
Robotics and Autonomous Systems 59 (2011) 943–953
Contents lists available at SciVerse ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

A face robot for autonomous simplified musical notation reading and singing
Chyi-Yeu Lin a,∗, Li-Chieh Cheng a, Chang-Kuo Tseng a, Hung-Yan Gu b, Kuo-Liang Chung b,
Chin-Shyurng Fahn b, Kai-Jay Lu b, Chih-Cheng Chang c

a Department of Mechanical Engineering, National Taiwan University of Science and Technology, 10607, Taipei, Taiwan
b Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 10607, Taipei, Taiwan
c Institute of Automation and Control, National Taiwan University of Science and Technology, 10607, Taipei, Taiwan

a r t i c l e i n f o

Article history:
Received 17 January 2011
Received in revised form
12 May 2011
Accepted 2 July 2011
Available online 28 July 2011

Keywords:
Face robot
Facial expression
Musical note interpretation
Voice synthesis

a b s t r a c t

This research is aimed to devise an anthropomorphic robotic head with a human-like face and a sheet of
artificial skin that can read a randomly composed simplified musical notation and sing the corresponding
content of the song once. The face robot is composed of an artificial facial skin that can express a number of
facial expressions viamotions driven by internal servomotors. Two cameras, each of them installed inside
each eyeball of the face, provide vision capability for reading simplified musical notations. Computer
vision techniques are subsequently used to interpret simplified musical notations and lyrics of their
corresponding songs. Voice synthesis techniques are implemented to enable the face robot to sing songs
by enunciating synthesized sounds. Mouth patterns of the face robot will be automatically changed to
match the emotions corresponding to the lyrics of the songs. The experiments show that the face robot
can successfully read and then accurately sing a song which is assigned discriminately.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, more and more intelligent robots have been
developed for service and entertainment applications. Robots
with various human-like facial expressions and conversation
capabilities are useful for attracting attention from human beings
and therefore are especially suitable for applications involving
robot and human interaction.

Hara and Kobayashi [1] at Tokyo University of Science began
researching in face robot field in 1990. Their face robot is
anthropomorphized by a very realistic artificial facial skin and a
set of deformation patterns used to create facial expressions. In
that first face robot,multiple pneumaticmuscles are placed behind
its skull in order to pull at various points underneath its silicone
rubber facial skin and create facial expressions. Its head is 1.2 times
larger than a real human head. To shrink the head size to be similar
to a human head, shape memory alloys are used as actuators in
their revised version to replace the pneumatic muscles. Inside the
robot head, many fans are installed for fast cooling to those shape
memory alloys in order to speed up the restoration processes to
their unexpanded statuses.

At MIT, Cynthia Breazeal developed an interactive face robot
called Kismet [2,3]. There are a total of 15 DOFs on the face,
including eyebrows, ears, eyeballs, eyelids, and mouth. To give
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Kismet’s vision and hearing abilities, each eyeball is installed a
camera, and each ear is equipped with a microphone. Kismet can
interpret emotions of the people in front of him and can show
various facial expressions including happiness, anger, sadness, and
surprise.

The Kobayashi Lab in Tokyo University of Science developed a
female receptionist robot, called SAYA [4]. Her skin is made of a
kind of silicone rubber. Many high speed pneumatic actuators are
installed in the body and under the face to create head and arm
motions aswell as facial expressions. An air pump is installed in the
lower body of her so that she becomes stationary and be limited
to sit behind the desk. SAYA can track and interpret emotional
statuses of the people in front of her and respondwith proper facial
expressions.

The Takanishi Laboratory in WASEDA University started to
research on W.E. (Waseda Eye) series robots [5,6] in 1995, and a
59-DOF robot, WE-4R [7], was created in 2004. A large number
of sensors are installed in WE-4R so that it can see, hear, smell,
and feel the sense of touch and the sense of temperature. Many
facial expressions, including those of anger, happiness, surprise,
disgust, sadness, and fear, can be created by changing the shapes of
exteriorly attached eyebrows, ears, eyeballs, eyelids, and lips. WE-
4R is highly sensitive and sociable; he shows different emotional
statuses and body motions in order to respond to people’s actions
toward him. Much earlier than this, the µ research group in the
same university has developedWABOT-2 [8], an anthropomorphic
robot that can play keyboard instruments. Its hands can tap softly
on keys, legs can handle bass keys and the expression pedal, eyes
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can read a score, and mouth and ears can be used to converse with
people.

