
CVCIP: GRAPHICAL MODELS AND IMAGE PROCESSING

Vol. 53. No. 6, November, pp. 601-605, 1991

NOTE

A Cost-Optimal Parallel Algorithm for B-Spline Surface Fitting

KUO-LIANG CHUNG AND FERNG-CHING LIN

Department of Computer Science and Information Engineering, National Taiwan University,
Taipei, Taiwan 10764, Republic of China

Received December 28, 1989: accepted May 6, 1991

We show how to transform the B-splhre surface fitting problem
into suffix computations of continued fractions. Then a parallel
substitution scheme is used to compute the suffix values on a
newly proposed mesh-of-unshuffle network. The derived parallel
algorithm allows the surface interpolation at m x n points to be
solved in O(log m log n) time using O(mnl(log m log n)) proces-
sors. The algorithm is cost-optimal in the sense that number of
processors times execution time is minimized. The problem can be
even more quickly solved in O(log m + log n) time if @(mn)
processors are used in the network. o 1991 Academic press, I~C.

1. INTRODUCTION

The task of surface fitting is to construct a smooth
surface that fits a given set of m x n points in the space.
Surface fitting is important in graphics, image processing,
pattern recognition, and computer-aided geometric de-
sign [1, 3, 61. B-spline surface interpolation is a good
fitting tool because a local shape change of the surface
affects only its vicinity. Some sequential methods for effi-
cient surface interpolation in O(mn) time using B-splines
have been proposed 121. Recently, on the basis of the
cyclic reduction technique, Cheng and Goshtasby [4] pre-
sented a parallel algorithm to do B-spline surface fitting in
O(log mn) time using O(mn) processors. However, their
computation model is rather abstract; no configuration of
processors’ network was specified.

In this paper, we convert the B-spline surface fitting
problem into suffix computations of continued fractions
that correspond to some tridiagonal systems of linear
equations. Then, a substitution scheme for computing the
suffix values on a newly proposed mesh-of-unshuffle net-
work is introduced. The parallel algorithm so derived al-
lows the surface fitting problem to be solved in @log m
log n) time using O(mnl(log m log n)) processors. It
achieves cost optimality in the sense that number of pro-
cessors times execution time is minimized. Moreover, if
O(mn) processors are used in the network, the problem
can be more quickly solved in @log m + log n) time.

2. PRELIMINARIES

Suppose we are given the set of points (i, j, Ti,i), 1 I i
5 m, 1 5 j 5 n. The uniform bicubic B-spline surface for
interpolating the points consists of (m - 1) x (n - 1)
patches Ti,Ju, u), 1 5 i 5 m - 1, 1 I j I n - 1. Each is
defined by a bicubic polynomial,

Ti,j(U, U) = &[U3, U2, Lb!, 1]NOi,jN’[U3, U2, UT I]‘,

in which

-1 3 -3 1

3-6 30
N=

-3 0 30

14 10

and

I Wi-I,j-1 Wi-1,j Wi-I,j+l

Oij =

i

wi,j- I Wi,j W&j+ 1

Wi+lj-I Wi+Ij Wi+I,j+l

wi+2,j-I Wi+Z,j wi+2,j+l

Wi-Ij+2

Wi,j+Z

Wi+lj+2 ’

wi+2,j+2 I

Wi,j, 0 I i 5 m + 1, 0 5 j 5 n + 1, are the control points
of the surface to be determined.

According to [2], the corner points of the patches can
be expressed by a weighted average of the control points:

TiJ = &(Wj-Ii-1 + 4Wi,j-1 + Wi+l.j-I

+ 4Wi-,,j + 16Wi,j + 4Wi+ij

+ W;-lj+l + 4Wi,j+l + Wi+l,j+l>

for1 sism, 15jZ..

They form a system of mn equations in (m + 2)(n + 2)
unknowns. In order to completely solve the system, we

60 I

Copyright 0 1991 by Academic Press. Inc.
All rights of reproduction in any form reserved.

602 CHUNG AND LIN

need the following (m + 2)(n + 2) - my1 = 2(m + n + 2)
additional equations to specify how the boundary points
are interpolated:

Wo,j = Wl,j; Wm+Jj = Wm,j, 1 5 j 5 ?Z;

Wi,O = Wi,l ; Wi,n+l = Wi,,yOSiSm+ 1.

