
Real-Time Imaging 7, 473–481 (2001)
doi:10.1006/rtim.2001.0233, available online at http://www.idealibrary.com on
A New Randomized Algorithm for
Detecting Lines

L
ine detection is very important in image processing. In this paper, a new randomized
algorithm for detecting lines is presented. The proposed algorithm is quite different from
the previous parameter–based methods which vote on the parameter space. Our proposed

novel algorithm does not need extra storage to maintain an accumulator array for representing
parameter space. The main concept used in the proposed algorithm is that we first randomly select
three edge points in the image and use a distance criterion to determine whether there is a
candidate line in the image; after finding that candidate line, we apply an evidence–collecting
process to further determine whether the candidate line is the desired line. Some experiments have
been carried out to demonstrate the computational and robust advantages of the proposed
algorithm when compared with the previous algorithms.

2001 Academic Press

Teh-Chuan Chen* and Kuo-Liang Chungw

Department of Information Management, Institute of Computer Science and Information Engineering,
National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road,

Taipei, Taiwan 10672, R. O. C.
Introduction

Detecting lines is one of the most fundamental problems
in the image processing community [1]. The commonly
used method for solving this problem is the Hough
transform (HT) and its variants [2,3]. Originally, the HT
was proposed by Hough [4] whose method is based on
the slope and intercept parameters. Later, Duda and
Hart [5] introduced the normal form of a line to avoid
the infinite range of parameter space and their method is
denoted by DHT for convenience. In DHT, a straight
line in an image is parameterized in normal form by

� ¼ xcos�þ ysin�; ð1Þ
*Also at: Department of Information Management, Chung-Yu
Junior College of Business Administration, 40 I Chi Road,
Keelung 201, Taiwan, R. O. C.
wCorresponding author. E-mail: klchung@cs.ntust.edu.tw,
supported by NSC89-2218-E011-017

1077-2014/01/060473+09 $35.00/0
where ðx; yÞ denotes the coordinates of the given edge
point on the straight line; � and � denote the normal
distance from the origin to the line and the angle of the
normal line associated with the positive x-axis, respec-
tively. Essentially, the DHT consists of two phases: (1)
the evidence–collecting phase and (2) the searching
phase for finding the desired line. In the evidence–
collecting phase, the DHT employs the voting techni-
que. From Eqn. (1), for different �’s, each edge point
ðx; yÞ is transformed to many points in the ð�; �Þ
parameter space which is quantized and represented by
an accumulator array. After finishing the evidence–
collecting phase for all edge points, the searching phase
searches the cells whose scores are larger than the
threshold in the accumulator array, then their corre-
sponding parameters are recognized as the parameters
of the desired lines in the image. As a result, to
implement DHT, it requires large storage to save the
accumulator array and some computational effort for
voting and searching in the array.
r 2001 Academic Press

474 TEH-HUANCHEN ANDKUO-IANGCHUNG
Previously, based on the random sampling technique,
Fischler and Bolles [6, 7] presented the Random Sample
Consensus (RANSAC). The RANSAC randomly selects
two edge pixels each time and then other edge pixels are
used to test whether the line determined by the two edge
pixels is a true line in the image. But in some cases, the
probability of two randomly picked edge pixels coming
from a true line in an image is low and this will degrade
the efficiency of the RANSAC.

In order to reduce the large storage and heavy
computation needed in the DHT, Xu et al. [8, 9]
proposed a randomized Hough transform (RHT) which
also randomly selects two edges pixels each time.
According to Eqn (1), the reason behind the RHT is
that two edge points can be mapped into one
corresponding point in the ð�; �Þ parameter space which
represents the line passing through the two edge points.
For this reason, the RHT randomly picks two edge
points in the image each time with equal probability.
Then, their corresponding mapped point in the para-
meter space is accumulated by voting in an appropriate
type of accumulator such as the usual accumulation
array or the dynamic linear list [9]. The above procedure
is continued until some cells in the accumulator have
satisfactory scores (i.e. larger than a given threshold)
and each of them represents a candidate line. For each
candidate line, it follows another evidence–collecting
step which counts the number of edge points lying in the
candidate line. This step is used to determine whether
the candidate line is the desired line. Moreover, when a
line is detected, the points lying in the line are taken out
of the set of edge points in order to speed up the next
line detection. Different lines are detected iteratively
until a given stopping criterion is reached.

