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Abstract

In this paper, a novel hybrid gray image representation using spatial- and DCT-based approach is presented. In the first
phase, according to the bintree decomposition principle under the specified error, an S-tree spatial data structure (SDS) is
used to represent the decomposed bintree of the input gray image. In the constructed S-tree SDS, the leaves are partitioned
into two types, namely the homogeneous leaves and the nonhomogeneous leaves. The homogeneous leaf is used to repre-
sent one rectangular or square homogeneous subimage with smooth, i.e., low frequency, content and the nonhomogeneous
leaf is used to represent one nonhomogeneous subimage with nonsmooth, i.e., high frequency, content. In the second
phase, each nonhomogeneous leaf is encoded by the DCT-based coding scheme for reducing the memory requirement.
Based on some real gray images, experimental results show that our proposed gray image representation over the previ-
ously published S-tree- and shading-based SDS has about 63.08% memory-saving improvement ratio in average. Finally,
we investigate the computational benefit when computing moments on our proposed gray image representation directly.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Using spatial data structures (SDSs) for representing binary images has a long history [23]. Based on these
different kinds of developed SDSs directly, many efficient algorithms have been presented for many applica-
tions [3,4,1,2,24,16,17], such as image processing, pattern recognition, computational geometry, computer
graphics, databases, cryptography, and so on. For compressing binary images, the compression standard,
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e.g., JBIG [28,12], always has better compression performance when compared to any existing SDS for rep-
resenting binary images, but it is impossible to manipulate the compressed form of JBIG for many applica-
tions due to the involvement of entropy coding. Among these developed SDSs for representing binary
images, the well-known ones are the linear quadtree [10], the S-tree representation [14], the DF-expression
[15], the improved linear quadtrees [18,19], etc.

Based on the B-tree triangular coding (BTTC) approach, Distasi et al. [7] presented the first SDS for rep-
resenting gray images. The BTTC-based SDS by Distasi et al. is really a pioneer work to extend the SDS
design from binary images to gray images. In [7], for each partitioned block in the gray image domain, a tri-
angle is used to represent that block. Later, based on the S-tree data structure and the Gouraud shading
method [9], a new S-tree coding (STC)-based approach [5] for representing gray images was presented. Exper-
imental results show that the STC-based SDS has a superior performance in the execution time (less than half
of the BTTC-based SDS) without sacrificing compression ratio and image quality. Based on the STC-based
gray image representation, an efficient image algorithms for lower order moment computation [6] has been
successfully developed. Surprisingly, low-order moment computation can be done in O (K) time where K

denotes the number of partitioned blocks in the STC-based SDS. For representing gray images, the main
drawback in the BTTC-based SDS or the STC-based SDS is that it needs a large amount of memory to rep-
resent nonsmooth regions, i.e., regions with high frequency contents.

In this paper, a novel spatial- and DCT-based (SDCT-based) image representation is presented for repre-
senting gray images. In the first phase, according to the bintree decomposition rule under the specified error, a
conventional S-tree SDS is used to represent the decomposed bintree of the input gray image. In the construct-
ed S-tree SDS, the leaves are partitioned into two types, namely the homogeneous leaves and nonhomogene-
ous leaves. The homogeneous leaf is used to represent one rectangular or square homogeneous subimage with
low frequency, i.e., smooth, content, and the nonhomogeneous leaf is used to represent one nonhomogeneous
subimage with high frequency content. In the second phase, each nonhomogeneous leaf obtained from the first
phase is encoded by the DCT-based coding scheme. Our proposed SDCT-based image representation has a
better memory-saving effect when compared to the previous STC-based SDS and experimental results reveal
about 63% memory-saving improvement ratio. Finally, we discuss the computational benefit when computing
moments on our proposed SDCT-based image representation directly.

The remainder of this paper is organized as follows. Section 2 gives the survey of the previous STC-based
SDS for representing gray images. Section 3 presents our proposed SDCT-based image representation for rep-
resenting gray images. In Section 4, we demonstrate how to compute the low-order moments efficiently on the
proposed image representation directly. In Section 5, some experiments are carried out to demonstrate the
memory-saving and computational advantages of our proposed SDCT-based image representation. Finally,
some concluding remarks are addressed in Section 6.

2. Past work: STC-based SDS for representing gray images and its shortcoming

Since the STC-based SDS has a superior performance in the execution time (less than half of the BTTC-
based SDS) without sacrificing compression ratio and image quality, we only introduce the past STC-based
SDS for representing gray images. Then its main shortcoming is pointed out. The main problem is that the
STC-based SDS does decompose a nonhomogeneous block with high frequency content into many smaller
homogeneous blocks and it leads to a memory-redundant side effect. In fact, besides the STC-based SDS,
the BTTC-based SDS also has the same memory-redundant problem for representing high frequency content.
In next section, our proposed SDCT-based gray image representation not only preserves the memory-saving
advantage of the STC-based SDS for representing low frequency content, but also resolves the memory-redun-
dant problem for representing high frequency content.

