log n) time. 

2. PRELIMINARIES 

Suppose we are given the set of points (i, j, Ti,i), 1 I i 
5 m, 1 5 j 5 n. The uniform bicubic B-spline surface for 
interpolating the points consists of (m - 1) x (n - 1) 
patches Ti,Ju, u), 1 5 i 5 m - 1, 1 I j I n - 1. Each is 
defined by a bicubic polynomial, 

Ti,j(U, U) = &[U3, U2, Lb!, 1]NOi,jN’[U3, U2, UT I]‘, 

in which 
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Wi-Ij+2 
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Wi+lj+2 ’ 
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Wi,j, 0 I i 5 m + 1, 0 5 j 5 n + 1, are the control points 
of the surface to be determined. 

According to [2], the corner points of the patches can 
be expressed by a weighted average of the control points: 

TiJ = &(Wj-Ii-1 + 4Wi,j-1 + Wi+l.j-I 

+ 4Wi-,,j + 16Wi,j + 4Wi+ij 

+ W;-lj+l + 4Wi,j+l + Wi+l,j+l> 

for1 sism, 15jZ.. 

They form a system of mn equations in (m + 2)(n + 2) 
unknowns. In order to completely solve the system, we 
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need the following (m + 2)(n + 2) - my1 = 2(m + n + 2) 
additional equations to specify how the boundary points 
are interpolated: 

Wo,j = Wl,j; Wm+Jj = Wm,j, 1 5 j 5 ?Z; 

Wi,O = Wi,l ; Wi,n+l = Wi,,yOSiSm+ 1. 

By [3], the above system of equations can be equivalently 
transformed into 

Wl,i 

W2,i 

B 1: mxm * 

W m,l 

1 Hi,1 

B 

I =6 

= 6 

for i = 1, 2, . . . , n, (2.1) 

\Hm,i/ 
Ti,l \ Ti,2 
d fori= 1,2,. . . , m, 

where the matrices B,,, and B,,, are of the form 

510**0 
1410.0 
0141.0 
.o.. . . . 
. . * . * 0 
e.0141 

#O * ’ 0 1 5 I 

(2.2) 

Therefore, B-spline surface interpolation becomes a two- 
part process, namely, solving the m tridiagonal systems 
in (2.2) for H,,, first and then solving the 12 tridiagonal 
systems in (2.1) for W,,,. 

3. TRANSFORMATIONS TO CONTINUED FRACTIONS 

Consider a tridiagonal system of linear equations: 

dlxl + elx2 = bl, 

CiXi-1 + diXi + eiXi+l = bi for i = 2, 3, . . . , n - 1, 

c,x,-~ + d,,x, = b,. 

Fork = 2,3,. . . , 12 - 1, we may eliminate xk- 1 from the 
kth equation and get 

dixk + ekxk+l = bi, 

where 

d; = dk - Ckek-lIdi- (3.1) 

and 

b; = bk - ckb~-,/d~-,. 

During the back-substitution, we first have 

b:, x, = 7 
6, 

and then 

bi, - ekXk+l 
xk = 

d; 

(3.2) 

(3.3) 

fork=n- l,n-2,. . . ,l. 
The three recurrences in (3. I), (3.2), and (3.3) can be 

further transformed into suffix computations of contin- 
ued fractions (CFs). Let us represent the CF 

PI + 
q2 

P2 + 
q3 

. . . 

Pn-1 + $ 

in a more compact form: 

q2 q3 qn 
PI+--“‘--- 

p2+ P3+ Pn’ 

From (3. l), dl, can be expanded into a CF: 

We may assume that n is a power of 2; otherwise, pad d; 
with a special CF, 

00 0 --. . .- 
1+ 1-t 1’ 

to enlarge II without altering the computation results. 
Our goal is to speed up the computing of all d;, k = 
1) 2, . . . ) n. 

Let the rational form (Q + r2dL)l(r3 + r4di) be repre- 
sented by (r,, r2, r3, r4, db). The CF of, say, di can be 
decomposed into eight sub-CFs: 

dh = d8 + ?$ = (-cse7, dg, 0, 1, d$), 

d; = d7 + y = (-c7e6, 4, 0, 1, 4, 
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d; = d2 + F = (-cm, 4, 0, 1, 41, 
I 

d;=d,= (dt, 1 + djl 0, 1, 1, 4). 

The variable d/, will be replaced by zero after all the sub- 
stitutions are completed. 