Later, Kälviäinen and Hirvonen [10] proposed a
connective randomized Hough transform (CRHT)
which improves the RHT by exploiting the connectivity
of local edge pixels. The effectiveness and efficiency of
the CRHT heavily depend on the connectivity of
neighboring edge pixels. So, problems may arise if the
testing image is in the presence of distortions and noises.
To alleviate these problems, Kyrki and Kälviäinen [11]
proposed an extended connective randomized Hough
transform (ECRHT). The ECRHT also uses local
information to improve RHT but allows gaps in a line
segment. Basically, the RHT [8], CRHT, and ECRHT
still use the voting technique to collect the evidence of
lines in the accumulator. Thus, these three methods still
belong to the type of HT-based methods and still need
some extra storage for saving the accumulator.
Although the CRHT and the ECRHT can be imple-
mented without using the accumulator by setting the
threshold in the accumulator to one [10,11], by employ-
ing this accommodation a bend curve could be
recognized as many straight lines.

The DHT is a non–probabilistic approach, whereas
the RANSAC, the RHT, the CRHT, and the ECRHT
are the probabilistic approaches. For a comprehensive
survey on the two kinds of approach refer to [2,3,12].

In this paper, we present a new Randomized Line
Detection algorithm, called the RLD. The proposed
RLD first randomly picks three edge points in the image
and uses a distance criterion to determine whether there
is a candidate line in the image. After finding a
candidate line, it follows an evidence-collecting process
to further determine whether the candidate line is the
desired line. The proposed RLD is not based on the
voting technique, so it does not need the accumulator.
The proposed method leads to some advantages such as
real–time speed, adaptive accuracy, and raise robust-
ness. Some experiments have been carried out to confirm
these advantages when compared with the previous
methods, such as the DHT, the RANSAC, the RHT,
and the ECRHT. Since experimental results [11] have
shown that the ECRHT is more effective than the
CRHT, we only include the ECRHT for comparison.

The Proposed Algorithm: RLD

This section consists of four subsections. The first
subsection describes the basic idea of the RLD. The
second subsection presents two criteria which can be
used to determine whether the selected three edges
points lie on a candidate line or not. The third
subsection describes how to check whether the candidate
line is a true line, i.e. the desired line, in an image.
Finally, the formal algorithm of the proposed RLD is
listed in the fourth subsection.

Basic idea

Let V denote the set of all edge points in an image.
From the RHT [8], we know that if we randomly pick
two edge points from V ; the two points are probably
taken from a straight line in the image. Two points can
exactly determine a straight line. Therefore, when it is
shown that many selected edge points are from the same
straight line, it is very probable that the straight line a
true line in the image. This is why RHT requires an

Figure 1. Pixels of a digital line are roughly on a straight line
(the dash line).

ANEWRANDOMIZEDALGORITHMFORDETECTINGLINES 475
accumulator to collect the evidence of line obtained
from any two edge points we picked and needs to do this
job iteratively in order to discover a candidate line in the
accumulator. We now extend this idea, used in [8], to the
case of randomly picking three edge points. Surpris-
ingly, this extension leads to memoryFand computa-
tion F saving effects.

Generally, three edge points can determine three
straight lines. But if the selected three edge points are
from the same straight line, the straight line seems very
likely to be a true line in the image. For example, assume
there is an image with only one straight line. When we
randomly pick three edge points from the image and it
shows that the three points are almost on the same line,
i.e. collinear, we can then further determine a candidate
line from the three edge points and check whether the
candidate line is a true line or not.

Determine candidate lines

Here we present two methods, each used as a criterion,
to determine whether three edge points are collinear.
The first method is motivated by the fact that the area of
the triangle formed by three collinear points is 0.

Let vi ¼ ðxi; yiÞ denote a pixel with coordinates ðxi; yiÞ
in an image. Given three pixels v1, v2, and v3, if they are
not collinear, they can form a triangle with those three
points as its vertices. The area of the triangle can be
easily calculated using the following formula:

1

2
½ðx2 ÿ x1Þ ð y3 ÿ y1Þ ÿ ðx3 ÿ x1Þ ð y2 ÿ y1Þ�

���� ����; ð2Þ

where jzj denotes the absolute value of z.