In the STC-based SDS, the input gray image is partitioned into a set of homogeneous blocks according to
the bintree decomposition rule. At each decomposition step, it partitions the subimage into two smaller sub-
images, each with equal size, in y- and x-axes by turns. When the partitioned subimage is nonhomogeneous,
the decomposing step is proceeded until each subimage is homogeneous. For convenience, a homogeneous
subimage is called a homogeneous block. In next paragraph, the formal definition of a homogeneous block
is shown.
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As shown in Fig. 1, there are four corner pixels which must be recorded for a homogeneous block. Suppose
the coordinates of the four corner pixels are (x1, y1), (x2, y1), (x1, y2), and (x2, y2); their gray values are equal to
g1, g2, g3, and g4, respectively. According to Gouraud shading method [9], i.e., the linear interpolation, the
estimated gray level at position (x, y) in the block is calculated by

gestðx; yÞ ¼ g5 þ ðg6 � g5Þ � i1; ð1Þ
where g5 = g1 + (g2 � g1) · i2, g6 = g3 + (g4 � g3) · i2, i1 ¼ y�y1

y2�y1
, and i2 ¼ x�x1

x2�x1
.

By definition [9], g5 and g6 are the estimated gray values of the pixel at position (x, y1) and (x, y2),
respectively; i1 and i2 are the linear interpolation of the gray value in y- and x-axes, respectively. Thus,
given a specified error tolerance �, the block is homogeneous if the following image quality condition
holds:

jgðx; yÞ � gestðx; yÞj 6 �. ð2Þ

Fig. 1. A homogeneous block and the linear interpolation.

Fig. 2. A partitioned image example and the constructed bintree representation. (A) A partitioned image example. (B) The constructed
bintree structure of (A).
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Suppose one gray image has been divided into a set of homogeneous blocks as shown in Fig. 2A. The bin-
tree structure of Fig. 2A is shown in Fig. 2B, where the indices of partitioned homogeneous blocks in Fig. 2A
are arranged by the partitioning orders. Based on the breadth first search (BFS) scanning order, the indices of
the scanned leaves form a strictly increasing sequence.

Following the constructed bintree structure, the S-tree representation consisting of one linear-tree table
and one color table is used to represent the partitioned image corresponding to the input gray image.
The linear-tree table records the bintree structure by traversing the bintree in a BFS manner and ‘0’s are
used to keep the relationship of these partitioned homogeneous blocks; ‘1’s in the linear-tree table are used
to represent the partitioned homogeneous blocks. The color table records the related gray levels of four cor-
ner pixels of these homogeneous blocks which are denoted by ‘1’s in the linear table. Upon scanning the bit
‘1’ in the linear-tree table, the information of four corners with respect to the homogeneous block can thus
be retrieved from the corresponding entry in the color table. The S-tree representation of Fig. 2B is
expressed by the following two tables:

Linear-Tree Table : 0001000000101001011100000001011111111111111
Color Table : ðg1ul

g1ur
g1bl

g1br
Þ

ðg2ul
g2ur

g2bl
g2br
Þ

ðg3ul
g3ur

g3bl
g3br
Þ

ðg4ul
g4ur

g4bl
g4br
Þ

. . .
ðg22ul

g22ur
g22bl

g22br
Þ

As mentioned before, the previous STC-based SDS and the BTTC-based SDS for representing gray images
has the memory-redundant problem in the nonhomogeneous block with high frequency content. For high-
lighting this memory-redundant problem, the following example is given. Given two subimages as shown in
Figs. 3A and B, Fig. 3A is the subimage extracted from the sky part of gray image F16 (see Fig. 7B) and
Fig. 3B is the one extracted from the mountain part of the same image. According to the bintree decompo-
sition rule under the error tolerance � = 10, Figs. 3C and D denote the partitioned homogeneous blocks of
Figs. 3A and B, respectively. It can be counted that Fig. 3C has 64 homogeneous blocks and Fig. 3D has
210 homogeneous blocks. The ratio of the number of blocks required in Fig. 3D over that of Fig. 3C is about
3.28. This ratio indicates that the subimage shown in Fig. 3B (Fig. 3A) with high (low) frequency content
needs more (less) memory to save these partitioned homogeneous blocks when using the STC-based SDS.

Fig. 3. Memory-redundant problem in the STC-based SDS. (A) A low frequency subimage: sky part of F16 image. (B) A high frequency
subimage: mountain part of F16 image. (C) The partitioned homogeneous blocks of (A). (D) The partitioned homogeneous blocks of (B).
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3. The proposed SDCT-based gray image representation

In this section, our proposed SDCT-based gray image representation is presented. For resolving the mem-
ory-redundant problem mentioned above for saving high frequency content, we apply the DCT approach to
represent the nonhomogeneous block with high frequency content and it can lead to a significant memory-sav-
ing effect when compared to the SDS approach for representing the same kind of blocks. For saving low fre-
quency content, we still utilize the previous STC-based SDS.

