COMPUTER-AIDED
DESIGN

ELSEVIE Computer-Aided Design 33 (2001) 873-878

www.elsevier.com/locate/cad

A linear-time, constant-space algorithm for computing the spanning line
segments in three dimensions

K.-L. Chung®'*, S.-M. Chang®, T.C. Woo"

“Department of Information Management, Institute of Computer Science and Information Engineering, National Taiwan University of Science and Technology,
No. 43, Section 4, Keelung Road, Taipei 10672, Taiwan, ROC
®Department of Industrial Engineering, University of Washington, Seattle, WA 98195-2650, USA

Received 5 October 1999; revised 28 July 2000; accepted 7 August 2000

Abstract

Given a polyhedron, the set of spanning line segments (SLS) satisfies two properties: (1) completeness property — the set SLS must cover
all the extreme vertices on the convex hull of the polyhedron; (2) inseparability property — there cannot be a plane that separates the set SLS
into two nonempty subsets without intersecting one of them. Owing to the above two properties, the set SLS is proposed as a representation
for testing the intersection between a plane and a three-dimensional (3D) polyhedron. Given a 3D polyhedron with N vertices, this paper
presents an incremental O(N)-time algorithm for constructing the set SLS. The proposed algorithm has the same time complexity as the
previous best result [Wang ME, Woo TC, Chen LL, Chou SY. Computing spanning line segments in three dimensions, The Visual Computer
12 (1996) 173-180], but it reduces the working memory required in the previous work from O(N) to O(1). © 2001 Elsevier Science Ltd. All

rights reserved.

Keywords: Algorithms; Spanning line segments; 3D convex polyhedron

1. Introduction

Computing plane intersections with geometric objects is a
key capability of CAD/CAM systems and many other
geometric-modeling systems. We can obtain most conven-
tional cross-sections of parts by computing the appropriate
plane intersections [1]. In this research, we consider to test
whether there is a possible intersection between a plane
(from the bounding box or the convex hull) and another
three-dimensional (3D) polyhedron. Intuitively, we first find
the minima and the maxima in the x, y, and z directions of the
vertices of the polyhedron, then create a box to bound the
polyhedron. If there is no intersection between the bounding
box and the plane, there is no intersection. The converse,
however, can produce “false alarms”. Fig. 1 illustrates the
situation: when there is an intersection between the bounding
box and the plane, it needs a further intersection test to check
whether the polyhedron intersects the plane or not.

* Corresponding author. Tel.: +886-2-27376771; fax: +886-2-
27376771.
E-mail address: klchung@cs.ntust.edu.tw (K.-L. Chung).
' The work is supported by NSC89-2213-E011-061. Partial work on this
paper was done when the first author was at Washington University, USA.

The idea of the spanning line segments (SLS) refines the
intersection test [3].

Definition 1. [3] Given a polyhedron, the set SLS
satisfies two properties: (1) completeness property — the
set SLS must cover all the extreme vertices on the
convex hull of the polyhedron; (2) inseparability property
— there cannot be a plane that separates the set SLS
into two nonempty subsets without intersecting one of
them.

From Definition 1, an intersection between the given
plane and the set SLS reports unambiguously.

The set SLS can be found from the line segments
connecting the N extreme vertices which lie on the convex
hull of the given polyhedron. In Ref. [4], the set SLS is
determined in O(N) time, but the size of the set SLS may
not be minimal. It turns out that the size of the set SLS
ranges from [N/2] to N(N — 1)/2 and the minimal size of
the set SLS is [N/2| + 1. Wang et al. [5] present an O(N)-
time algorithm for finding such a minimal set SLS while
using O(N) working memory. This paper presents an
incremental linear-time algorithm while reducing the
working memory required in Ref. [5] from O(N) to

0010-4485/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0010-4485(00)00111-1



874 K.-L. Chung et al. / Computer-Aided Design 33 (2001) 873-878

(a) A non-convex polyhedron P.

(b) The bounding box of P.

(c) A false alarm.

Fig. 1. An example of a polyhedron and its bounding box. (a) A non-convex polyhedron P. (b) The bounding box of P. (c) A false alarm.

(a) The convex hull of Fig 1{a).

{b) SLS with five segments.

(c) SLS with four segments.

Fig. 2. The set SLS for Fig. 1(a). (a) The convex hull of Fig. 1(a). (b) SLS with five segments. (c) SLS with four segments.