If v1, v2, and v3 are totally collinear, the value of Eqn
(2) is 0. But as the image we dealt with is a digital image,
it rarely occurs that many edge points lie exactly on a
line. So, the purpose of line detection in a digital image
is to detect a set of edge points which lie not exactly but
roughly on a straight line (see Figure 1). When v1, v2,
and v3 are almost collinear and lie on a digital line, then
the value of Eqn (2) is very small. So, Eqn (2) can be
used to determine whether v1, v2, and v3 are collinear.

There is a normalized problem which arises from
using the area of a triangle [see Eqn. (2)] to check
whether these three points are collinear. For example, as
shown in Figure 1, v1, v2, v3, and v4 lie on a digital line,
but the area of the triangle formed by v1, v3, and v4 is six
times larger than the area of the triangle formed by v1,
v2, and v4. Therefore, we propose another criterion to
avoid this case. Given three randomly picked edge
points vi ¼ ðxi; yiÞ, vj ¼ ðxj ; yjÞ, and vk ¼ ðxk; ykÞ, if they
are collinear, there exists one of the three points where
the distance from it to the line passing through the other
two points is small. For example, v1, v2, and v3 are
collinear in Figure 2. The distance from v3 to the
line passing through v1 and v2, denoted by d3!12 is
small. Intuitively, we can regard v3 as it lies on the line
passing through v1 and v2 if the distance d3!12 is small
enough.

Note that three points can determine three lines and
each line has its own distance to the third point. As
shown in Figure 2, the line passing through v1 and v2
satisfies two conditions: (1) It has the shortest distance
to v3 and (2) the distance is smaller than some tolerance
value (e.g., 0.5). So, we can regard the line passing
through v1 and v2 as the candidate line.

Therefore, we can use the distance between a point
and a line, which determined by another two points, to
check whether these three randomly chosen points are
collinear. What we need to know is which line has the
corresponding minimum distance among three such
distances. To solve this problem, we can regard the three
points as the vertices of a triangle. In the triangle, the
distance from one vertex to the line passing through the
other two vertices is the height corresponding to the side
connected by the two vertices. There are three such
heights and we need to find out the minimum one. In
fact, the longest side has the corresponding minimum

Figure 2. An example of three pixels in a digital line.

Figure 3. An example of three close pixels in a digital line.

476 TEH-HUANCHEN ANDKUO-IANGCHUNG
height in a triangle. This can be justified from the
following theorem.

THEOREM 1. In a triangle formed by three vertices,
there are three sides determined by connecting any two
vertices and three corresponding heights being the
distance from one vertex to the line extending from
the opposite side. Then, the minimum height is the one
whose corresponding side has the longest length among
the three sides.
Proof. The area of a triangle is equal to the half of the
length of each side multiplies its corresponding height.
So, it is easy to see that the longest side has the shortest
height.

Using Euclidean distance measure, the length of vivj
can be calculated byffi

ðxj ÿ xiÞ
2 þ ðyj ÿ yiÞ

2
q

:

From Theorem 1, we first calculate the length of three
sides, i.e. vivj , vjvk, and vkvi. Then, the minimum height
is the one whose corresponding side is the longest one
among the three sides. For example, when vivj is the
longest side, then the minimum height is the distance
from vk to the line passing through vi and vj.

When we know that the distance from vk to the line
passing through vi and vj , say dk!ij , is minimum, we
need to calculate the value dk!ij to check whether dk!ij is
small enough. The line passing through vi and vj can be
represented as

ðxj ÿ xiÞ ð yÿ yiÞ ¼ ð yj ÿ yiÞ ðxÿ xiÞ
or

ðxj ÿ xiÞyþ ð yi ÿ yjÞxþ xiyj ÿ xjyi ¼ 0:

Therefore, dk!ij can be calculated by

dk!ij ¼
jðxj ÿ xiÞyk þ ð yi ÿ yjÞxk þ xiyj ÿ xjyi jffi

ðxj ÿ xiÞ
2 þ ð yj ÿ yiÞ

2
q

:
: ð3Þ

If dk!ij is not larger than a given tolerance Td , for
example Td ¼ 0:5, we conclude that vi, vj , and vk are
collinear and the line passing through vi and vj is our
candidate line. Furthermore, vi and vj are called the
agent points of the candidate line.