Given a gray b · b subimage {f (x, y)|0 6 x 6 b � 1, 0 6 y 6 b � 1}, suppose each pixel value has been sub-
tracted from 128. Applying the DCT to the subimage, it can be expressed by

F ðu; vÞ ¼ 1ffiffiffiffiffi
2b
p CðuÞCðvÞ

Xb�1

x¼0

Xb�1

y¼0

f ðx; yÞ cos
ð2xþ 1Þup

2b
cos
ð2y þ 1Þvp

2b
; ð3Þ

where Cð0Þ ¼ 1ffiffi
2
p and C (i) = 1 for i = 1, 2, � � �, b � 1. Let us cut off the left-upper quadrant of Fig. 3B and the

cut nonhomogeneous subimage is depicted in Fig. 4A with high frequency content. Fig. 4A is used as the
example to demonstrate the memory-saving advantage when combining the DCT approach and the STC-
based approach. Under the error tolerance � = 10, Fig. 4B demonstrates the 50 partitioned homogeneous
blocks of Fig. 4A and the number of corner pixels of Fig. 4B is 200. Fig. 4C illustrates the DCT coefficient
matrix of Fig. 4A. Based on the quantization table as shown in Figs. 4D and E demonstrates the quantized
DCT coefficient matrix of Fig. 4C. It can be counted that the number of nonzero quantized DCT coefficients
in Fig. 4E is 43 and it is much less than the number of corner pixels in Fig. 4B. The reduction of number of
coefficients leads to a memory-saving effect.

Combining the advantages of SDS-based approach for representing homogeneous blocks, each block
with low frequency content, and DCT-based approach for representing nonhomogeneous blocks, each block
with high frequency content, an example is now taken to justify the compromise between the two approach-
es. Integrating the two approaches constitutes the main concept of our proposed two-phase SDCT-based
approach for representing gray images. Let us return to Fig. 2A. Since these homogeneous blocks, each with
size 4 · 4, denoted by indices from 2 to 14 are some memory-redundant. In what follows, our proposed
SDCT-based approach is presented to resolve this memory-redundant problem existed in the STC-based
approach.

In the first phase of our proposed SDCT-based approach, Fig. 2A could be partitioned to a specified level,
say level 4, according to the bintree decomposition rule. Thus, the constructed bintree structure Fig. 2B
becomes the approximate bintree structure as shown in Fig. 5A where the leaves are classified into two types.
The nonhomogeneous leaves denoted by triangle nodes represent high frequency contents and the homoge-
neous leaves denoted by black nodes represent low frequency contents. The corresponding partitioned blocks
of Fig. 5A is depicted in Fig. 5B.

In the second phase of our proposed SDCT-based approach, the nonhomogeneous leaves in the approx-
imate bintree structure are encoded by the DCT-based coding scheme while the homogeneous leaves are
encoded by the STC-based representation. For example, performing the DCT on block 4 in Fig. 5B, which
is shown in Fig. 6A, the quantized DCT coefficient matrix is shown in Fig. 6B. According to the zig-zag
scanning way as shown in Fig. 6C, the scanned quantized DCT coefficient sequence is shown in Fig. 6D.
Due to the energy compaction property of DCT, the seven nonzero DCT coefficients appear in the leading
subsequence.

According to our proposed SDCT-based approach, our proposed SDCT-based gray image representation
consists of the linear-tree table, the leaf-type table, and the color table. The linear-tree table records the
approximate bintree structure by traversing the bintree in a BFS manner; ‘0’s are used to preserve the relation-
ship of these leaf nodes and ‘1’s are used to represent these leaf nodes which indicate the relevant partitioned
blocks. The leaf-type table is used to discriminate between the leaf nodes encoded by STC-based approach for
homogeneous blocks and the leaf nodes encoded by DCT-based approach for nonhomogeneous blocks. The
color table keeps the related gray levels of four corner pixels for representing homogeneous blocks and the zig–
zag scanned sequences of the quantized DCT coefficients for representing the nonhomogeneous blocks. The
contents of three tables for representing Fig. 5A are listed below:
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Fig. 4. An example to demonstrate the memory-saving advantage of DCT approach. (A) The upper-top one-fourth subimage of Fig. 3B.
(B) The partitioned homogeneous blocks of (A). (C) The DCT coefficient matrix of (A). (D) The used quantization table. (E) The
quantized DCT coefficient matrix of (C).
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Fig. 5. The approximate bintree structure and partitioned blocks of Fig. 2. (A) The approximate bintree structure of Fig. 2A. (B) The
corresponding partitioned blocks of (A).

Fig. 6. An example used in DCT-based coding scheme. (A) The corresponding subimage with respect to node 2 of Fig. 5B. (B) The
quantized DCT coefficient matrix of (A). (C) The zig–zag scanning order. (D) The zig–zag scanned sequence of (B).
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Linear-Tree Table : 000100000010111111111
Leaf-Type Table : 00011010001
Color Table : (1ul1ur1bl1br)

(2ul2ur2bl2br)
(3ul3ur3bl3br)
ð4d14d24d3 . . . 4dn4

Þ
. . .
(9ul9ur9bl9br)
(10ul10ur10bl10br)
ð11d111d211d3 . . . 11dn11

Þ

According to the above description, our proposed SDCT-based image representation is described below:

Step 1. Given a gray image I, we create a node p to represent I. The node p contains following variables.
W denotes the width of the subimage I.
H denotes the height of the subimage I.
(X, Y) denotes the coordination of the subimage I.
isLeaf is a boolean variable to denote whether the node is a leaf or not. The initial value of isLeaf is
set to true.

Step 2. Push the node p into a Queue Q1.
Step 3. If Q1 is not empty, then Q1 pops an element called q and go to Step 4. Otherwise, go to

Step 7.
Step 4. According to the Gouraud shading method, Eq. (2) is applied to check the block type of subim-

age indexed by node q. If the block type of q is nonhomogeneous, then go to Step 5. Otherwise,
store the gray levels of its own four corner pixels and push the node q into the queue Q2. Sub-
sequently, go to Step 3.