Hirth et al. [9] presented a behavior-based emotional control
architecture for an android head, ROMAN, in 2005. This archi-
tecture is based on 3 main parts: emotions, drives and actions
which interact with each other to realize the human-like behav-
ior of robots. Hanson Robotics [10] and Kokoro-Dreams [11] had
produced highly realistic face robot products with full facial ex-
pression capabilities and extremely realistic face appearance. The
facial skins of these robots are very close to those of human be-
ings in terms of color, appearance, and shape. Hanson robotics had
seven different face robotmodels for sale in 2007. In the same year,
Kokoro-Dream had four face robot models. All of them are com-
bined with a realistic human-like body with limited arm motion
capabilities.

Although face robots have been made with realistic appear-
ances, but there are associated with limited functions and appli-
cations. In this research, we aim to create a new entertainment
function and an application for the face robot and thus open a new
direction for development of entertainment robots. The face robot
is made to autonomously sing songs as a show performance with
a combination of musical notation recognition and voice synthe-
sis techniques. This unique function has never been revealed or
performed by any of the face robots in the literature. In the prior
arts, some commercialized singer robots such as WowWee Alive
Elvis r⃝ [12] can sing pre-programmed songs. This kind of singing
robots cannot sing songs that are not stored in their internal stor-
age devices. HRP humanoid robots [13,14] developed by AIST re-
search team in Japan can follow human to sing the song after listen
a small section of the prelude of the song sung by human. However,
the performance capability of HRP humanoid robots in singing is
also limited by their song data bases. The biggest difference and
also the advantage of our robot singer from others is that there
is no limitation on the number of songs that can be sung. In the
proposed system, a human user can compose any song and corre-
sponding lyrics, print it out in a certain format on a board, and show
it to the robot singer. Then, the face robot singer will sing it after
30–40 s of time. This unique and innovative interaction capability
enables the robot singer to entertain human audience.

In this research, we have done a 100 subject questionnaire
survey to evaluate our face robot performance. The results of
this evaluation reassure that the real time face robot singing as a
performance is quite entertaining and acceptable.

2. The hardware of the face robot

2.1. System configuration

Designed to perform real time musical notation reading and
singing, the face robot needs basic senses of hearing and vision
and also speaking ability. In correspondence, microphone, camera,
and speaker are equipped on the face robot. To enable a face robot
to generate facial expressions, a number of actuators are equipped
inside the skull to pull at the control points under the artificial face
skin so as to deform it—creating facial expression. The material
of the facial skin must be flexible and soft. Servo motors and
Lynxmotion SSC32 servo controller are selected due to the compact
size and simplicity. The SSC32 servo controller has 32 PWMoutput
channels so that a single board can be used to control all servo
motors. The system configuration of the face robot developed in
this work can be seen in Fig. 1.

For easy maintenance and repair, all servo motors used inside
the skullwere divided into fourmodules. The topmodule including
8 motors was used to generate motions of the upper face. The
eye module including 4 motors was used for generating eyeball
motions. The chin module including 7 motors was used for
Fig. 1. System configuration of the face robot.

generating motions of the lower face. The neck module including
4 motors was used to generate motion of the neck. Rotational
angle information for each servo motor corresponding to every
facial expression is stored in a PC.When a specific facial expression
is required display on the face robot, a set of pre-programmed
commands is sent to a servo motor controller so as to create
the expression. Commands are transmitted to the controller by
the RS232 interface. USB interface transmits signals between two
cameras and twomicrophones and the PC. An audio line transmits
audio signals to a speaker inside the face robot to create vocal
effects.

2.2. Artificial facial skin

The facial skin of the robot that can be deformed and show
a number of facial expressions is commonly made of a type of
silicone rubber with a proper color dye. This facial skin is designed
to have various thicknesses in different regions to be similar
to a human face skin. As shown in Fig. 2, the facial skin used
in this work is based on a human model who is a 20 year-old
woman. This type of technology is often applied to art and special
effect in the cinema. Its procedure is a serial of various material
molding processes. First of all, reproduce a human face that we
want tomimic bymolding with impression alginate. After alginate
solidification, cover and fix it by pasting plaster bandages. Then,
finish plaster, silicone, and clay molding in sequence. The purpose
of molding clay mold is to make detail modification easier. After
clay mold done, molding it with several layers of fiber reinforced
plastic (FRP) material. Next, Inject polyurethane rubber [15], or
silicone rubber [16] into the FRPmold. Finally, release the skin and
finish the whole manufacture procedure by trimming, painting,
and making up.