There is, however, an undesirable case that should be
taken care of. When vi, vj , and vk are so close, the
minimum distance between point and line may be
smaller than Td , but the true line is not determined by
any two points (see Figure 3). To avoid this case, we
claim that the distance between two agent points of a
candidate line must be greater than a given threshold
Tmin. If so, it means that the candidate line is stretched
enough.

Determine true lines

After we detect a candidate line with agent points vi and
vj, whether the candidate line is a true line in an image
can be checked by the following evidence–collecting
process. Initially, we set a counter C ¼ 0 for this
candidate line. For each edge point vk in V , Eqn (3) is
used to calculate the value dk!ij . If dk!ij is not larger
than the given threshold Td , we increment the counter C

Figure 4. The testing synthetic images. (a) The original synthetic image; (b) the image, Noise1, with 903 randomly adding pixels;
(c) the image, Noise2, with 1805 randomly adding pixels; (d) the image, Noise3, with 2708 randomly adding pixels; (e) the resulting
image.

ANEWRANDOMIZEDALGORITHMFORDETECTINGLINES 477

Table 1. Time performance comparison for synthetic images

Method Original Noise 1 Noise 2 Noise 3

DHT 3606 5490 7182 8962
RANSAC_ND 57 1575 3639 9608
RANSAC_D 41 432 1039 2761
RHT_ND 341 1105 2113 6048
RHT_D 283 577 1133 2339
ECRHT 425 374 393 697
RLD_ND 17 78 188 361
RLD_D 18 44 94 170

478 TEH-HUANCHEN ANDKUO-IANGCHUNG
by one and take vk out of V ; otherwise we proceed next
edge point. We continue the evidence–collecting process
until all the edge points in V have been examined.
Assume that np edge points have been taken out, i.e.
C ¼ np, and then we check whether the counter C is
larger than the given threshold Tl or not. Once C is
larger than Tl , we conclude that the candidate line is a
true line. Otherwise, the candidate line is a false line and
we return those np edge points into the set V :

The proposed RLD algorithm

From the above description, this subsection presents the
formal RLD algorithm consisting of six steps and these
steps are stated as follows:

Step 1. Putting the coordinates of all edge pixels
vi ¼ ðxi; yiÞ into the set V and initialize the failure
counter f ¼ 0. Let Tf and Tl be two given thresholds,
where Tf denotes the number of failures that we can
tolerate; a line in an image should have at least Tl pixels.
Moreover, let jV j denote the number of edge points
retained in V .

Step 2. If f ¼ Tf or jV joTl, then stop; otherwise, we
randomly pick three points vi; i ¼ 1; 2; 3, out of V in
such a way that all points of V have an equal probability
to be taken as vi. When vi has been taken, set
V ¼ V ÿ fvig.

Step 3. Using Euclidean distance measure, we
calculate the lengths, v1v2, v1v3, and v2v3. Finding out
the longest one among these three lengths. Assume the
longest one is v1v2, then we calculating d3!12 by Eqn.
(3). If d3!12 � Td and the length of v1v2 is larger than
Tmin, where Tmin is a given threshold which denotes the
length of the longest side being longer than Tmin, we
regard the line passing through v1 and v2 as a candidate
line and goto Step 4; otherwise, put vi; i ¼ 1; 2; 3, back to
V ; perform f :¼ f þ 1; go to Step 2.

Step 4. Set the counter C ¼ 0. For each vk in V , check
whether dk!12 is not larger than the given tolerance Td .
If yes, C :¼ C þ 1 and take vk out of V .

Step 5. Assume there are np edge points, i.e. C ¼ np,
with dk!12 � Td . If C � Tl , go to Step 6; otherwise,
regard the candidate line be a false line, return these np
edge points into V ; f :¼ f þ 1, and go to Step 2.

Step 6. The candidate line has been detected as a true
line. Set f ¼ 0 and go to Step 2.
Following the point distance criterion proposed by
Kälviäinen and Hirvonen [8], Step 2 can be modified as
follows:

Step 2. If f ¼ Tf or jV joTl, then stop; otherwise,
we randomly pick three points vi; i ¼ 1; 2; 3, out of
V in such a way that all points of V have an equal
probability to be taken as vi and the distance between
any two of the three pixels should be not larger than a
predefined value Tmax. When vi has been taken, set
V ¼ V ÿ fvig.