By [3], the above system of equations can be equivalently
transformed into

Wl,i

W2,i

B 1: mxm *

W m,l

1 Hi,1

B

I =6

= 6

for i = 1, 2, . . . , n, (2.1)

\Hm,i/
Ti,l \ Ti,2
d fori= 1,2,. . . , m,

where the matrices B,,, and B,,, are of the form

510**0
1410.0
0141.0
.o.. . . .
. . * . * 0
e.0141

#O * ’ 0 1 5 I

(2.2)

Therefore, B-spline surface interpolation becomes a two-
part process, namely, solving the m tridiagonal systems
in (2.2) for H,,, first and then solving the 12 tridiagonal
systems in (2.1) for W,,,.

3. TRANSFORMATIONS TO CONTINUED FRACTIONS

Consider a tridiagonal system of linear equations:

dlxl + elx2 = bl,

CiXi-1 + diXi + eiXi+l = bi for i = 2, 3, . . . , n - 1,

c,x,-~ + d,,x, = b,.

Fork = 2,3,. . . , 12 - 1, we may eliminate xk- 1 from the
kth equation and get

dixk + ekxk+l = bi,

where

d; = dk - Ckek-lIdi- (3.1)

and

b; = bk - ckb~-,/d~-,.

During the back-substitution, we first have

b:, x, = 7
6,

and then

bi, - ekXk+l
xk =

d;

(3.2)

(3.3)

fork=n- l,n-2,. . . ,l.
The three recurrences in (3. I), (3.2), and (3.3) can be

further transformed into suffix computations of contin-
ued fractions (CFs). Let us represent the CF

PI +
q2

P2 +
q3

. . .

Pn-1 + $

in a more compact form:

q2 q3 qn
PI+--“‘---

p2+ P3+ Pn’

From (3. l), dl, can be expanded into a CF:

We may assume that n is a power of 2; otherwise, pad d;
with a special CF,

00 0 --. . .-
1+ 1-t 1’

to enlarge II without altering the computation results.
Our goal is to speed up the computing of all d;, k =
1) 2, . . .) n.

Let the rational form (Q + r2dL)l(r3 + r4di) be repre-
sented by (r,, r2, r3, r4, db). The CF of, say, di can be
decomposed into eight sub-CFs:

dh = d8 + ?$ = (-cse7, dg, 0, 1, d$),

d; = d7 + y = (-c7e6, 4, 0, 1, 4,

ALGORITHM FOR B-SPLINE SURFACE FITTING 603

d; = d2 + F = (-cm, 4, 0, 1, 41,
I

d;=d,= (dt, 1 + djl 0, 1, 1, 4).

The variable d/, will be replaced by zero after all the sub-
stitutions are completed.

Since substituting d: = (si + s2djl)l(sJ + sqdjl) into (t-1 +
r2dl)I(r3 + rddl) gives ((r,sj + r2sJ + (rls4 + r&dj)l
((rJs3 + r4s1) + (r3s4 + r4s2)djl), the substitution operation
should be defined as

(rt, r2, t-3, r4, 4) 0 61, ~2, 33, $4, dj’)

= (rIs3 + r2s1, r1s4 + r2s2, r3s3 + r+sl, r3s4 + r4s2, dj’).

This operation can be verified to be associative.
Due to the associativity of the substitution operation,

we can use the overlaid tree network shown in Fig. 3.1 to
compute all the suffix values of dh. The variables are not
real data and hence are omitted there. The white nodes
are used for transmitting data only. The black nodes per-
form the substitution operation. There are log IZ + 2
stages in this network, meaning that the computation
time is only O(log n). If each node is implemented by a
processor, the number of processors is as large as O(n log
n), which is to be ultimately reduced to @(n/log n) later.

Now for the computation of bi, in (3.2), the CF for, say,
bJlb$, is given by

(-cse,,ds,Kl)

(-ce 7 61 d 79 01) 9

(-c.ses,de,O, 1)

(-ce 5 41 d 51 01) 3

(-c4e3, d4, O,l)

(-c3ez, dn, 0, 1)

(-c~el,dt,O,l)

(dl, %Ll)

(5 , r2 , 5 , ‘i)

*
(rlt r2,4, 5 1 0 (sly s2, s3, sq)

(s,,s*,s3,s4) = (rls3+r2s,,rIs4+r2s2,r3s3+r4sl,r3s4+r4s2)

(tl,t*,h,t4) --@-- tilt,

FIG. 3.1. The overlaid tree network for computing suffix values
of di.

x = 3 = h - (cdd;)b; b4
4

b; b;
= (-c41d;) + -

b; .