The number and locations of control points of the facial skin for
deformation can affect the degree of reality of facial expressions.
In this research, control point selection was based on suggestions
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Fig. 2. Manufacture process of the artificial facial skin.
Fig. 3. Pulling points and directions for facial expressions.

proposed by Keith Waters [17] and also on the number of muscles
required to create common facial expressions. Fig. 3 shows that
android facial control points and their pulling directions. White
arrows represent pulling directions of control points. Every control
point is pulled by one or two steelwireswith 0.4mmdiameter. The
total number of control points on a face is 14. Points from no. 7 to
no. 14 are related to speaking mouth pattern. All of them are on
lower face. Point no. 9 and no. 13 are pulled by the same servo
motor. Point no. 10 and no. 14 are pulled by another the same
motor. Point no. 7 and no. 8 are pulled individually by two motors.
Control points located at two corners of the mouth are shared by
expression happy and expression sad so that point no. 11 and no.
12 are pulled by four motors in four directions.
Fig. 4. Rapid prototyping skin support frame.

2.3. The skull mechanism

Since the silicone rubber facial skin is soft and stretchable,
a support frame is needed to keep it in position, as shown in
Fig. 4. The surface of the support frame is so complicated that it is
suitable for using a rapid prototyping production. Many holes are
included on the frame, through which wires attached to the servo
motors can be connected to the interior surface of the face skin. For
easy installment andmaintenance, the frame is composed of three
assemblies, the forehead module, the eye module, and the mouth
module. The chin is included as an independent part of the mouth
module so as to enable to open and close the mouth.

Each eyeball is equipped with a camera, and it has both vertical
and horizontal degrees of freedom. The eyeball can be rotated
horizontally to the left and right on each side by 45°. The eyeball
is allowed to be lifted by 45° and turned down by 60°. The viewing
angle of the camera is 45°, making the overall horizontal viewing
angle 65° on both left and right sides and the overall vertical
viewing angle 65° to the top and 80° to the bottom. Few existing
face robots have tongues in expression applications. The face robot
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Fig. 5. Flowchart of our image capture system.

developed in this research is equipped with a tongue to assist in
some consonant pronunciations in speaking.

3. Musical notation recognition

Vision equipment and techniques are used to interpret the
musical notations. Two experimental webcams installed in the
eyeball of the face robot are both Logitech QuickCam r⃝ Sphere MP,
with video capture up to 640 × 480 pixels, still image capture
of 1280 × 960 pixels, and frame rate of 30 frames per second.
The focus of this kind of webcam is fixed. Although two such
cameras are installed in the robot head, only one of them is used
to capture the images of the simplified musical notations in front
of them. Stereo vision capabilities by two cameras support the
development of subsequent applications of the face robot which
require distance information. Fig. 5 illustrates a flowchart of our
image-capturing system. In addition to image pre-processing, the
system is comprised of procedures for location marking, boundary
identification, image de-warping, and background removal. The
main blocks of the flowchart are elaborated in the following
sections.

The RGB image captured by the webcam is transferred to a HSV
image, fromwhich the gray level image is extracted and employed
in later steps. Based on the both hue and saturation level images,
a color filter to segment the regions whose colors are similar to
that of a prescribed mark. The regions of interest are regarded as a
candidate locations of themark applied in order to detect the paper
of simplified musical notation placed on a stand.

In a natural scene, it is very difficult to locate simplifiedmusical
notation printed on paper. For finding the position of the paper
more easily, we have added a simple mark which is easy to be
recognized in a captured image. The mark that we have chosen is
our school emblem, as shown in Fig. 6, and it is placed on the left-
upper corner of the paper onwhich the simplifiedmusical notation
is printed. Bymeans of color and geometry cues, we can effectively
locate this mark in a complex background. In order to capture the
complete image of the simplifiedmusical notation,wemust ensure
all information appears fully in the field of vision. After acquiring
the position of the mark from the image, the robot will move its
neck to regulate the line of sight until the captured image of the
simplified musical notation is also totally inside the field of vision.

The streaks of the paper edges in the captured image from
the webcam are not very clear, especially when the paper is
situated in front of a white wall. In order to make the edges more
obvious, we glue the paper with simplified musical notation onto
a black pasteboard. Once the captured image of the simplified
musical notation is completely presented on the screen by properly
locating themark,we start to detect the edges of the paper from the
neighborhood of the mark using a clockwise tracking sequence. In
the following, we simulate the boundary identification algorithm
Fig. 6. Picture of the NTUST school emblem.

Fig. 7. Illustration of the tracking sequence of boundary identification.

with a small circle rolling from the right side of the mark. The
circle’s rolling path is illustrated in Fig. 7, where the circle rolls
away from the center of the paper until it touches the boundary.
Here, the boundary of the paper is identified by the Sobel edge
detector [18]. Next, we record the path and estimate the extent of
the paper appears in the field of vision.

