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Abstract

Motion estimation is one of the kernel issues in MPEG series. In this correspondence, a novel two-phase Hilbert-scan-based
search algorithm for block motion estimation is presented. First in the intra-phase, a segmentation of the Hilbert curve is
applied to the current block, then a novel coarse-to-6ne data structure is developed to eliminate the impossible reference blocks
in the search window of the reference frame. In the inter-phase, a new prediction scheme for estimating the initial motion
vector of the current block is presented. Experimental results reveal that when compared to the GAPD algorithm, our proposed
algorithm has better execution time and estimation accuracy performance. Under the same estimation accuracy, our proposed
algorithm has better execution time performance when compared to the FS algorithm. In addition, when comparing with the
TSS algorithm, our proposed algorithm has better estimation accuracy performance, but has worse execution time performance.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Motion estimation plays an important role in video coding
[1,2]. The block matching (BM) algorithm is widely used
in motion estimation. In BM algorithm, the encoder 6rst
divides the current frame into many 6xed-size blocks, and
the motion vector for the current block with size b×b, b=2m,
is determined by 6nding the best matching reference block
in the reference frame according to the de6ned matching
criterion. Commonly, a search window of size (2W + 1) ×
(2W +1) is used to con6ne the search range in the reference
frame. Throughout this paper, the matching criterion used is
the sum of absolute diAerence (SAD) which is de6ned by

SAD(vx; vy) =
b−1∑
x=0

b−1∑
y=0

|Bc(x; y) − Br(x + vx; y + vy)| (1)
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for −W 6 vx; vy6W where Bc(x; y) denotes the gray value
of the pixel at position (x; y) in the current block and Br(x+
vx; y + vy) denotes the gray value of the pixel at position
(x + vx; y + vy) in the reference block. The best matching
reference block within the search window is the one with
the minimal SAD(vx; vy).

The full search (FS) algorithm is the most well-known
brute-force BM algorithm and can 6nd the best matching
block in the search window. Although the FS algorithm can
obtain the global optimal result, however the considerable
computational cost limits its practical applications. To re-
duce the computation time requirement, several more eG-
cient BM algorithms have been developed. These developed
BM algorithms include the improved FS algorithm [3], the
three-step search algorithm [4] and its improved variants
[5–9], the binary pyramid search algorithm [10], and the
globally adaptive pixel-decimation (GAPD) algorithm [11]
which is superior to the other pixel-decimation-based algo-
rithms [12–14].

In this correspondence, a novel two-phase Hilbert-scan-
based search algorithm for block motion estimation is pre-
sented. First in the intra-phase, a segmentation of the Hilbert
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curve is applied to the current block based on the look-up ta-
ble (LUT) technique, then a novel coarse-to-6ne (CTF) data
structure is developed. For the current block, the proposed
CTF data structure is used to eliminate the impossible ref-
erence blocks in the search window of the reference frame.
In the inter-phase, a new prediction scheme for estimating
the initial motion vector of the current block is presented.
Under 6ve diAerent kinds of real video sequences, experi-
mental results reveal that when compared to the GAPD al-
gorithm [11], our proposed algorithm has better execution
time and estimation accuracy performance. Under the same
estimation accuracy, our proposed algorithm has better ex-
ecution time performance when compared to the FS algo-
rithm. In addition, when comparing with the TSS algorithm
[4], our proposed algorithm has better estimation accuracy
performance, but has worse execution time performance.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the intra-phase of our proposed algorithm.
Section 3 presents the inter-phase of our proposed algorithm.
Section 4 presents our proposed whole motion estimation
algorithm. Experimental results are demonstrated in Section
5. Some concluding remarks are addressed in Section 6.

2. Intra-phase: segmentation of Hilbert curve and CTF
data structure

Hilbert curve [15] is a curve passing through all pixels in
the image domain and it scans the neighbouring pixel contin-
uously. Consider a 2r×2r gray image represented as an array
in the integer domain {x; y | 06x62r − 1; 06y62r − 1 }.
Two simple Hilbert curves on the 2 × 2 image domain and
the 4 × 4 image domain are shown in Fig. 1(a) and (b), re-
spectively. Each entry along this curve is denoted by an in-
teger called the Hilbert order denoted by the symbol o. For
example, the corresponding Hilbert orders of points (0; 0)
and (1; 0) in Fig. 1(a) are 1 and 2, respectively.