Step 5. If the node q satisfies W = H and W = 16, go to Step 6. Otherwise, change the value of isLeaf to
false and partition the node q into two subimages with equal size in y- and x-axes by turns; the
two created subimages are denoted by nodes m and n, respectively. Finally, push the two nodes into
the queue Q1; push node q into the queue Q2 and go to Step 3.

Step 6. For the concerned node, Eq. (3) is applied to generate the DCT coefficient matrix. Based on the
quantization table, the quantized DCT coefficient matrix is obtained. According to the zig–zag
scanning way, the quantized DCT coefficient matrix is represented as a sequence. The node q is
pushed into the queue Q2.

Step 7. The content of Q2 is indeed the approximate bintree of the gray image I. Popping Q2, we can obtain
the linear-tree table, the leaf-type table, and the color table.

4. Application: SDCT-based moment computation

In last section, we have presented the proposed SDCT-based image representation. In this section, as a
representative of applications, we want to present an efficient algorithm for computing lower order moments
on the SDCT-based representation directly. Computing moments on the image is important in image pro-
cessing field [8,11,25,13,29,27,21,22,26]. The lower order moments are especially useful in several applica-
tions such as computing the area, the centroid, and the major axis of a object [11,25], recognizing
patterns by moment invariants [13], color image compression [29], moment-preserving thresholding [27],
acquiring the motion parameters [21], deskewing rotationally symmetric shapes [22], and color image
retrieval [20]. Due to these applications, for convenience, the lower order moments are still called to
moments in order to avoid any confusion in this paper. In next section, experimental results will reveal that
our proposed SDCT-based moment computation is faster than the previous STC-based moment computa-
tion [6] and the DCT-based moment computation.
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Quite different from the previous STC-based moment computation algorithm [6], our proposed SDCT-
based moment computation algorithm accommodates the moment computations of the STC-based block
for homogeneous block and the DCT-based block for nonhomogeneous block.

Next Lemma [6] is used to compute the moments of each STC-based block in O (1) time.

Lemma 1. For each STC-based block BSTC,i, the estimated moments can be computed in O(1) time.

Proof. See Appendix A

After introducing how to compute the moments for each STC-based block in O (1) time, we now describe
how to compute the moments on each DCT-based block. According to the IDCT technique, the DCT-based
block {F (u, v)|0 6 u, v 6 b � 1} can be transformed into the gray subimage, {f (x, y)|0 6 x, y 6 b � 1}:

f ðx; yÞ ¼ 1ffiffiffiffiffi
2b
p

Xb�1

u¼0

Xb�1

v¼0

CðuÞCðvÞF ðu; vÞ cos
ð2xþ 1Þup

2b
cos
ð2y þ 1Þvp

2b
;

where b · b denotes the size of DCT-based block; Cð0Þ ¼ 1ffiffi
2
p and C (i) = 1, i = 1, 2, . . ., b � 1. Instead of run-

ning the IDCT on the DCT-based block first and then computing moments on the decompressed subimage, we
derive some novel formulas to compute moments on the DCT-based block directly, and the time complexity of
our proposed approach is dependent on the number of nonzero terms in that block. For exposition, let b be
equal to 16 and the number of DCT-based blocks in the partitioned gray image be k. For each DCT-based
block BDCT,i at position (mi, ni) for 0 6 i 6 k � 1, where we have

f ðxþ mi; y þ niÞ ¼
1ffiffiffiffiffi
32
p

X15

u¼0

X15

v¼0

CðuÞCðvÞF ðuþ mi; vþ niÞ � cos
ð2xþ 1Þup

32
cos
ð2y þ 1Þvp

32
. ð10Þ

From Eq. (10), the computation of mpq for 16 · 16 DCT-based block at position (mi, ni) can be obtained by

X15

x¼0

X15

y¼0

ðxþ miÞpðy þ niÞqf ðxþ mi; y þ niÞ ¼
X15

x¼0

X15

y¼0

ðxþ miÞpðy þ niÞq
1ffiffiffiffiffi
32
p

X15

u¼0

X15

v¼0

CðuÞCðvÞ

� F ðuþ mi; vþ niÞ � cos
ð2xþ 1Þup

32
cos
ð2y þ 1Þvp

32
.

Adjusting the summation notations, the following equation is got

X15

x¼0

X15

y¼0

ðxþ miÞpðy þ niÞq
1ffiffiffiffiffi
32
p

X15

u¼0

X15

v¼0

CðuÞCðvÞF ðuþ mi; vþ niÞ cos
ð2xþ 1Þup

32
cos
ð2y þ 1Þvp

32

¼ 1ffiffiffiffiffi
32
p

X15

u¼0

X15

v¼0

F ðuþ mi; vþ niÞ CðuÞ
X15

x¼0

ðxþ miÞp cos
ð2xþ 1Þup

32

" #
CðvÞ

X15

y¼0

ðy þ niÞq cos
ð2y þ 1Þvp

32

" #
.