Since substituting d: = (si + s2djl)l(sJ + sqdjl) into (t-1 + 
r2dl)I(r3 + rddl) gives ((r,sj + r2sJ + (rls4 + r&dj)l 
((rJs3 + r4s1) + (r3s4 + r4s2)djl), the substitution operation 
should be defined as 

(rt, r2, t-3, r4, 4) 0 61, ~2, 33, $4, dj’) 

= (rIs3 + r2s1, r1s4 + r2s2, r3s3 + r+sl, r3s4 + r4s2, dj’). 

This operation can be verified to be associative. 
Due to the associativity of the substitution operation, 

we can use the overlaid tree network shown in Fig. 3.1 to 
compute all the suffix values of dh. The variables are not 
real data and hence are omitted there. The white nodes 
are used for transmitting data only. The black nodes per- 
form the substitution operation. There are log IZ + 2 
stages in this network, meaning that the computation 
time is only O(log n). If each node is implemented by a 
processor, the number of processors is as large as O(n log 
n), which is to be ultimately reduced to @(n/log n) later. 

Now for the computation of bi, in (3.2), the CF for, say, 
bJlb$, is given by 

(-cse,,ds,Kl) 

(-ce 7 61 d 79 01) 9 

(-c.ses,de,O, 1) 

(-ce 5 41 d 51 01) 3 

( -c4e3, d4, O,l) 

( -c3ez, dn, 0, 1) 

(-c~el,dt,O,l) 

( dl, %Ll) 

( 5 , r2 , 5 , ‘i ) 

* 
( rlt r2,4, 5 1 0 (sly s2, s3, sq) 

(s,,s*,s3,s4) = (rls3+r2s,,rIs4+r2s2,r3s3+r4sl,r3s4+r4s2) 

(tl,t*,h,t4) --@-- tilt, 

FIG. 3.1. The overlaid tree network for computing suffix values 
of di. 

x = 3 = h - (cdd;)b; b4 
4 

b; b; 
= (-c41d;) + - 

b; . 

When x is of the form rl + rJr3, we define N(x) to be the 
value rlr3 + r2. The sub-CFs for the above CF can be 
written as 

X4 = -c41d; + 
b4 

NW31 ’ 

h 
X3 = -c&l + N(X2), 

h 
X2 = -czld; + N(x,), 

x, = bl 
1 + N(X,J’ 

where N(X,J = 0, N(Xi) = b,, and b,f = -(cj/di-I)bf-l + 
bi = N(Xi) for all i. The substitution operation for this 
case is defined as 

h, r2, r3, r4, NWJ) 0 (~1, ~2, ~3, ~4, NWj)) 

= (rl + ml, rm, r3 + r4s1, rm. N(Xj)). 

This operation is associative, too. The problem of solving 
the recurrence equation in (3.2) becomes the suffix com- 
putations of X,, and the network in Fig. 3.1 can be used 
again. 

Similarly, from (3.3), the sub-CFs for, say, x,-3/x,-2, 

are given by 

Yn-3 = -e,_3/dA-3 + “-3’d’-3 
MY,-2) ’ 

Yn-2 = -e,-2/dA-2 + “-2’d’-2 
N(Y,-i) ’ 

where N( Y,+ 1) = 0, and Xi = N( Yi) for all i. SO the prob- 
lem of solving the recurrence equation in (3.3) becomes 
the suffix computations of Yi. 

4. THREE-PHASE ALGORITHM ON 
UNSHUFFLE NETWORK 

It is well known that an unshuffle network of n proces- 
sors can simulate the overlaid tree network with 12 inputs 
with the same time complexity [7, 91. In the following, a 
modified three-phase algorithm is proposed to reduce the 
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FIG. 4.1. The unshuffle network with local memories. 

number of processors further. To save space, we only 
discuss the suffix computations of d;. By adapting appro- 
priate operations in the processors, the suffix computa- 
tions of X, and Yr can also be performed on the same 
network with the same time complexity. 

We start with an unshuffle network of k (in) proces- 
sors. Attach to each processor a serial memory [8], which 
consists of a linearly connected array of n/k memory 
cells, as depicted in Fig. 4.1 for n = 8 and k = 4. In each 
execution cycle, the attached memories rotate all their 
data one position, Pi executes on the data shifted in. 
Algorithm 4.1 describes how the network works. Ini- 
tially, n input data (quadruples) are evenly divided into k 
pipes to be separately stored in the local memories. 