In motion estimation, since the size of each block is 6xed,
usually 16 × 16, an LUT-based array OCp is built up to
keep the relationship between the Hilbert order and the co-
ordinate (x; y) of a pixel in the block. According to the OCp

Fig. 1. Two simple Hilbert curves. (a) 2 × 2 domain. (b) 4 × 4
domain.

array, the Hilbert order of a pixel at coordinate (x; y) in the
current block can be obtained in O(1) time and vice versa.
Three sub-arrays are used to implement the OCp array. The
6rst sub-array Op[x; y], 06 x6 15 and 06 y6 15, is used
to record the Hilbert order at position (x; y). Further, the
x-coordinate and y-coordinate of each pixel with Hilbert
order o, 06 o6 255, are stored in the second sub-array
Cpx [o] and the third sub-array Cpy [o], respectively.

In Section 2.1, a segmentation for the Hilbert curve of
the current block is presented. Our proposed segmentation
leads to the design of novel CTF data structure.

2.1. Segmentation of Hilbert curve

For the current block with size 2m × 2m, the obtained
Hilbert curve is stored in the array H = 〈(0; g0); (1; g1); : : : ;
(2m×2m−1; g2m×2m−1)〉 where (o; go) denotes the gray level
go for the pixel with Hilbert order o. Initially, the stored
Hilbert curve is viewed as a 1-D segment with 22m entries.

The segmentation of Hilbert curve is a recursive pro-
cess. At each subdivision step, the 1-D segment with 2k

entries, 26 k6 2m, is subdivided into two 2k−1 1-D
sub-segments. If the sub-segment is not homogeneous, it
is subdivided into two equal-sized sub-segments until all
homogeneous sub-segments are obtained. A sub-segment
is called a homogeneous sub-segment if the estimated gray
level of each pixel in the sub-segment is in some vicin-
ity of its real gray level. Suppose the indices of the two
end-points of the sub-segment are i1 and i2 and their cor-
responding gray levels are gi1 and gi2 , respectively. Using
the linear interpolation method, the estimated gray level of
the pixel with index i, i16 i6 i2, in the sub-segment is
calculated by

Jgi = gi1 +
gi2 − gi1
i2 − i1

(i − i1): (2)

Given a speci6ed error tolerance �, if the quality condition,
|gi − Jgi|6 � for i16 i6 i2 holds, then the sub-segment is
homogeneous.

Let us take an example to demonstrate how the above
segmentation method works. Let S1

1 be the approximated
segment of the Hilbert curve from the Hilbert order A to B
and let d1 be the maximal absolute diAerence between S1

1

and the original segment from A to B. If d1 ¿�, the original
segment from A to B is subdivided into two equal-sized
sub-segments. Here, C is the 6rst division point. S2

1 (S2
2 )

is the new approximated sub-segment of the Hilbert curve
from A to C (C to B). Further, let d2 be the maximal absolute
diAerence between the original segment from A to C and S2

1 .
Suppose d2 ¿�, then D is the second division point and we
have S3

1 and S3
2 with respect to the two Hilbert curves from A

to D and from D to C, respectively. Let all the sub-segments
be homogeneous up to here. Finally, the Hilbert curve from
A to B can be approximated by Ĥ (�) = S3

1 ∪ S3
2 ∪ S2

2 .
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Fig. 2. A 22 × 22 block.

2.2. CTF data structure

In this subsection, a novel CTF data structure is presented
to store Ĥ (�). Suppose the Hilbert curve H has been divided
into N segments, say S1; S2; : : : , and SN , and H is approxi-
mated by Ĥ (�) = S1 ∪ S2 ∪ · · · ∪ SN .