O(1). Continuing with the same polyhedron as shown in
Fig. 1(a), we show two SLS sets for it in Fig. 2, one with
five SLS in bold and the other with four.

The rest of this paper is organized as follows. Some of the
preliminaries are reviewed in Section 2. The proposed algo-
rithm is presented in Section 3, and we prove the correctness
in Section 4.

2. Previous work

The algorithm in Ref. [5] is an iterative procedure
consisting of: constructing the convex hull, finding a pair
of nonadjacent vertices, removing the pair, and then adding
the spanning line segment connecting the pair to the set SLS
until the number of the vertices in the given polyhedron is
less than five. Upon the termination condition, it obtains the
last three SLS by connecting the remaining vertices in an
arbitrary order. The size of the set SLS thus obtained,
|N/2] + 1, is minimal.

For clarity, an example to demonstrate the algorithm in
Ref. [5] is useful. Given a polyhedron, its convex hull is first
found and shown in Fig. 3(b). Initially, the set SLS is {¢}.
Later, we traverse the representation of the convex polyhe-
dron and put the related information into a linked-list. Then
a pair of nonadjacent vertices is found (see Fig. 3(c)), and
the set SLS is now {L;}. After removing the vertices of L,
from the convex hull, the remaining convex hull is updated
and is shown by bold lines in Fig. 3(c). We get the second
SLS, L,, from the convex polyhedron in Fig. 3(c) and the set
SLS is now {L,L,}, as shown in Fig. 3(d). After removing
L,, the remaining convex hull denoted by solid lines is
shown in Fig. 3(d). As illustrated in Fig. 3(e), we get the
third SLS, Ls, by connecting two nonadjacent vertices of the
convex hull in Fig. 3(d) and now the number of remaining
vertices is four. Finally, we select a chain of three line
segments Ly, Ls and Ls which join the four remaining
vertices. The resulting set SLS for this example is shown
in Fig. 3(f) and it is represented by {L,, L,, L3, L4, Ls, L¢}.



K.-L. Chung et al. / Computer-Aided Design 33 (2001) 873-878 875

(d) The second spanning line
segment L, .

(e) The third spanning line
segment L, .

(c) The first spanning line segment
L, and the remaining convex hull.

(f) All spanning line segments.

Fig. 3. A simulation of Wang et al.’s algorithm. (a) A given polyhedron. (b) Initial convex hull. (c) The first spanning line segment .| and the remaining
convex hull. (d) The second spanning line segment %,. (e) The third spanning line segment #;. (f) All spanning line segments.

In Ref. [5], the construction of the convex hull for the
given polyhedron takes O(N) time and this construction is
incurred only once; the subsequent convex hulls are
updated, incurring constant time. The total time is O(N).
Since, in each iteration, the convex hull of the remaining
vertices is kept in memory, it takes O(N) space.

Finally, we cite the following lemma from Ref. [5]. Here,
we simplify their proof.

Lemma 1. In a convex polyhedron P with vertices set V,
there always exists two non-adjacent vertices p and q in V.
Let S be the set of spanning line segments for the convex hull
of the set V-{p,q}. Then adding the line segment (p,q) to S
spans P.

Proof. First, the line segment (p,q) is obtained by connect-
ing p and q. It is obvious that the union S U {(p, )} satisfies
the completeness property. Since p and ¢ are non-adjacent,
the line segment (p,g) intersects polyhedron with vertices
set V — {p, q}. Because of the inseparable property in S, the

union S U {(p, q)} satisfies the inseparability property. This
completes the proof. [J

3. A constant space algorithm

The main concept of the proposed incremental algorithm
is that, instead of maintaining all the remaining vertices, we
keep a small convex polyhedron of a constant vertex size,
say 5. We call it the “kernel”” Q. By Lemma 1 and the
concept of the kernel, we have the following algorithm.

We first take five vertices from the given polyhedron P
and construct the kernel Q using O(1) time. By Lemma 1,
we can find a pair of nonadjacent vertices in Q using O(1)
time. Connect this pair by a line segment, say ;. We
output the line segment L; and remove the two correspond-
ing vertices from the five vertices. The set SLS is now
{#1}. We then add two arbitrary vertices, p and ¢, from
the set of vertices in P to the three vertices in Q. We
construct a new kernel from the set of five vertices. Again,
by Lemma 1, a pair of nonadjacent vertices in the new
kernel can be found in O(1) time and another line segment



876 K.-L. Chung et al. / Computer-Aided Design 33 (2001) 873-878

L

L

z

(d) The first line segment L, (e) Enlarge the kenel by adding (f) The second spanning line
and the shrunken kernel . two new vertices from P. segment L,.