When x is of the form rl + rJr3, we define N(x) to be the
value rlr3 + r2. The sub-CFs for the above CF can be
written as

X4 = -c41d; +
b4

NW31 ’

h
X3 = -c&l + N(X2),

h
X2 = -czld; + N(x,),

x, = bl
1 + N(X,J’

where N(X,J = 0, N(Xi) = b,, and b,f = -(cj/di-I)bf-l +
bi = N(Xi) for all i. The substitution operation for this
case is defined as

h, r2, r3, r4, NWJ) 0 (~1, ~2, ~3, ~4, NWj))

= (rl + ml, rm, r3 + r4s1, rm. N(Xj)).

This operation is associative, too. The problem of solving
the recurrence equation in (3.2) becomes the suffix com-
putations of X,, and the network in Fig. 3.1 can be used
again.

Similarly, from (3.3), the sub-CFs for, say, x,-3/x,-2,

are given by

Yn-3 = -e,_3/dA-3 + “-3’d’-3
MY,-2) ’

Yn-2 = -e,-2/dA-2 + “-2’d’-2
N(Y,-i) ’

where N(Y,+ 1) = 0, and Xi = N(Yi) for all i. SO the prob-
lem of solving the recurrence equation in (3.3) becomes
the suffix computations of Yi.

4. THREE-PHASE ALGORITHM ON
UNSHUFFLE NETWORK

It is well known that an unshuffle network of n proces-
sors can simulate the overlaid tree network with 12 inputs
with the same time complexity [7, 91. In the following, a
modified three-phase algorithm is proposed to reduce the

604 CHUNG AND LIN

FIG. 4.1. The unshuffle network with local memories.

number of processors further. To save space, we only
discuss the suffix computations of d;. By adapting appro-
priate operations in the processors, the suffix computa-
tions of X, and Yr can also be performed on the same
network with the same time complexity.

We start with an unshuffle network of k (in) proces-
sors. Attach to each processor a serial memory [8], which
consists of a linearly connected array of n/k memory
cells, as depicted in Fig. 4.1 for n = 8 and k = 4. In each
execution cycle, the attached memories rotate all their
data one position, Pi executes on the data shifted in.
Algorithm 4.1 describes how the network works. Ini-
tially, n input data (quadruples) are evenly divided into k
pipes to be separately stored in the local memories.

Algorithm 4.1

Phase I (Local Suffix Computations), Each Pi se-
quentially computes n/k suffix values from its corre-
sponding pipe of data and stores them in its local mem-
ory, Register Qi in Pi has the final rational form computed
from the pipe of data and transmits it to register Ri in Si.

Phase 2 (Global Suffix Computations). By using the
unshuffle routing mechanism, all the processors work
together on the data in Ri’s for suffix computations. After
log k steps, register Ri holds the rational form of d[i+l)nlk,
OSiSk- 1.

Phase 3 (Final Adaptations). Each Pi except PO re-
ceives the rational form from Si-1 and sequentially modi-
fies the suffix values calculated in phase 1 by substituting
them into the received rational form.

Both phase 1 and phase 3 need n/k steps. Phase 2 needs
log k steps. So the three-phase algorithm takes O(nlk +
log k) time to finish computing all the suffix values of d;.
For the subsequent parts of computation, namely, com-
puting the suffix values of X, and Yi, the algorithm works
equally well if we properly adjust the substitution opera-
tions in the processors, Preparing the input data from one

part of computation to another takes O(nlk) time, where
n/k is the size of each data pipe. So we have the following
lemma.

LEMMA 5.1. A tridiagonal system can be solved in
O(nlk + log k) time on an unshuffie network of k proces-
sors.