Algorithm 4.1 

Phase I (Local Suffix Computations), Each Pi se- 
quentially computes n/k suffix values from its corre- 
sponding pipe of data and stores them in its local mem- 
ory, Register Qi in Pi has the final rational form computed 
from the pipe of data and transmits it to register Ri in Si. 

Phase 2 (Global Suffix Computations). By using the 
unshuffle routing mechanism, all the processors work 
together on the data in Ri’s for suffix computations. After 
log k steps, register Ri holds the rational form of d[i+l)nlk, 
OSiSk- 1. 

Phase 3 (Final Adaptations). Each Pi except PO re- 
ceives the rational form from Si-1 and sequentially modi- 
fies the suffix values calculated in phase 1 by substituting 
them into the received rational form. 

Both phase 1 and phase 3 need n/k steps. Phase 2 needs 
log k steps. So the three-phase algorithm takes O(nlk + 
log k) time to finish computing all the suffix values of d;. 
For the subsequent parts of computation, namely, com- 
puting the suffix values of X, and Yi, the algorithm works 
equally well if we properly adjust the substitution opera- 
tions in the processors, Preparing the input data from one 

part of computation to another takes O(nlk) time, where 
n/k is the size of each data pipe. So we have the following 
lemma. 

LEMMA 5.1. A tridiagonal system can be solved in 
O(nlk + log k) time on an unshuffie network of k proces- 
sors. 

5. COST OPTIMALITY 

The performance of a parallel algorithm can be mea- 
sured by Cost = Number of Processors x Execution 
Time. Given a problem, if the cost of a parallel algorithm 
matches the sequential time lower bound within a con- 
stant factor, the parallel algorithm is said to be cost opti- 
mal. In the case of solving a tridiagonal system, since 
there are n values to be computed, the sequential time 
lower bound is clearly n(n). Likewise, the sequential 
time lower bound for B-spline surface fitting is fi(mn). 

If we select k = @(n/log n) in Lemma 5.1, we have the 
following theorem. 

THEOREM 5.2. A tridiagonal system can be solved in 
O(log n) time on an unshuffle network of @(n/log n) pro- 
cessors. 

We now propose a mesh-of-unshuffle network to 
achieve the cost optimality for B-spline surface fitting. 
The network, as shown in Fig. 5.1, consists of a mesh of 
processors in which all the rows and columns are unshuf- 
fle networks. A tridiagonal system in (2.2) can be solved 
in O(log n) time on a row of processors. Since there are m 
tridiagonal systems, we need to use m rows in parallel. If 
we compact @(log m) rows into one, each processor has a 
local memory of size @(log n log m). The time to solve 
(2.2) becomes O(log m log n). We then use the @(n/log n) 
columns of the mesh to solve the n tridiagonal systems in 
(2.1) in O(log n log m) time. 

*““fi M- M !) 

P(2,O) 
“I 

P(U) P(V) 

P(3,O) P(3,l) P(3,2) P(3,3) 

FIG. 5.1. The mesh-of-unshuffle network. 
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THEOREM 5.3. The B-spline surface jitting problem associativity of the substitution operation not only brings 
can be cost-optimally solved in @log m log n) time on a out the parallelism for the computation naturally, but also 
mesh-of-unshuffle network of O(mnllog m log n)) proces- supplies the idea of three-phase computation to reduce 
SOYS. the number of processors. Finally, we conjecture that the 

Suppose we increase the number of processors from 
B-spline surface fitting problem may be solved in O(log m 
I 

O(mnl(log m log n)) to O(mn) and decrease the size of 
each local memory from @(log m log n) to O(1). By simi- 
lar arguments, (2.2) can be solved in O(log n) time and 
(2.1) can be solved in O(log m) time. 

log n) time using O(nml(log m + log n)) processors. 

THEOREM 5.4. The B-spline surface fitting problem 
can be solved in O(log m + log n) time on a mesh-of- 
unshufje network with O(mn) processors. 

6. CONCLUDING REMARKS 

The parallel substitution scheme was originally pre- 
sented in [5] for the parallel computation of general CFs. 
In this paper, we first transform the B-spline surface fit- 
ting problem into tridiagonal systems of linear equations. 
Each tridiagonal system is then transformed into three 
recurrence equations. The recursive-doubling method [9] 
is an alternative approach to solving these equations 
through a rather tricky divide-and-conquer reformulation 
of the recurrences into ones with two indices. Our ap- 
proach is simply to do the recurrences’ CF expansions 
and apply the straightforward substitution concept. The 
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