For each segment Sj , 16 j6N , it has Lj entries
and Sj is denoted by Sj = 〈(Oj−1, JgjOj−1

); (Oj−1 +

1; JgjOj−1+1); : : : ; (Oj−1 + Lj − 1; JgjOj−1+Lj−1)〉 where Oj−1 =∑j−1
k=1 Lk and (i; Jgji ), Oj−16 i ¡Oj−1 + Lj , denotes the es-

timated gray level Jgji of the pixel with Hilbert order i in Sj .
At top level, i.e. level 0, of the CTF data structure, it saves
all the Hilbert orders of the end-points in Ĥ . For each point
with Hilbert order i in Sj except the two end-points, we
save the Hilbert order i into level l=�(�−dj

i +1)=q� where
dj
i = |gi − Jgji | and �t� denotes the smallest integer which

is greater than or equal to t and q denotes the gap between
level l and l+ 1 for l¿ 1. In our experiments (see Section
5), the CTF data structure has nine levels, namely level
0, level 1; : : : ; level 7, and level 8. In this case, if � = 24,

Table 1
The obtained H and Ĥ

Hilbert order H Ĥ (� = 16) = S1
⋃

S2
⋃

S3 dji

0 ( 0, 79) ( 0, 79) ( 0, 79) 0
1 ( 1, 88) ( 1, 82) ( 1, 82) 6
2 ( 2, 82) ( 2, 85) ( 2, 85) 3
3 ( 3, 95) ( 3, 88) ( 3, 88) 7
4 ( 4,105) ( 4, 91) ( 4, 91) 14
5 ( 5, 93) ( 5, 94) ( 5, 94) 1
6 ( 6, 87) ( 6, 97) ( 6, 97) 10
7 ( 7,100) ( 7,100) ( 7,100) 0
8 ( 8, 98) ( 8, 98) ( 8, 98) 0
9 ( 9,110) ( 9,104) ( 9,104) 6

10 (10,121) (10,110) (10,110) 11
11 (11,116) (11,116) (11,116) 0
12 (12,102) (12,102) (12,102) 0
13 (13, 96) (13, 96) (13, 96) 0
14 (14, 92) (14, 90) (14, 90) 2
15 (15, 84) (15, 84) (15, 84) 0

q is set to be 3 because of q = �
8 = 24

8 = 3. Similarly, if
� = 16, q is set to be 2. Specially, if �(� − dj

i + 1)=q� is
greater than 8, the Hilbert order is saved into the bottom
level, i.e. level 8. In summary, in the CTF data structure,
the diAerence dj

i (=|gi − Jgji |) is quantized by q and the
Hilbert order is assigned to level l = �(� − dj

i + 1)=q�. The
larger the diAerence between the original gray level and the
estimated gray level is, the sharper the diAerence between
them. Excepting level 0, the Hilbert order of the pixel is
assigned to the upper level of the CTF data structure when
the original gray level of the pixel is more diAerent from the
estimated gray level of the pixel.

We now take an example to explain how to construct the
CTF data structure. As shown in Fig. 2, a 22 × 22 block
is given where the integer value in each entry denotes the
gray level. After scanning the block via the Hilbert scanning
order, we obtain H and Ĥ (� = 16) = S1 ∪ S2 ∪ S3 as shown
in Table 1. Each diAerence dj

i , 16 j6 3 and 06 i ¡ 16,
is listed in the last column of this table. Next, we want to
construct the CTF data structure of Table 1. Initially, six
end-points of the three segments, 0, 7, 8, 11, 12, and 15,
are assigned to the top level, i.e. level 0, of the CTF data
structure. In fact, it is enough to save 0, 7, 11, and 15 to the
top level since for two neighbouring end-points, it is enough
to store the corresponding smaller Hilbert order. From the
relationship between dj

i ’s and the Hilbert order o’s in Table
1, when q = 2, the reduced CTF data structure is shown in
Table 2. For exposition, note that in the segment S3, for the
pixel with Hilbert order 13, we have d3

13 = 0, so the level of
that pixel is set to 8.