Let

T pðuþ miÞ ¼CðuÞ
X15

x¼0

ðxþ miÞp cos
ð2xþ 1Þup

32
and

T qðvþ niÞ ¼CðvÞ
X15

y¼0

ðy þ niÞq cos
ð2y þ 1Þvp

32
;

then the computation of mpq for the 16 · 16 block at position (i, j) yields

X15

x¼0

X15

y¼0

ðxþ miÞpðy þ niÞqf ðxþ mi; y þ niÞ ¼
1ffiffiffiffiffi
32
p

X15

u¼0

X15

v¼0

F ðuþ mi; vþ niÞT pðuþ miÞT qðvþ niÞ.

From the above derivation, we have the following result.
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Lemma 2. The computational complexity of computing mpq on the DCT-based block depends on the number of

nonzero DCT coefficients in the block.

After describing the proposed methods for computing the moments for the STC-based block and the DCT-
based block, respectively, the whole algorithm for computing moments on the SDCT-based image represen-
tation is shown below:

Algorithm. SDCT-based Moment Computation.
Input: linear-tree table, leaf-type table, and color table.
Output: approximate moment mpq.

Step 1. Initially set mpq = 0 and mpq is used to record the approximate moment of SDCT-based image
representation.

Step 2. If the linear-tree table is not empty, scan it and read one bit, next go to Step 3; otherwise, go to Step 7.
Step 3. If the scanned bit is ‘0’, it means an internal node is scanned and we compute the coordinate and

the size of the corresponding block for the current scanned internal node according to the BFS
traversal way; go to Step 2. If the scanned bit is ‘1’, it means that a leaf node is scanned and go
to Step 4.

Step 4. Scan a bit from the leaf-type table. If the scanned bit is ‘0’, it means that a STC-based block is
scanned and go to Step 5; otherwise, a DCT-based block is scanned and go to Step 6.

Step 5. According to the scanned entry in the color table, perform the STC-based moment compu-
tation for that STC-based block. Next, we accumulate the calculated moment to mpq and
go to Step 2.

Step 6. According to the scanned entry in the color table, perform the DCT-based moment computation
for that DCT-based block. Next, we accumulate the calculated moment to mpq, and go to Step 2.

Step 7. Output the final approximate moment mpq.

Based on the above description, we have the following result for computing (p, q)-order moment.

Theorem 1. Suppose the given gray image has been partitioned into K blocks and there are K1 STC-based blocks

and K2 (= K � K1) DCT-based blocks. Based on the proposed SDCT-based image representation, the

approximate moment mpq can be computed in O(K1 + K2cb2) time where c denotes the expected value of the

nonzero DCT’s coefficient appearing in the DCT-based block and b · b denotes the block size.

In our experiments with four testing images, the average value of c is 0.112; the error tolerance is set to
� = 20, and b is set to 16.

Based on experimental data, while the error tolerance � is small, the original STC-based approach decom-
poses a nonhomogeneous block with high frequency content into many smaller homogeneous blocks and it
leads to a memory-redundant side effect. However, our proposed SDCT-based approach uses less nonzero
DCT coefficients to represent these STC-based blocks with high frequency content. While the error tolerance
� is large, our proposed SDCT-based approach utilizes many STC-based blocks, in which each block is of
large size and is represented by four corners, to represent these blocks with large size instead of using
DCT-based blocks which need more memory to save DCT coefficients. Experimental results reveal that our
proposed SDCT-based approach has a good compromise between the STC-based approach and the DCT-
based approach.

5. Experimental results

In this section, four popular gray images, each with size 512 · 512, are used as the benchmark to evaluate
the performance among the concerned methods. The four testing gray images are Lena, F16, Pepper, and
Barbara as shown in Figs. 7A–D, respectively. All the concerned experiments are performed on the IBM
compatible Pentium IV microprocessor with 1.8 GHZ and 256 MB RAM. The operating system is MS-Win-
dows XP and the program developing environment is Borland C++ Builder 6.0.
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5.1. Performance comparison between the proposed SDCT-based representation and the previous STC-based one

First some experimental results are illustrated to show the image compression performance in terms of com-
pression improvement ratio (CIR) and the image quality performance in terms of peak signal-to-noise ratio
(PSNR) of our SDCT-based image representation and the previous STC-based image representation. The def-
inition of CIR is given by

CIR ¼ CRðSDCTÞ � CRðSTCÞ
CRðSTCÞ ;

where CR denotes the compression ratio. The PSNR of a gray image with size N · N is defined by

PSNR ¼ 10 log10

2552

1
N2

PN�1
x¼0

PN�1
y¼0 ðgðx; yÞ � g0ðx; yÞÞ2

;

where g 0 (x, y) denotes the gray level at position (x, y) in the decompressed image. Given four error tolerances
� = 10, 20, 30, and 40, Table 1 demonstrates that our proposed SDCT-based approach has better CR than the

Fig. 7. Four testing gray images. (A) Lena. (B) F16. (C) Barbara. (D) Baboon.
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previous STC-based approach under the same PSNR. Here, the measure CR is defined to be the ratio of 8 over
the number of average bits required in the proposed SDCT/STC-based image representation for saving one
pixel. Based on the four testing images, the average CR of the previous STC-based image representation is
4.88, but the average CR of the proposed SDCT-based image representation is 8.30. Note that in [5], the
encoding phase in the STC-based approach discards the consecutive 1’s at the bottom level of linear-tree table
while using a variable to save the discarded length. In our implementation, we do not consider this special
implementation skill for the STC-based approach and the SDCT-based approach. Using the notation CIR,
Table 2 reveals that the average CIR of our proposed SDCT-based image representation over the previous
STC-based one is 63.08%. It is observed that the higher the error tolerance is, the better the CIR gets.