After understanding the range of the simplified musical
notation illustrated, we preserve those pixels inside the range
and exploit four corner points of the paper to constitute a
skewed quadrilateral image used for calculation of de-warping
parameters [19]. According to these, the skewed quadrilateral
image can be restored to a near rectangular one. At the same
time, we also apply an image interpolation method to increase
the resolution. As a result, an upright and high-definition image
of simplified musical notation in a simple background is produced
for optical character recognition.

The realization of our robot vision system takes place in
a developing environment including Borland C++ Builder 6
and Microsoft Windows XP Professional; the host computer is
equipped with a Pentium Mobile 1.8 GHz CPU and 1 GB DRAM.
In the beginning of the image capture, the paper with simplified
musical notation is laid on a stand in front of the robot’s head at
a distance of about 50 cm. The glancing image captured by the
webcam is usually quite complex, as shown in Fig. 8(a), where part
of the imagenear the bottom is occluded by the eyelid of the robot’s
face. After carrying out the entire capture procedure described
previously, we can obtain an upright image of simplified musical
notation, without background, with resolution of 2100 × 1530
pixels, as demonstrated in Fig. 8(b). The total execution time for
generating such an image is about two seconds, exclusive of the
I/O access time, motor rolling time, mark locating time, and so on.

After performing image de-warping and background removal, a
simplified musical notation recognition technique is developed to
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Fig. 8. High-definition image generation: (a) glancing image captured by the webcam; (b) processed upright image.
Fig. 9. Illustration of the simplified musical notation recognition technique: (a) the binary image; (b) the partitioned blocks; (c) the recognized result.
interpret the simplified musical notation image. The recognition
process consists of four steps. In Step 1, the de-warped image
without background is binarized by using Otsu’s thresholding
method [20]. The resultant image is shown in Fig. 9(a). In Step
2, the binarized image is partitioned into non-overlapped blocks,
where each block contains a simplified musical notation or an
English character, by using projection techniques corresponding
to the x-axis and y-axis, respectively. These partitioned blocks are
shown in Fig. 9(b). In Step 3, for each block, to find the matched
value between the simplified musical notation and the model
block, we find the affine-invariant matched value between the
block containing the simplified musical notation and the model
block stored in the database in advance. The matched value is
used to recognize the meaning of the simplified musical notation
in the block, as shown in Fig. 9(c). Finally, the recognized English
characters into meaningful words are merged according to the
distance between two adjacent English characters. The proposed
simplified musical notation recognition technique provides high
recognition accuracy for the input simplified musical notation
image. The recognition output, which includes English words and
simplified musical notations, will be used as the input of the
Mandarin singing voice synthesis system.

4. Mandarin voice synthesis

To synthesize music signals, additive synthesis, subtractive
synthesis, and FM (Frequency Modulation) synthesis are notable
techniques [21,22]. In this paper, however, the technique of HNM
(harmonic plus noise model) originally proposed by Stylianou [23,
24] is used as a foundation and then extended. We selected HNM
so that the synthetic Mandarin singing voice would have a higher
signal clarity and naturalness level. HNM splits the spectrum of a
signal frame into two halves of unequal widths to better model
the spectrum. The lower frequency half is modeled as harmonic
partials, while the higher frequency half is modeled as noise signal
components.

Here, we adopt the syllable as the unit for synthesis processing.
This is because Mandarin is a syllable-prominent language, and
each syllable is of the structure CxVCn. The Cx of a syllable may
be null, a voiced consonant, or an unvoiced consonant, while
the Cn may be null, or nasal, as in /n/ or /ng/. Additionally, the
nucleus, V, may be a vowel, a diphthong, or a triphthong. If the
Cx is a long unvoiced consonant (e.g., /s, p/), its synthetic signal
will be generated as a noise signal with HNM. If the Cx part is
a short unvoiced consonant (e.g., /b, d/), its synthetic signal will
be directly copied from the corresponding part in the recorded
syllable. Otherwise, the Cx is a voiced consonant (e.g., /m, r/) and
is considered together with the remaining phonemes. Then, their
synthetic signals are generated as harmonic partials plus noise
signal with HNM.

4.1. Score file parsing and interpretation

The data of a song score is stored as a text file and consists of
a sequence of lines. Each line contains one note of information,
i.e., pitch, beats, and lyrics, except for the first line. The information
stored in the first line consists of song name, tempo (e.g., 120
means 120 beats per minute), and fullness ratio (e.g., 80 means
only 80% of a note’s duration is used).