For convenience, the RLD ND (RLD D) is used to
denote the proposed RLD without (with) the point
distance criterion. Note that the point distance criterion
can also be applied to the RANSAC which randomly
picks two pixels each time. Similarly, the RANSAC ND
(RANSAC D) is used to denote the RANSAC without
(with) the point distance criterion. RHT ND (RHT D)
is used to denote the RHT without (with) the point
distance criterion.

Experimental Results

The performance of the RLD is tested on one synthetic
image and two real images. A 256� 256 synthetic image
with 1805 edge points is shown in Figure 4(a). The
synthetic image consists of lines with different slopes. In
order to test the robustness of the RLD, 903 (about half
of 1805), 1805, and 2708 extra noisy pixels are added to
the synthetic image and the resulting images are shown
in Figure 4(b), Figure 4(c), and Figure 4(d), respectively.
Besides the RLD ND and the RLD D, all the related
line detection methods, such as the DHT, the RAN-
SAC ND, the RANSAC D, the RHT ND, the RHT D,
and the ECRHT, are implemented in order to compare
their performance.

In our implementations, any one of these methods we
choose for comparison can correctly detect the lines in

Figure 5. (a) The floor_image; (b) the road_image; (c) the edge pixels of floor_image; (d) the edge pixels of road_image; (e) the
detected lines of floor_image; (f) the detected lines of road_image.

ANEWRANDOMIZEDALGORITHMFORDETECTINGLINES 479

480 TEH-HUANCHEN ANDKUO-IANGCHUNG
the testing images. For example, using our proposed
RLD, the resulting image is shown in Figure 4(e), where
each line is drawn by passing the two agent points,
which represent the line that we have detected.

The execution time of all the implementations are
examined by using the Pentium 233 personal computer
and the Microsoft Windows 98 environment. The
programming language used is the Borland C++
Builder version 4. Table 1 illustrates the experimental
results. In Table 1, the first column denotes the name of
the line detection method used and the next four
columns begin with the names of the synthetic images.
The execution time required in each method is measured
in terms of milliseconds and the related simulations are
tested based on 1000 simulations for each method.

From Table 1, it is observed that the two variants of
the proposed RLD, the RLD ND and the RLD D, are
the fastest ones among the concerning methods. Table 1
reveals that any method with the point distance criterion
has better time performance when compared with the
one without the point distance criterion.

Further, as shown in Figure 5(a) and Figure 5(b), two
real images, floor image and road image, are used for
time performance comparison. Each image is of size
256� 256. The edge pixels of the two images are shown
in Figure 5(c) and Figure 5(d), respectively. In order to
test the robustness of the RLD, the Laplacian operator
[1] is used as the edge detection operator. Similar to the
test of synthetic images, all the methods concerned have
a similar detecting result. Figure 5(e) and Figure 5(f)
show the resulting images of the RLD. The time
performance comparison among the concerning meth-
ods is shown in Table 2.

Table 2 reveals that the two variants of the proposed
RLD, the RLD ND and the RLD D, are the fastest
amongst the methods concerned. Basically, the point
Table 2. Time performance comparison for two real images

Method floor_image road_image

DHT 3641 4110
RANSAC_ND 3023 3632
RANSAC_D 753 1082
RHT_ND 1180 3073
RHT_D 483 1233
ECRHT 1062 1516
RLD_ND 195 207
RLD_D 83 95
distance criterion proposed in [10] can prune away some
false lines leading to the computational effect. This is
why the method with the point distance criterion has a
better time performance when compared with the one
without the point distance criterion.

Two Remarks About the Proposed RLD

In this section, two remarks are given to illustrate some
other advantages of the proposed RLD method.

(1) In the DHT method or other line detection
methods implemented with an accumulator array
representing the parameter space, due to the fact that
the quantization of the parameter space and the exact
parameters of a line are often not equal to the quantized
parameters, these methods seldom find the exact
parameters of a line in the image [13]. But, the proposed
RLD method is not based on the quantization of the
parameter space. In the RLD method, the detected lines
are based on the edge points that we pick. Therefore, the
proposed method may detect the line in a more accurate
way. Also, due to quantization of the parameter space, a
cell in the accumulator array corresponds to a region
which is not exactly bar-shaped but is like a bow–tie
shape in the image space [14]. However, the proposed
RLD method uses two agent points to represent a
candidate line, followed by the distance between the
point to the candidate line to test which other points
belong to the line. Therefore, when we find a candidate
line, the region included in the image to support whether
it is a true line is exactly bar-shaped.