For each current block, two arrays are enough to im-
plement the reduced CTF data structure. First, an array
CTF[i], 06 i ≤ 15, is used to store all the Hilbert or-
ders from the top level to the bottom level. Thus, we
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Table 2
The reduced CTF data structure

Level Segment Hilbert order

0 End-points 0, 7, 11, 15

Level dji Hilbert order

1 16, 15
2 14, 13 4
3 12, 11 10
4 10, 9 6
5 8, 7 3
6 6, 5 1, 9
7 4, 3 2
8 2, 1, 0 5, 13, 14

have CTF[0::13] = [0; 7; 11; 15; 4; 10; 6; 3; 1; 9; 2; 5; 13; 14].
In addition, we need another array Counter[0::8] =
[4; 0; 1; 1; 1; 1; 2; 1; 3] to record the number of Hilbert orders
at level l. For example, Counter[0]=4 means that there are
four Hilbert orders, 0, 7, 11, and 15, saved at level 0. From
Counter[0]= 4 and CTF[0::3]= [0; 7; 11; 15], we can derive
that 8 (=CTF[1]+1=7+1) and 12 (=CTF[2]+1=11+1)
are also the two end-points at level 0 in the reduced data
structure.

3. Inter-phase: predicting initial motion vector

In the intra-phase mentioned in the last section, we have
described how to construct the reduced CTF data structure
in order to eliminate the impossible candidates in the search
window. In this section, a new prediction strategy is pre-
sented to predict the initial motion vector of the current
block.

For exposition, we take a 352 × 256 current frame as a
representative. First we think each block with size 16 × 16
as a shrinking point. Then, there are 22 × 16 shrinking
points in the current shrinking frame. In this shrinking
frame as shown in Fig. 3, we 6rst tile a maximal square
block MB1 with size 16 × 16. Then four square blocks,
each with size 4 × 4, are tiled. Finally, eight square blocks,
each with size 2 × 2, are tiled. Considering one possible
entrance–exit sequence (see Fig. 3), where the symbol EI

denotes the entrance of the maximal block and the symbol
EO denotes the exit, the Hilbert curve of Fig. 3 is depicted in
Fig. 4.

For each frame, since the number of blocks is 6xed, a
LUT technique can be used to keep the relationship between
the Hilbert order and the coordinate (bx; by) of any shrinking
point in the shrinking frame. Three arrays are used to im-
plement the LUT and by the three arrays, the Hilbert order
of the current block’s neighbouring block at the coordinate
(bx; by) can be obtained by O(1) time and vice versa. The

Fig. 3. The decomposition of an image with size 22 × 16:

Fig. 4. The Hilbert orders of Fig. 3.

6rst array used is Ob[bx; by], 06 bx6 21 and 06 by6 15,
which is used to record the Hilbert order at position (bx; by).
For example, the Hilbert order of the shrinking point A at (4,
13) isOb[4; 13]=30. The bx-coordinate and by-coordinate of
each shrinking point with the Hilbert order o, 06 o6 351,
are stored in the second array Cbx [o] and the third array
Cby [o], respectively. For example, the Hilbert order of the
shrinking point B at (10, 6) is Ob[10; 6] = 135 and the
bx-coordinate and by-coordinate of B with Hilbert order 135
are Cbx [135]=10 and Cby [135]=6, respectively. After con-
structing the three LUT-based arrays, for each current block,
the Hilbert orders of its eight neighbouring blocks can be
obtained in O(1) time. For example, let us enlarge the cur-
rent block B (see the shrinking point B in Fig. 4) and its
eight neighbouring blocks. Fig. 5 demonstrates the enlarged
3 × 3 window containing nine blocks. The Hilbert order of
B at (10, 6) is Ob[10; 6] = 135 and the Hilbert orders of its
eight neighbouring blocks are Ob[9; 6]=130, Ob[9; 7]=131,
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Fig. 5. The current block B and its eight neighboring blocks.

Ob[10; 7]=132,Ob[11; 7]=133,Ob[11; 6]=134,Ob[10; 5]=
136, Ob[11; 5] = 137, and Ob[9; 5] = 141.

In Fig. 5, from the Hilbert orders of the current block
B and its eight neighbouring blocks, we know that the 6ve
blocks at (9, 6), (9, 7), (10, 7), (11, 7), and (11, 6) have
obtained their motion vectors before the current block B
since their Hilbert orders are less than 135. Therefore, these
6ve processed blocks can be used to predict the initial motion
vector of B. For convenience, in Fig. 5, the symbol P is
used to denote the type of each processed block and the
symbol U denotes the type of the unprocessed block. In our
proposed prediction scheme, we use the mean of the 6ve
motion vectors of the 6ve processed blocks as the predicted
initial motion vector of the current block B.