The pitch of a note is represented by a symbol in the first field
of a line. By interpretation, the symbol is converted to a numeric
value of pitch frequency. After all notes’ pitch frequencies are
determined, automatic key-shifting is performed. This is done so
that the pitch range of the score file is matched to the pitch range
of the personwho utters theMandarin syllables for analyzingHNM
parameters. The second field of a line contains the number of beats.
Hence, the duration of a note can be computed by multiplying it
with the beat length, i.e., 60 over the tempo value. However, the
duration of a note is usually not fully sung because some small
ratio of this duration is reserved for breathing and transitioning to
the following note. The third field of a line contains the lyrics of a
note. Each note usually has a unique lyric (i.e., a syllable) assigned
to it. However, it may occur that two or three consecutive notes
are assigned to a same lyric. Then, portamento singing, i.e. pitch
gliding or glissando, must be synthesized for the lyric syllable that
has two or more notes assigned to it. In the score file, this situation
is hinted with a convention that if the third field of a note is placed
the special character, ‘‘|’’, this note is assigned the same lyric as its
preceding note.
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4.2. Signal waveform synthesis

When applying HNM to synthesize signal samples for a lyric
syllable, it is found some issues that are not discussed in the
literature on HNM. The first issue is how to estimate the spectral
envelope in order to keep the timbre of synthetic syllable signals
consistent. Note that we only intend to record each syllable’s
utterance once, and then we adjust the recorded syllable’s pitch
frequency to the target frequency of a note having this syllable
assigned as its lyric. When the target frequency of a syllable is
known, the values of this syllable’s HNM parameters must be
adjusted in a way that the timbre can be kept consistent. In
addition, the second issue is how to warp the time axis of a
synthetic syllable so that a more fluent syllable signal can be
synthesized. Note that a simple time-warping method, i.e., linear
warping, will usually result in lower perceived fluency when a
syllable’s duration is lengthened or shortened.

4.2.1. Phoneme duration planning
When a syllable starts with a short-unvoiced phoneme,

e.g., /bau/, the time length of the short-unvoiced is planned as
the corresponding phoneme length in the recorded syllable. When
a syllable starts with a long-unvoiced phoneme, the length of
the long-unvoiced is planned by multiplying its original length
by a factor Lu. Lu is computed as the synthetic syllable’s length
divided by the recorded syllable’s length. However, the value of
Lu is confined within the range 0.6–1.4. The values, 0.6 and 1.4,
are determined empirically. They are used to reserve a minimum
duration to have the phoneme perceived, and limit the maximum
duration to simulate a real person’s uttering.

For the voiced phonemes of a syllable, the phoneme durations
are planned according to an observation. That is, the consonant-
to-vowel duration ratio will become smaller when the syllable
is uttered within a sentence instead of in isolation. Consider the
example syllable, /man/. Suppose that in the recorded signal of
/man/, the three phonemes, /m/, /a/, and /n/, occupy Rm, Ra, and
Rn seconds, respectively, and Rv = Rm +Ra +Rn. Also, suppose that
Dm, Da, and Dn represent the time lengths of the three phonemes
within the synthetic syllable, and Dv = Dm +Da +Dn. The value of
Dm is planned by multiplying a duration reduction rate, r (initially
set to 0.85),with the time ratio (Rm/Rv) of its counterpart,Rm, in the
recorded syllable. In the same way, the value of Dn is planned. By
trying to decrease the value of r iteratively, the values of Dm and
Dn are decreased gradually, and the value of Da finally becomes
sufficiently large (i.e., Da > Dv ∗ 0.5). After the values of the
durations are determined, a mapping function from the phonemes
in the synthetic syllable to the corresponding phonemes in the
recorded syllable can then be established. Thismapping function is
a piecewise linear time-warping function as illustrated in Fig. 10.

4.2.2. Pitch-contour generation for portamento singing
When a syllable is assigned more than one note, it should be

sung in a portamento manner. That is, the pitch-contour of the
syllable should be smoothly transited from the former note’s pitch
to the latter note’s pitch in the middle portion. An example pitch-
contour is shown in Fig. 11. The duration of the syllable is divided
into three time intervals. The left and right intervals are planned
to sing stable pitches of the two notes in order that they can be
explicitly perceived. And the middle interval is used to transit the
pitch smoothly.

Suppose that the two notes to be sung in portamento are of the
pitch frequencies Pa and Pb. The control points are divided within
the voiced part of the synthetic syllable into three groups. Then,
the control points within the first and third groups are directly
assigned the pitches of Pa and Pb respectively. But for the n-th
Fig. 10. Piecewise linear mapping function.

Fig. 11. An example pitch-contour for a portamento singing.

control point in the second group, its pitch, Pn, is defined here with
a cosine based function. That is,

Pn
=

(Pa + Pb)
2

+
(Pa − Pb)

2
cos

 n
M

π


(1)

where M is the number of control points in the second group.
This cosine based transition function has a good characteristic that
the slopes at left and right ends are both zero and the transition
curve hence connects smoothly to the left and right stable pitch
segments.