From Table 1, the choice of error tolerance � depends on what compression ratio we want. Empirically, if we
hope the compression ratio of the SDCT-based image representation to be 9.83 (0.814 bits per pixel) in average,
the value of � can be selected to 30; if we hope the compression ratio to be 6.08 (1.32 bits per pixel) in average, the �
can be selected to 20. However, under the same � value, the compression ratio may be different for different
images.

For one input gray image, as shown in Table 3, based on our proposed SDCT-based gray image represen-
tation, the percentage of the area of created STC-based blocks are increased when the error tolerance � grows,
but the percentage of the area of created DCT-based blocks are decreased when the error tolerance � grows. It
indicates that our proposed SDCT-based gray image representation has a good compromise between the STC-
based approach and the DCT-based approach.

Table 2
Compression improvement ratio comparison

� = 10 (%) � = 20 (%) � = 30 (%) � = 40 (%)

Lena 28.53 81.73 94.38 90.70
F16 10.53 38.51 54.64 62.77
Barbara 12.58 53.72 81.91 116.38
Baboon 68.05 76.69 69.78 68.42

Average 29.92 62.66 75.18 84.57
63.08 %

Table 3
Percentages of STC-based blocks and DCT-based blocks used in the SDCT-based approach

STC-based blocks DCT-based blocks

� = 10 (%) � = 20 (%) � = 30 (%) � = 40 (%) � = 10 (%) � = 20 (%) � = 30 (%) � = 40 (%)

Lena 15.82 34.47 49.90 60.55 84.18 65.53 50.10 39.45
F16 25.39 42.48 48.54 52.64 74.61 57.52 51.46 47.36
Barbara 7.62 19.92 27.93 34.96 92.38 80.08 72.07 65.04
Baboon 0.00 2.25 7.32 14.26 100.00 97.75 92.68 85.74

Table 1
Compression performance comparison

STC-based representation SDCT-based representation

� = 10 � = 20 � = 30 � = 40 � = 10 � = 20 � = 30 � = 40

Lena 2.89 5.57 8.98 13.53 3.71 10.12 17.46 25.79
F16 3.13 5.03 7.32 10.08 3.46 6.97 11.32 16.41
Barbara 1.80 2.46 3.20 4.12 2.03 3.78 5.82 8.92
Baboon 1.33 1.96 2.78 3.88 2.23 3.46 4.73 6.54

Average 2.29 3.75 5.57 7.90 2.86 6.08 9.83 14.41
4.88 8.30
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Table 4 indicates that our proposed SDCT-based image representation has higher PSNR than the previous
STC-based one under the same compression ratio. The average PSNR of the previous STC-based (the pro-
posed SDCT-based) image representation is 32.48 (35.40).

From Table 4, the choice of error tolerance � depends on what PSNR we want. Empirically, if we hope the
PSNR of the SDCT-based image representation to be about 37.5 (33.4) in average, the value of � can be select-
ed to 20 (30). However, under the same � value, the PSNR may be different for different images. When the

Table 4
PSNR comparison

STC-based representation SDCT-based representation

� = 10 � = 20 � = 30 � = 40 � = 10 � = 20 � = 30 � = 40

Lena 38.52 33.02 29.49 27.17 39.54 35.01 31.29 28.65
F16 39.13 34.14 30.88 28.39 39.66 35.68 32.89 30.30
Barbara 39.85 33.94 29.91 27.16 40.35 37.27 33.56 30.49
Baboon 40.33 32.79 28.81 26.10 43.27 42.17 35.78 30.53

Average 39.45 33.47 29.77 27.20 40.70 37.53 33.38 29.99
32.48 35.40

Fig. 8. Four decompressed SDCT-based images for the Fig. 7. (A) Lena. (B) F16. (C) Barbara. (D) Baboon.
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value of � is selected to 20, Fig. 8 depicts the good quality of the four decompressed SDCT-based images from
the four testing images of Fig. 7.

The execution–time performance comparison of the three concerned approaches for representing gray
images has been carried out in Table 5. Table 5 reveals that our proposed SDCT-based approach has better
execution–time performance than the DCT-based approach in both encoding phase and decoding phase.
Based on four testing images of Fig. 7, the average encoding time and the average decoding time of the
DCT-based approach for representing a gray image are 128.5 ms (milliseconds) and 145.3 ms, respectively;
the average encoding time and the average decoding time of SDCT-based approach are 101.5 and 87.7 ms,
respectively. However, the SDCT-based approach takes more encoding/decoding time than the STC-based
approach whose average encoding time and average decoding time are 76.7 and 23.4 ms, respectively.

5.2. Application: moment computation

In last section, we have presented the algorithm for computing approximate moments on the SDCT-based
block directly. Table 6 demonstrates the moment accuracy comparison between the proposed SDCT-based
approach and the conventional approach. for � = 20. It is observed that the approximate moments are very
close to the exact moments computed by the conventional method running on the original input gray image.
In Table 7, the average relative error 0.44% indicates the good accuracy of approximate moments calculated
by our proposed SDCT-based approach.