In practice, each shrinking point is of size 16 × 16 and
the size of each frame is 352 × 256. In Fig. 5, the coor-
dinate of the shrinking point B is (10, 6) in the current
shrinking frame domain, but the coordinate of B in the
original current frame is (160; 96) (=(10 × 16; 6 × 16)).
From Fig. 5, it is known that B is the current block, i.e.
Bc = B, and the 33 × 33 search window whose center is
located at (160; 96) in the reference frame. Suppose the
motion vectors of the 6ve processed neighbouring blocks
marked by Ps are (6;−2); (5;−2); (6;−3); (7;−3), and
(6;−4), then the mean motion vector of the 6ve processed
neighbouring blocks is equal to (vx; vy) = (6;−3)(=((6 +
5+6+7+6)=5; ((−2)+(−2)+(−3)+(−3)+(−4))=5)).
According to the predicted initial motion vector, we move
the reference block Br from the coordinate (160,96) to the
coordinate (166; 93) (=(160 + 6; 96 − 3)). By Eq. (1), the
initial minimal SAD of the current block Bc and the refer-
ence block Br can be calculated and denoted by SADmin. The
value SADmin will be used in our proposed motion estimation
algorithm.

4. The proposed two-phase motion estimation algorithm

Before presenting our proposed two-phase motion esti-
mation algorithm, we 6rst present a CTF-based successive

Fig. 6. The reference block Br:

elimination strategy in order to speed up the searching work
in the search window.

Suppose the CTF data structure of the current block Bc

has been constructed. In the CTF data structure, for each
Hilbert order o at level l, l = 0; 1; : : : ; 8, the gray value
of the pixel at (Cpx [o]; Cpy [o]) in Bc is compared to that
in the reference block Br . Let PSAD(Bc; Br ; l) denote the
accumulated absolute diAerences between the pixels with
the Hilbert orders at level l in Bc and the corresponding
pixels in Br . Considering levels from 0 to l, the accu-
mulated PSAD for the 6rst (l + 1) levels is denoted by
APSAD(Bc; Br ; 0; l) =

∑l
k=0 PSAD(Bc; Br ; k). We take

an example to illustrate how to calculate the values of
PSAD(Bc; Br ; l) and APSAD(Bc; Br ; 0; l). The 22 × 22

block in Fig. 2 is used as the current block Bc. The refer-
ence block Br with size 22 × 22 is assumed to be Fig. 6.
In Table 2, it implies that the Hilbert orders at level 0 of
the CTF data structure are 0, 7, 8, 11, 12, and 15 although
only 0, 7, 11, and 15 are saved at level 0. Using the OCp

array, the x- and y-coordinates with Hilbert orders 0, 7, 8,
11, 12, and 15 are (0, 3), (1, 1), (2, 1), (3, 1), (3, 2), and
(3, 3), respectively, as shown in Fig. 1(b). We thus have
PSAD(Bc; Br ; 0)=11 (=|79−80|+|100−105|+|98−98|+
|116−117|+|102−100|+|84−86|). Since there is no Hilbert
order at level 1, we have PSAD(Bc; Br ; 1) = 0. When l= 2,
we have PSAD(Bc; Br ; 2)=1 and APSAD(Bc; Br ; 0; 2)=12
(=11+0+1). From APSAD(Bc; Br ; 0; l)=APSAD(Bc; Br ; 0;
l − 1) + PSAD(Bc; Br ; l), we have

APSAD(Bc; Br ; 0; 0)6 APSAD(Bc; Br ; 0; 1)

6 · · ·6APSAD(Bc; Br ; 0; 8): (3)

We now describe how Eq. (3) can be used to speed
up the searching process in the search window. For
the current block Bc and the reference block Br in the
search window, it starts from the top level, i.e. level 0,
of the CTF data structure and goes downward to the
bottom level, i.e. level 8. According to the predicted
initial motion vector of Bc, suppose the initial minimal
SAD, i.e. SADmin, has been calculated. We 6rst calculate
APSAD(Bc; Br ; 0; 0). If APSAD(Bc; Br ; 0; 0)¿ SADmin,
then APSAD(Bc; Br ; 0; l)¿ SADmin will hold for 16 l6 8.
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Table 3
Execution time and estimation accuracy performance comparison