4.2.3. Pitch-tuned HNM parameters
According to the constructed mapping function in Fig. 10, each

analysis frame’s time position on a recorded syllable’s time axis can
then be mapped to a time position on a synthetic syllable’s time
axis. Themapped time position on a synthetic syllable is also called
a control point. Therefore, on a control point, the pitch-original
HNM parameters, Ai (amplitude), Fi (frequency), and θi (phase),
for the i-th harmonic partial can be obtained by referring to its
corresponding analysis frame. However, the parameters Ãk, F̃k, and
θ̃k, for the pitch-tuned harmonic partial should be determined
carefully in order to keep timbre consistent.

To have consistent timbre, the spectral envelope must be un-
changed. Therefore, the amplitude Ãk of the pitch-tuned harmonic
partial located at frequency F̃k should be interpolated according to
the original spectral envelope that is defined by the sequence of
pairs (Fi, Ai). Here, third-order Lagrange interpolation [25] is used.
In more detailed, we first find an original harmonic frequency, Fj,
from the sequence, F1, F2, F3, . . . , that is nearest to and less than
F̃k. Then, the four original partials of the frequencies, Fj−1, Fj, Fj+1,
and Fj+2, are used to perform third-order Lagrange interpolation
to compute the value of Ãk. Similarly, the phase θ̃k of the pitch-
tuned harmonic partial located at frequency F̃k can be interpolated
as well. However, the phases of the original partials must be un-
wrapped beforehand to prevent phase discontinuities. As to the
order of interpolation, the sound synthesized by second-order in-
terpolation is perceived to be less delicate. Therefore, third-order
interpolation is selected.
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Fig. 12. The autonomous read-and-sing integration demonstration of the face robot.
4.2.4. Signal-sample synthesis
For the harmonic signal, H(t), between the n-th and (n + 1)-th

control points, the sample values are computed as

H(t) =

L−
k=0

ank(t) cos(φ
n
k (t)), t = 0, 1, . . . , T n, (2)

ank(t) = Ãn
k +

t
T n

(Ãn+1
k − Ãn

k), (3)

φn
k (t) = φn

k (t − 1) + 2π f nk (t)/22050, φn
k (0) = θ̂n

k , (4)

f nk (t) = F̃ n
k +

t
T n

(F̃ n+1
k − F̃ n

k ) , (5)

where L is the number of harmonic partials, T n is the number
of sample points between the n-th and (n + 1)-th control
points, 22050 (Hz) is the sampling rate, ank(t) is the time-varying
amplitude of the k-th partial at time t ,φn

k (t) is the cumulated phase
for the k-th partial, f nk (t) is the time-varying frequency (in Hz) for
the k-th partial, and θ̂n

k = puw(θ̃n
k , θ̂n−1

k ), i.e., unwrapped phase of
θ̃n
k versus θ̂n−1

k . In Eqs. (3) and (5), linear interpolation is used.
The noise signal is synthesized here as a summation of

sinusoidal signal components. Let Gk be the frequency of the k-th
sinusoidal component. Here, Gk is defined as 100 ·k (Hz) according
to the thesis of Stylianou. For the n-th control point, the index k of
Gk is not started at 1, and its starting value is determined according
to the MVF (maximum voiced frequency) value of this control
point, i.e.,⌈MVF(n)/100⌉. The MVF value of an analysis frame is
determined during HNM parameter analysis.

Let Bn
k be the noise amplitude for the k-th sinusoid on the n-th

control point. To determine its value, the 10 cepstrum coefficients
of the n-th control point representing the noise spectral envelope
are inversely Fourier-transformed to the spectral domain. Then, in
terms of the spectral magnitude coefficients, Xj, j = 0, 1, . . . , 2047
(after exponentiation), Bn

k can be obtained by linearly interpolating
the two adjacent magnitudes, Xi and Xi+1, whose frequencies
(indexed by i) surround the frequency of Gk.

5. Matching mouth patterns with voice content

The integration demonstration of the simplified musical
notation reading and singing face robot is shown in Fig. 12.
After the face robot interprets the simplified musical notation
and synthesizes the song content, the mouth patterns to match
the voice content must be implemented so as to perform the
song while singing in a natural manner. Chinese pronunciation
consists of single syllables exclusively. Each word is composed
of a vowel, a consonant, or the combination of a vowel and a
consonant, and there are a total of 23 vowels and 37 consonants.
The voice synthesis module determines the lyrics of a song for the
face robot to sing. The lyrics of a song will be used to determine
the corresponding mouth pattern when a sound is to be created.
The mouth pattern generator will first check if the voice content
consists of only a vowel or a consonant, or a combination of
them. For a combination of a vowel and a consonant, the mouth
patterns need to be changed quickly from the first part, such as the
consonant ‘‘n-’’, as shown in the left photo of Fig. 13, to the vowel
‘‘-a’’, as shown in the right photo of Fig. 13. For a voice content
containing only a vowel or a consonant, themouth pattern remains
unchanged during the length of the sound.