(g) The SLS={L ,L,} and the
shrunken kernel.

(h) Enlarge the kernel. (1) The third spanning line
segment L ;.

Fig. 4. A simulation of the proposed algorithm. (a) Initial convex hull. (b) A kernel. (c) The obtained line segment .%;. (d) The first line segment .| and the
shrunken kernel. (e) Enlarge the kernel by adding two new vertices from P. (f) The second spanning line segment .%,. (g) The SLS = { %,.%,} and the
shrunken kernel. (h) Enlarge the kernel. (i) The third spanning line segment .%;..



K.-L. Chung et al. / Computer-Aided Design 33 (2001) 873-878 877

%, is obtained. The set SLS now becomes {¥,%,}. We
then remove the two vertices p and g from Q.

Repeating the above process, we add two new vertices
from the given polyhedron to the kernel. Then, we find a
pair of nonadjacent vertices from the newly constructed
kernel and output the corresponding line segment to the
set SLS. Finally, we remove the pair of vertices from the
kernel. These steps take constant time and are continued
until the number of the vertices of the given polyhedron is
less than five. Since a kernel of no more than five vertices is
kept in memory while processing, the algorithm takes O(1)
space. The procedure is illustrated in Fig. 4, in which the
final kernel is of size less than five, and where we obtain
three line segments.

A formal algorithm is given below:

Algorithm MSLS: Minimal Spanning Line Segments
Input: a convex polyhedron P of N vertices.

Output: the set SLS of size [N/2] + 1.

Begin

Step 0 Initialize SLS = {¢}.

Step 1 Select five vertices from the given vertex set of P
randomly; delete them from P.

Step 2 Repeat until the number of vertices is less than
five:

2.1 Construct a kernel Q from the five vertices and

identify two nonadjacent vertices from it.

2.2 Output the line segment % joining two nonadjacent

vertices to the set SLS, i.e. SLS = SLS U {L}. Delete

the two nonadjacent vertices from Q.

2.3 Choose any two vertices from P and add them to Q.
Step 3 Compute the spanning line segments for the
remaining four (or three) vertices and add them to the
set SLS.

End

4. Correctness and performance of the algorithm

Recall the two properties of the set SLS: completeness (of
covering all extreme vertices of the given polyhedron P) and
inseparability (by a plane which intersects P but not the set
SLS). To show the correctness of the algorithm MSLS, the
following new lemma will be needed for the correctness
proof and performance discussion.

Lemma 2. Given a polyhedron with five or more vertices,
there is always a pair of nonadjacent vertices.

Proof. We prove by contradiction. Let V, E, and F denote
the number of vertices, edges and faces of the polyhedron,
respectively. From the well-known Euler formula [2], there
are two relations: (1) V — E + F =2 and (2) 3F = 2E. Itis
easy to obtain the relation £ = 3V — 6. Assume a poly-
hedron with V =5 vertices being adjacent to each other,

i.e. we have £ = V(V — 1)/2. From E = 3V — 6, we have
V(V — 1)/2 = 3V — 6. Using some algebraic manipulations,
we have 3 = V = 4, which contradicts the assertion. [

We are now ready to show that the set SLS obtained by
the algorithm MSLS satisfies both completeness and insepar-
ability.

Theorem 1. Given a convex polyhedron with N vertices,
the algorithm MSLS obtains the set SLS correctly.

Proof. The property of completeness is satisfied since, in
each iteration, two nonadjacent vertices are connected by a
SLS, then these two vertices are removed from the polyhe-
dron. Furthermore, the last kernel with either three or four
vertices is partitioned into either two or three line segments.

We now prove that the property of inseparability is also
satisfied by the set SLS. By Lemma 2, it is shown that in
each iteration of Step 2, we always can find a pair of nonad-
jacent vertices in the kernel. We thus get the first line
segment in the first iteration of Step 2, say %, from the
kernel Q constructed from five vertices. From Lemma 1, it
can be shown that ., spans Q and this implies that a plane
intersects the kernel Q if and only if it intersects either the
line segment ., or the kernel constructed from the remain-
ing three vertices. This confirms that the obtained line
segment ¢ satisfies the inseparability property for Q.