Besides the good accuracy of our proposed SDCT-based approach for computing moments, Table 8 demon-
strates that our proposed SDCT-based moment computation has better execution time performance when com-
pared to the original STC-based moment computation and the original DCT-based moment computation. For
example, the average execution–time improvement ratio of the proposed SDCT-based moment computation
over the STC-based approach is 42.19%. Here, the execution–time improvement ratio is denoted by
TimeðSTCÞ�TimeðSDCTÞ

TimeðSTCÞ , where Time(STC) denotes the execution time required by the STC-based moment
computation.

Table 5
Execution–time performance comparison

Encoding Time Decoding Time

STC DCT SDCT STC DCT SDCT

Lena 62.3 125.0 91.8 18.7 147.0 63.7
F16 57.7 126.5 86.5 20.1 142.3 71.9
Barbara 85.8 129.8 106.5 25.4 145.2 94.9
Baboon 100.8 132.8 121.4 29.4 146.8 120.5

Average 76.7 128.5 101.5 23.4 145.3 87.7

Table 6
Moments accuracy comparison

Conventional approach Proposed approach

Lena F16 Barbara Baboon Lena F16 Barbara Baboon

m00 3.25E07 4.68E07 3.08E07 3.37E07 3.23E07 4.67E07 3.06E07 3.36E07
m10 8.67E09 1.22E10 7.73E09 8.64E09 8.62E09 1.22E10 7.70E09 8.60E09
m01 8.05E09 1.18E10 7.36E09 8.70E09 8.00E09 1.17E10 7.32E09 8.67E09
m11 2.19E12 3.05E12 1.87E12 2.19E12 2.18E12 3.04E12 1.86E12 2.19E12
m20 3.01E12 4.24E12 2.58E12 2.96E12 2.99E12 4.23E12 2.57E12 2.95E12
m02 2.70E12 4.02E12 2.37E12 2.98E12 2.68E12 4.01E12 2.35E12 2.97E12
m21 7.71E14 1.06E15 6.33E14 7.46E14 7.67E14 1.06E15 6.29E14 7.43E14
m12 7.38E14 1.03E15 6.13E14 7.44E14 7.34E14 1.02E15 6.09E14 7.41E14
m30 1.16E15 1.65E15 9.74E14 1.14E15 1.15E15 1.65E15 9.69E14 1.14E15
m03 1.02E15 1.55E15 8.74E14 1.15E15 1.02E15 1.55E15 8.69E14 1.15E15
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6. Conclusions

In this paper, we have presented the proposed novel SDCT-based image representation for representing
gray images. Our proposed SDCT-based representation can be viewed as a new hybrid gray image represen-
tation which extends the binary image domain to gray image domain. The proposed SDCT-based image rep-
resentation combines the advantages of STC-based approach for representing homogeneous blocks, each
block with low frequency content, and DCT-based approach for representing nonhomogeneous blocks, each
block with high frequency content. A new data structure consisting of three tables, namely the linear-tree
table, the leaf-type table, and the color table, is presented to realize the proposed novel gray image represen-
tation. Under four real gray images, experimental results demonstrate that the proposed SDCT-based image
representation has better memory-saving effect when compared to the previous STC-based image representa-
tion although the proposed SDCT-based approach takes more encoding/decoding time than the STC-based
approach.

Further, the SDCT-based algorithm has been presented for computing moments and experimental results
reveal that the proposed SDCT-based algorithm for moment computation has better execution–time perfor-
mance when compared to the other approaches, such as the STC-based moment computation, DCT-based
moment computation, and the conventional moment computation on the input gray image. It is an interesting
research issue to apply the results of this paper to design efficient algorithms for different applications, such as
region segmentation, window query, image retrieval, and watermark.

Appendix A. The Proof of Lemma 1

For convenience, we suppose that the width and the height of the block Bi are wi (= x2,i � x1,i + 1) and hi

(= y2,i � y1,i + 1), respectively. From Eq. (1), the estimated gray level at position (x1,i + x, y1,i + y),
0 6 x 6 wi � 1 and 0 6 y 6 hi � 1, is calculated by

Table 7
Relative error

Lena (%) F16 (%) Barbara (%) Baboon (%) Average (%)

m00 0.54 0.24 0.46 0.40 0.41
m10 0.57 0.26 0.46 0.41 0.43
m01 0.57 0.29 0.54 0.38 0.45
m11 0.56 0.32 0.51 0.39 0.45
m20 0.62 0.27 0.45 0.40 0.43
m02 0.53 0.32 0.59 0.37 0.45
m21 0.60 0.35 0.49 0.39 0.46
m12 0.54 0.36 0.54 0.38 0.45
m30 0.65 0.27 0.44 0.39 0.44
m03 0.49 0.32 0.62 0.36 0.45

Average 0.57 0.30 0.51 0.39 0.44

Table 8
Execution-time improvement ratios of the proposed SDCT-based moment computation over the other three approaches

Lena (%) F16 (%) Barbara (%) Baboon (%) Average (%)

STC-based approach 34.74 36.92 46.61 50.51 42.19
DCT-based approach 18.51 22.09 10.01 0.73 12.84
Conventional approach 34.79 41.45 37.21 16.60 32.51
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gestðx1;i þ x; y1;i þ yÞ ¼ gestðx1;i þ x; y1;iÞ þ y �
gestðx1;i þ x; y2;iÞ � gestðx1;i þ x; y1;iÞ

hi � 1

¼ g1;i þ x�
g2;i � g1;i

wi � 1
þ y �

g3;i � g1;i

hi � 1
þ xy �

g1;i � g2;i � g3;i þ g4;i

ðwi � 1Þðhi � 1Þ
¼ g1;i þ xMgh;i þ yMgv;i þ xyF 1;i;

ð4Þ

where Mgh;i ¼
g2;i�g1;i

wi�1
;Mgv;i ¼

g3;i�g1;i

hi�1
, and F 1;i ¼ g1;i�g2;i�g3;iþg4;i

ðwi�1Þðhi�1Þ .