Salesman Garden Calendar train Football Table tennis

Algorithm � TIME PSNR TIME PSNR TIME PSNR TIME PSNR TIME PSNR

FS 45.64 34.44 66.14 27.02 66.20 31.67 66.22 26.06 66.20 28.38

TSS 0.75 34.16 1.13 26.00 1.05 31.31 1.10 25.44 1.13 26.80

GAPD 16 32.95 32.99 35.95 25.06 48.72 31.19 44.36 25.08 32.77 27.24
24 38.14 33.56 42.51 26.11 54.50 31.30 54.61 25.43 41.87 27.74
32 41.64 33.82 47.44 26.34 59.14 31.40 60.98 25.58 49.39 27.90

OURS 16 19.73 34.44 34.61 27.02 27.63 31.67 35.17 26.06 39.86 28.38
24 18.47 34.44 33.39 27.02 26.51 31.67 34.94 26.06 38.23 28.38
32 18.45 34.44 32.60 27.02 26.22 31.67 35.96 26.06 37.98 28.38

Thus, the reference block Br will not be the best matching
block and can be rejected. If APSAD(Bc; Br ; 0; 0)6 SADmin,
APSAD(Bc; Br ; 0; 1) is calculated. Similarly, if APSAD
(Bc; Br ; 0; 1)¿ SADmin, then the reference block Br can be
rejected; otherwise, APSAD(Bc; Br ; 0; 2) is tested further.
This multilevel pruning process is repeated until Br is re-
jected or the bottom level of the CTF data structure has been
reached. If the bottom level is reached, APSAD(Bc; Br ; 0; 8)
is calculated by Eq. (3). Then we check whether SADmin

should be replaced or not. If SADmin is replaced, then the
current best matching block is set to be Br . Consequently,
for block motion estimation, the above multilevel pruning
process leads to computation-saving eAect.

Given a video sequence as the input and the speci6ed
error tolerance �, for the (t−1)th reference frame and the tth
current frame, t¿ 2, our proposed two-phase algorithm for
motion estimation consisting of four steps is shown below.

4.1. Intra-phase

Step 1: For each current block Bc in the tth frame, ac-
cording to the segmentation of Hilbert curve described in
Section 2.1, we obtain the array Ĥ (�) to save the approxi-
mate segments.

Step 2: Based on the description of Section 2.2, we con-
struct the reduced CTF data structure.

4.2. Inter-phase

Step 3: According to the three arrays, Ob[; ], Cbx [], and
Cby [], de6ned in Section 3 and these processed neighbouring
blocks of Bc, the initial motion vector of Bc is predicted using
the mean of its processed neighbouring blocks’ motion vec-
tors. Then, the initial minimal SAD, SADmin, is calculated.

Step 4: Based on the row-major order, for each reference
block Br in the search window, the searching process con-
sisting of four steps is shown below.

Step 4.1: We calculate APSAD(Bc; Br ; 0; 0).
Step 4.2: By Eq. (3), if APSAD(Bc; Br ; 0; 0) is greater

than SADmin, APSAD(Bc; Br ; 0; l)¿ SADmin will hold
for 16 l6 8. Thus, the reference block Br will not
be the best matching block and go to Step 4.4. If
APSAD(Bc; Br ; 0; 0) is less than or equal to SADmin,
APSAD(Bc; Br ; 0; 1) is calculated by Eq. (3). Similarly, if
APSAD(Bc; Br ; 0; 1)¿ SADmin, then the reference block Br

is not the best matching block and go to Step 4.4; otherwise,
APSAD(Bc; Br ; 0; 2) is tested, and so on. This comparison
process is repeated until Br is rejected or the bottom level
of the CTF data structure is reached.

Step 4.3: If the bottom level of the CTF data struc-
ture is reached, APSAD(Bc; Br ; 0; 8) is calculated and
we check whether SADmin should be replaced or not.
If APSAD(Bc; Br ; 0; 8) is less than SADmin, the current
minimal SAD, i.e. SADmin, is replaced and the current
best matching block is set to be Br ; otherwise, go to
Step 4.4.