By the same argument, any new line segment connecting
two nonadjacent vertices always intersects the “shrunken’’
kernel (with three vertices). Before obtaining the last two or
three line segments from it, we have a set of line segments,
(L1, Ly, L5, ..., Liv—ay2}Which spans Q. Either three
vertices or four vertices remain in O, depending on whether
N is even or odd. For the three (four) vertices case, an
arbitrary chain of two (three) line segments are found and
put into the set SLS. These line segments consequently
satisfy the inseparability property. [

We next examine the performance of the algorithm. If N
is odd, (N — 3)/2 iterations are needed in Step 2 and (N —
3)/2 line segments are obtained before the final Step 3 which
gives an additional two line segments. Therefore, the total
size of the set SLS is equal to (N —3)/2 +2=|N/2]+ 1
when N is odd. If Nis even, (N — 4)/2 iterations are needed
in Step 2 and (N — 4)/2 line segments are obtained. And
then a chain of three line segments is obtained in Step 3
so that the size of the set SLS is (N — 4)/2 + 3 =|N/2] + 1
when N is even. Since we consider only five vertices in each
iteration and [(N — 4)/2] iterations are executed in Step 2,
the working memory and time complexity is O(1) for Q and
O(N) for P. Consequently, we have the main result.

Theorem 2. Given a convex polyhedron P with N vertices,
the algorithm MSLS obtains the set SLS of size |N/2] + 1 for
P in O(N) time using O(1) space.



878 K.-L. Chung et al. / Computer-Aided Design 33 (2001) 873-878

We use the convex polyhedron consisting of two tetrahe-
drons, say A and B, one facet of A touching one facet of B
side by side, to compare the execution time performance of
the proposed algorithm and the previous algorithm [5]. The
experiment is performed on the IBM compatible personal
computer Pentium III microprocessor with 500 MHz, where
the RAM is of size 128 MB. The language used is Visual
C++ and the environment is Window 98. For the same
input, the proposed algorithm needs 10 ms while the
previous algorithm [5] needs 34 ms. The experimental
results reveals that although the time complexity in terms
of big-O notation is the same for both algorithms, the
proposed algorithm is faster than the previous algorithm
in practice. The main reason is that the concerning manip-
ulations on the constant-space working memory used in the
proposed algorithm are much simpler than those on the
O(N)-space working memory in the previous algorithm.

Acknowledgements

The authors are indebted to the anonymous reviewers and
Editor-in-Chief Prof. Les A. Piegl for making some valuable
suggestions and corrections that led to the improved version
of the paper. We also appreciate Wan-Yue Chen for her
programming help.

References

[1] Mortenson ME. Geometric modeling. New York: Wiley, 1985 (chap. 7,
Intersections).
[2] Harary F. Graph theory. Reading, MA: Addison-Wesley, 1972.

[3] Wang JY, Yuen LD, Woo TC. A method for testing intersection
between plane and polyhedron, Technical Report, GINTIC Institute
of Manufacturing Technology, Nanyang Technological University,
Singapore, 1993.

[4] WangJY, Yuen LD, Woo TC, Chen XM. The spanning line segments
of a polyhedron. ASME Trans. J. Mech. Design 1996;118:40—44.

[5] Wang ME, Woo TC, Chen LL, Chou SY. Computing spanning line
segments in three dimensions. The Visual Computer 1996;12:173-80.

Kuo-Liang Chung received the BS, MS, and PhD degrees in Depart-
ment of Computer Science and Information Engineering from National
Taiwan University, ROC. He has been a professor in the Department of
Information Management and Institute of Computer Science and Infor-
mation Engineering of the National Taiwan University of Science and
Technology since 1995. His current research interests include image/
video processing, compression, computer graphics, and theoretical
computer science. He is a member of IEEE.

Shyh-Ming Chang received the BS degree in Computer Science and
Information Engineering in Computer Engineering and Science from
Yuan-Ze University and the MS degree in Institute of Computer
Science and Information Engineering in 1999 from the National Taiwan
University of Science and Technology. His current research interests
include image processing and computer graphics.

Tony Woo is professor and director of Industrial Engineering as well as
Fluke Chair of Manufacturing Engineering at the University of
Washington. His research interest includes computer graphics and
computational geometry.