From Eq. (1), The moment equation can be rewritten as

mpq ¼
XK�1

i¼0

mpq;i ¼
XK�1

i¼0

Xwi�1

x¼0

Xhi�1

y¼0

ðx1;i þ xÞpðy1;i þ yÞqgestðx1;i þ x; y1;i þ yÞ. ð5Þ

Then, according to the binomial expansion theorem, the term mpq,i in Eq. (5) can be represented by:

mpq;i ¼
Xwi�1

x¼0

Xhi�1

y¼0

½xp
1;i þ

p
1

� �
xp�1

1;i xþ � � � þ xp�½yq
1;i þ

q
1

� �
yq�1

1;i y þ � � � þ yq�gestðx1;i þ x; y1;i þ yÞ

¼ xp
1;iy

q
1;i

Xwi�1

x¼0

Xhi�1

y¼0

gestðx1;i þ x; y1;i þ yÞ

þ q
1

� �
xp

1;iy
q�1
1;i

Xwi�1

x¼0

Xhi�1

y¼0

ygestðx1;i þ x; y1;i þ yÞ

þ � � � þ xp
1;i

Xwi�1

x¼0

Xhi�1

y¼0

yqgestðx1;i þ x; y1;i þ yÞ

þ p
1

� �
xp�1

1;i yq
1;i

Xwi�1

x¼0

Xhi�1

y¼0

xgestðx1;i þ x; y1;i þ yÞ

þ p
1

� �
q
1

� �
xp�1

1;i yq�1
1;i

Xwi�1

x¼0

Xhi�1

y¼0

xygestðx1;i þ x; y1;i þ yÞ

þ � � � þ p
1

� �
xp�1

1;i

Xwi�1

x¼0

Xhi�1

y¼0

xyqgestðx1;i þ x; y1;i þ yÞ

þ � � � þ � � � þ yq
1;i

Xwi�1

x¼0

Xhi�1

y¼0

xpgestðx1;i þ x; y1;i þ yÞ

þ q
1

� �
yq�1

1;i

Xwi�1

x¼0

Xhi�1

y¼0

xpygestðx1;i þ x; y1;i þ yÞ

þ � � � þ
Xwi�1

x¼0

Xhi�1

y¼0

xpyqgestðx1;i þ x; y1;i þ yÞ.

ð6Þ

By Eq. (4), the kernel computation of each double summation term in Eq. (6) is

Cpq;i ¼
Xwi�1

x¼0

Xhi�1

y¼0

xpyqgestðx1;i þ x; y1;i þ yÞ

¼ g1;i

Xwi�1

x¼0

Xhi�1

y¼0

xpyq þ Mgh;i

Xwi�1

x¼0

Xhi�1

y¼0

xpþ1yq

þ Mgv;i

Xwi�1

x¼0

Xhi�1

y¼0

xpyqþ1 þ F 1;i

Xwi�1

x¼0

Xhi�1

y¼0

xpþ1yqþ1.

ð7Þ
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Using the following five closed forms, the summation term cp
0;wi�1 ¼

Pwi�1
x¼0 xp for a specific p, 0 6 p 6 4, can

be computed in O(1) time. The summation term cq
0;hi�1 ¼

Phi�1
y¼0 yq is the same.

c0
0;wi�1 ¼

Xwi�1

x¼0

x0 ¼ wi;

c1
0;wi�1 ¼

Xwi�1

x¼0

x1 ¼ wiðwi � 1Þ
2

;

c2
0;wi�1 ¼

Xwi�1

x¼0

x2 ¼ wiðwi � 1Þð2wi � 1Þ
6

;

c3
0;wi�1 ¼

Xwi�1

x¼0

x3 ¼ w2
i ðwi � 1Þ2

4
;

c4
0;wi�1 ¼

Xwi�1

x¼0

x4 ¼ wiðwi � 1Þð2wi � 1Þð3w2
i � 3wi � 1Þ

30
.

ð8Þ

So, Eq. (7) can be rewritten as

Cpq;i ¼ g1;ic
p
0;wi�1cq

0;hi�1 þ Mgh;ic
pþ1
0;wi�1cq

0;hi�1 þ Mgv;ic
p
0;wi�1cqþ1

0;hi�1 þ F 1;ic
pþ1
0;wi�1cqþ1

0;hi�1. ð9Þ

Eq. (9) implies that the computation of the term Cpq,i can be finished in O(1) time, and the estimated
moments mpq,i, 0 6 p + q 6 3, can also be calculated in O(1) time. This completes the proof.
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