In human vocal language, a phoneme is the smallest posited
structural unit that distinguishes meanings. As separate words are
fed into the mouth pattern software, they will be split into the
required phonemes for speech synthesis, as shown in Table 1.
Different phonemes will produce different pronunciations, but
for many of the pronunciations, their mouth shapes are quite
similar, so themouth actions need to be redefinedwith 12 different
mouth shapes [26]. For a separate word like ‘‘wang’’, the word
pronunciation is broken down into phonemes in the form of
‘‘w-ang’’, which are then to be matched with respective control
command for corresponding mouth shapes. Thereafter, these
commands are converted to signals that control the movement of
the mouth on the face robot during singing or voice broadcasting.
The mouth action between every separate word is set to ‘‘silence’’,
such that all mouth actions can be linked to form a continuous
speech delivery. Themajority ofmouth actions involve the opening
and closing of the chin. With regard to the voice output speed, the
maximum chin opening angle is 30°when themouth is wide open,
and the fastest rotation speed of the motor is 0.562 s. For the voice
broadcast, the largest chin opening angle when talking is set to be
15°, and the time it takes to reach this stage is about 0.281 s. The
talking speed of the face robot is about 3.5 syllables per second at
the maximum.
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Fig. 13. Various mouth patterns: (left) mouth pattern for vowel ‘‘n-’’; (right) mouth pattern for consonant ‘‘-a’’.
Table 1
Chinese phonemes and mouth patterns.
6. Evaluation and results

To scientifically analyze the response of human being when
theywatch the real timemusical notation reading and singing per-
formance of our face robot, an evaluation experiment with ques-
tionnaires was made. One hundred randomly selected subjects
were interviewed on the street of Taipei and questionnaires were
answered. The sampling distributions sorted by gender, age, and
education background are shown in Table 2. Every subject was
asked to watch a one-minute video first, which contains the per-
formance of the real time musical notion recognition and singing
by our face robot. After that, every subject was asked to finish the
questionnaire we designed. There are six groups of questions in
the questionnaire. The statistic results of this survey are shown in
Tables 3–8. For the facial expression evaluation, the effective ques-
tionnaires are 89 copies (89%) and the ineffective questionnaires
are 11 copies (11%). For the singing performance evaluation, the ef-
fective questionnaires are 99 copies (99%) and the ineffective ques-
tionnaire is only 1 copy (1%).

The result of the survey on the questions of every group implies
different meanings. In Table 3, three typical facial expressions,
happiness, shock and anger, were involved in the facial expression
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Table 2
The sampling distributions sorted by gender, age, and educated background.

Total Gender Age Educated background
Female Male 5–14

years old
15–24
years old

25–39
years old

40–64
years old

>65
years old

Under senior
high school

Science and
engineering related

Non science and
engineering related

100 52 48 5 38 30 21 6 30 21 49
Table 3
Scores on the facial expressional reality of the face robot.
Table 4
Opinions on autonomous musical notation reading and singing of robot.

Item Question Opinion rate

1 Have you ever seen any face robot performing
musical notation reading and singing before?

Yes
12.12%

No
87.88%

2 How do you think this technique after watching
the face robot performance video?

Very interesting
26.26%

Interesting
62.63%

Unknown
10.10%

Boring
1.01%

Very boring
0%

3 Do you agree robotic singing is entertaining? Strongly agree
17.17%

Agree
50.51%

Undecided
22.22%

Disagree
8.08%

Strongly
disagree
2.02%
Table 5
Evaluation on the vocal performance of this face robot singing.

Item Question Opinion rate

1 Can you know what song is sung by the face
robot in the video?

Yes
88.89%

No
11.11%

2 Can you understand the lyrics by hearing this
face robot singing?

Yes
68.69%

No
31.31%

3 In terms of the voice only, do you know the
singing sound is coming from a robot?

Yes
55.56%

No
44.44%

4 How do you feel about the voice from the face
robot?

It is human
voice
6.06%

Similar to
human voice
41.41%

Unknown
11.12%

Not realistic, but
acceptable
41.41%

Not realistic and
unacceptable
0%
Table 6
Evaluation on the appearance of this face robot.