(2) In the HT–based methods, high resolution in
parameter space necessitates large storage and more
computation time. Therefore, there is a trade-off
between the resolution of the detected line and the
burden in storage and computation time. But, in the
proposed RLD method, we use two agent points to
represent a line and dynamically adjust the threshold Td

to fit any resolution of the line without increasing the
storage and time requirement.

Conclusions

In this paper, we have presented a new randomized
algorithm for line detection. The proposed RLD method
is based on randomly picking three edge points in the
image. Then, based on some newly proposed criteria, we
work out a candidate line and check whether the

ANEWRANDOMIZEDALGORITHMFORDETECTINGLINES 481
candidate line is a true line. Unlike the HT–based
methods, the proposed RLD method is not based on the
parameter approach. Hence, it indeed does not need any
extra storage for saving the accumulator array, which is
needed in the HT–based methods. Furthermore, the
proposed RLD has some advantages such as high speed,
adaptive accuracy, and robust to noises. The experi-
mental results have confirmed these advantages.

Acknowledgment

We would like to thank three anonymous referees and
the Associate Editor Professor L. da Fontoura Costa for
their valuable suggestions that lead to the improved
presentation of this paper. We also appreciate Miss L.
F. Chieu for her valuable corrections.

References

1. Gonzalez, R.C. & Woods, R.E. (1992) Digital Image
Processing, Addison Wesley, New York.

2. Illingworth, J. & Kittler, J. (1988) ‘‘Surver: Survey of the
Hough Transforms,’’ Computer Vision, Graphics, and
Image Processing, 44: 87–116.

3. Leavers, V.F. (1993) ‘‘Survey: Which Hough Transform,’’
CVGIP: Image Understanding, 58(2), 250–264.
4. Hough P.V.C. ‘‘Method and Means for Recognizing
Complex Patterns,’’ U.S. Patent 3,069,654, Dec. 18, 1962.

5. Duda R.O. and Hart P. E. (1972) ‘‘Use of the Hough
Transformation to Detect Lines and Curves in Pictures,’’
Commun. ACM, 15(1): 11–15.

6. Fischler M.A. & Bolles, R.C. (1981) ‘‘Random Sample
Consensus: A Paradigm for Model Fitting with Applica-
tions to Image Analysis and Automated Cartography,’’
Commun. ACM, 24(6): 381–395.

7. Fischler, M.A. & Firschein, O. (1978) Intelligence: The
Eye, the Brain, and the Computer, Addison Wesley, pp.
279–280.

8. Xu, L., Oja, E. & Kultanan, P. (1990) ‘‘A New Curve
Detection Method: Randomized Hough Transforms
(RHT),’’ Pattern Recognition Letters, 11(5): 331–338.

9. Xu, L. & Oja, E. (1993) ‘‘Randomized Hough Transform
(RHT): Basic Mechanisms, Algorithms, and Computa-
tional Complexities,’’ CVGIP: Image Understanding,
57(2): 131–154.

10. Kälviäinen, H. & Hirvonen, P. (1997) ‘‘An Extension to
the Randomized Hough Transform Exploiting Connectiv-
ity,’’ Pattern Recognition Letters, 18(1): 77–85.

11. Kyrki, V. & Kälviäinen, H. (2000) ‘‘Combination of Local
and Global Line Extraction,’’ Real-Time Imaging, 6,
79–91.

12. Kälviäinen, H., Hirvonen, P. Xu, L. & Oja, E. (1995)
‘‘Probabilistic and Nonprobabilistic Hough Transforms:
Overview and Comparison,’’ Image and Vision Computing,
13(4): 239–252.

13. van Veen, T.M. & Groen, F.C.A. (1981) ‘‘Discretization
Errors in the Hough Transform,’’ Pattern Recognition,
14(1): 137–145.

	Introduction
	The Proposed Algorithm: RLD
	Figure 1
	Figure 2
	Figure 3
	Figure 4

	Experimental Results
	Table 1
	Figure 5
	Table 2

	Two Remarks About the Proposed RLD
	Conclusions
	Acknowledgment
	References