5. COST OPTIMALITY

The performance of a parallel algorithm can be mea-
sured by Cost = Number of Processors x Execution
Time. Given a problem, if the cost of a parallel algorithm
matches the sequential time lower bound within a con-
stant factor, the parallel algorithm is said to be cost opti-
mal. In the case of solving a tridiagonal system, since
there are n values to be computed, the sequential time
lower bound is clearly n(n). Likewise, the sequential
time lower bound for B-spline surface fitting is fi(mn).

If we select k = @(n/log n) in Lemma 5.1, we have the
following theorem.

THEOREM 5.2. A tridiagonal system can be solved in
O(log n) time on an unshuffle network of @(n/log n) pro-
cessors.

We now propose a mesh-of-unshuffle network to
achieve the cost optimality for B-spline surface fitting.
The network, as shown in Fig. 5.1, consists of a mesh of
processors in which all the rows and columns are unshuf-
fle networks. A tridiagonal system in (2.2) can be solved
in O(log n) time on a row of processors. Since there are m
tridiagonal systems, we need to use m rows in parallel. If
we compact @(log m) rows into one, each processor has a
local memory of size @(log n log m). The time to solve
(2.2) becomes O(log m log n). We then use the @(n/log n)
columns of the mesh to solve the n tridiagonal systems in
(2.1) in O(log n log m) time.

*““fi M- M !)

P(2,O)
“I

P(U) P(V)

P(3,O) P(3,l) P(3,2) P(3,3)

FIG. 5.1. The mesh-of-unshuffle network.

ALGORITHM FOR B-SPLINE SURFACE FITTING 605

THEOREM 5.3. The B-spline surface jitting problem associativity of the substitution operation not only brings
can be cost-optimally solved in @log m log n) time on a out the parallelism for the computation naturally, but also
mesh-of-unshuffle network of O(mnllog m log n)) proces- supplies the idea of three-phase computation to reduce
SOYS. the number of processors. Finally, we conjecture that the

Suppose we increase the number of processors from
B-spline surface fitting problem may be solved in O(log m
I

O(mnl(log m log n)) to O(mn) and decrease the size of
each local memory from @(log m log n) to O(1). By simi-
lar arguments, (2.2) can be solved in O(log n) time and
(2.1) can be solved in O(log m) time.

log n) time using O(nml(log m + log n)) processors.

THEOREM 5.4. The B-spline surface fitting problem
can be solved in O(log m + log n) time on a mesh-of-
unshufje network with O(mn) processors.

6. CONCLUDING REMARKS

The parallel substitution scheme was originally pre-
sented in [5] for the parallel computation of general CFs.
In this paper, we first transform the B-spline surface fit-
ting problem into tridiagonal systems of linear equations.
Each tridiagonal system is then transformed into three
recurrence equations. The recursive-doubling method [9]
is an alternative approach to solving these equations
through a rather tricky divide-and-conquer reformulation
of the recurrences into ones with two indices. Our ap-
proach is simply to do the recurrences’ CF expansions
and apply the straightforward substitution concept. The

2.

3.

4.

5.

6.

7.

8.

9.

REFERENCES

R. E. Barnhill and R. F. Riesenfeld (Eds.), ComputerAided Geomet-
ric Design, Academic Press, New York, 1974.
B. A. Barsky and D. P. Greenberg, Determining a set of B-spline
control vertices to generate an interpolating surface, Cornput.
Graphics Image Process. 14(3), 1980, 203-226.
C. de Boor, A Practical Guide to Splines, Springer-Verlag, New
York, 1978.
F. H. Cheng and A. Goshtasby, A parallel B-spline surface fitting
algorithm, ACM Trans. Graphics 8, 1, 1989, 41-50.
K. L. Chung, F. C. Lin, and W. C. Chen, Parallel computation of
continued fractions, J. Parallel Distrib. Comput., to appear.
I. D. Faux and M. J. Pratt, Computational Geometry for Design and
Manufacture, Wiley, New York, 1979.
S. L. Johnsson, Solving tridiagonal systems on ensemble architec-
tures, SIAM J. Sci. Statist. Comput. 8, 3, 1987, 354-392.

R. M. Owens and J. Ja’Ja’, Parallel sorting with serial memories,
IEEE Trans. Comput. C-34(4), 1985, 379-383.
H. S. Stone, Parallel tridiagonal equation solvers, ACM Trans.
Math. Software l(4), 1975, 289-307.