Item Question Opinion rate

1 Looking at the face only, do you know that singer
is a robot?

Yes
87.88%

No
12.12%

2 How do you feel about the appearance of the face
robot?

It is a real
human
1.01%

Similar to a
human
53.54%

Unknown
5.05%

Easy to tell it is
a robot
37.37%

It is a robot
3.03%

3 Do you agree the reality of the face robot
appearance is more important than its singing
ability?

Strongly
agree
19.19%

Agree
36.36%

Undecided
22.23%

Disagree
20.20%

Strongly disagree
2.02%
Table 7
Evaluation on the overall presentation and performance of this face robot.

Item Question Opinion rate

1 How do you think the overall presentation and
performance of this face robot?

Excellent
3.06%

Good
70.41%

Regular
23.47%

Bad
3.06%

Awful
0%
recognition test. The shocked face is the easiest one to recognize
correctly, while the angry face is the hardest to be recognized
correctly. All of the three facial expressions get an average score
over 6.0 in resemblance from the subjects who recognized them
correctly. The linear resemblance score scale ranges from 0 to
10 while 0 meaning 0% of resemblance and 10 meaning 100%
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Table 8
Opinions on the development of robotic entertainment industry.

Item Question Opinion rate

1 Do you agree it is possible to use robot to do
entertainment performances?

Strongly agree
15.15%

Agree
60.61%

Undecided
20.20%

Disagree
4.04%

Strongly disagree
0%

2 Do you agree that robotic performance will be a
new entertainment form in the future?

Strongly agree
16.16%

Agree
59.60%

Undecided
24.24%

Disagree
0%

Strongly disagree
0%

3 Will you stand for related organizations should
keep on developing the entertainment robot?

Yes
91.92%

No
8.08%

4 Would you like to watch any robotic show if you
have a chance in the future?

Yes
84.85%

No
15.15%

5 Would you like to buy a ticket for watching any
robotic show if you have a chance in the future?

Yes
62.63%

No
37.37%
resemblance. It means the reality of the facial expressions shown
on the face of our singer robot is accepted on average by people,
but there is still quite large a space to improve. In Table 4, it
is noted that the performance of autonomous musical notation
reading and singing by the face robot is largely agreed to be new,
interesting, and entertaining. Table 5 shows the face robot can
sing the song in a recognizable standard, and most subjects accept
the synthesized singing voice of the face robot. In Table 6, the
opinions tell that the resemblance of the appearance of the face
robot is important for the entertaining performance of real time
singing to be deeply appreciated. In Table 7, the majority affirms
the overall presentation and performance of the face robot is in
a good standard. In Table 8, most subjects agree that the robot
entertainment is worth further developing, and they stand for
that related research organizations should keep on developing
entertainment robots.Moreover,most of themwould like towatch
any robotic show either free or buying a ticket.

These results strongly support our idea to develop entertain-
ment robots and related applications. It shows that people love
robots and they like to watch performances of these robots. Our
face robot for autonomous musical notation reading and singing is
the first step and a milestone for developing entertaining robots
leading to future robot entertainment industry.

7. Conclusions

The face robot developed in this research is anthropomorphized
by aunique integrated function of being able to read simplifiedmu-
sical notation and then sing the song content with corresponding
mouth patterns. The face robot equippedwith 24 servomotors can
show a number of realistic facial expressions and speak like a hu-
man.

An automatic image-capturing method is created to generate a
high-definition upright image of simplified musical notation. Our
robust vision system can automatically detect simplified musical
notation when it is placed in front of the face robot, and it can
properly capture the image of numbered musical notation using
a webcam. Even if the original image captured by the webcam is
skewed and partially covered by the eyelid, the system can still
de-warp the skewed image, remove the background, and raise the
resolution about 2.5 times in a naturally complex scene to ease the
subsequent simplified musical notation interpretation.

This paper described the following procedure: an inputted
Mandarin song score is parsed to extract each note’s information
firstly. Next, the lyric associated with a note is used to load a
corresponding HNM parameter values. In terms of the parameter
values, signal samples for a lyric can then be synthesized with
the HNM-based, extendedmethod proposed here. In the following
subsections, the details of the processing stepswere described. The
subsystem can synthesize a Mandarin singing voice in real-time,
and the synthetic signal is very clear and natural.

The successfully integrated simplifiedmusical notation reading
and singing ability of the face robot in this work demonstrates
a promising direction for robot entertainment in the future.
To increase the functionalities of intelligent robots in the
entertainment sector, and more specifically in robot musical and
speech talent applications, techniques to createmore natural facial
expressions and easier text-to-speech capabilities with highly
accurate mouth pattern generation need continual investigation.
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