Step 4.4: The reference block Br is rejected. Further, the
next reference block Br in the search window is compared
to Bc and go to Step 4.1.

5. Experimental results

In this section, 6ve video sequences, namely the sales-
man, garden, calendar train, football, and table tennis, are
used to evaluate the performance among the FS algorithm,
three-step search (TSS) algorithm, the GAPD algorithm
[11], and our proposed algorithm (OURS for short). Un-
der the 6ve video sequences, the 6rst 21 frames of the
salesman sequence and the 6rst 30 frames of the other
four sequences are used. Each frame in the video sequence
is of size 352 × 256. The block size and the size of the
search window are selected as 16× 16 and 33× 33, respec-
tively. All the concerning algorithms are implemented using
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Borland C++ builder and the IBM compatible personal
computer Pentium 4 microprocessor with 1:4G MHz.

The peak signal-to-noise ratio (PSNR) are used to mea-
sure the estimation accuracy of each concerning BM algo-
rithm. The PSNR is de6ned by

PSNR = 10 log10

(
2552

MSE

)
dB;

where MSE is the mean square error between the estimated
frame and the original frame. For each video sequence, given
three kinds of error tolerance, say � = 16; 24, and 32, Table
3 lists the average PSNR and the required execution time
for each error tolerance where the symbol TIME, which is
the summation of preprocessing time and searching time, is
used to measure the execution-time performance in terms
of millisecond (=10−3 s). Here, the preprocessing time in-
cludes the time required in Steps 1–3 in our proposed OURS
algorithm and the searching time denotes the time required
in Step 4.

Let the execution time improvement ratio of our proposed
OURS algorithm over the GAPD algorithm be de6ned by
(TGAPD −TOURS)=TGAPD ×100%, where TGAPD and TOURS de-
note the execution time required in the GAPD algorithm and
the proposed OURS algorithm, respectively. When compar-
ing with the GAPD algorithm, Table 3 reveals our proposed
algorithm OURS has 33.1% execution time improvement ra-
tio and has 0:79 dB estimation accuracy improvement ratio.

In our proposed OURS algorithm, the estimation accuracy
is independent of the error tolerance � since all the reference
blocks in the search window must be checked. Therefore,
the estimation accuracy of our proposed algorithm is almost
the same as that of the FS algorithm. However, due to use of
the proposed CTF data structure and applying Eq. (3), our
proposed algorithm can reject more reference blocks early
and has better execution time performance when compared
to the FS algorithm. In addition, when comparing with the
TSS algorithm, our proposed algorithm has better estima-
tion accuracy performance, but has worse execution time
performance.

6. Conclusion

This paper has presented the novel two-phase Hilbert-
scan-based search algorithm for block motion estimation.
In the intra-phase, after presenting the segmentation method
for the Hilbert curve, then a novel reduced CTF data struc-
ture has been developed in order to eliminate the impossible
reference blocks in the search window. In the inter-phase,
a new prediction scheme for estimating the initial motion
vector of the current block has been presented. Under 6ve
diAerent kinds of real video sequences, experimental results
reveal that when compared to the GAPD algorithm, our pro-
posed algorithm has better execution time and estimation
accuracy performance. Under the similar estimation accu-
racy, our proposed algorithm has better execution time per-

formance when compared to the FS algorithm. In addition,
when comparing with the TSS algorithm, our proposed al-
gorithm has better estimation accuracy performance, but has
worse execution time performance.

Instead of storing all the look-up tables for keeping the
relation between Hilbert orders and (x; y)-coordinates, it is
an interesting research issue to derive a general formula to
cover diAerent frame sizes, such as CCIR601 (720 × 480),
CIF (352 × 288), and so on.

References

[1] K.R. Rao, J.J. Hwang, Techniques and Standards for Image,
Video, and Audio Coding, Prentice-Hall, Englewood CliAs,
NJ, 1996.

[2] A.M. Tekalp, Digital Video Processing, Prentice-Hall,
Englewood CliAs, NJ, 1995.

[3] M.J. Chen, L.G. Chen, T.D. Chiueh, One-dimensional full
search motion estimation algorithm for video coding, IEEE
Trans. Circuits Syst. Video Technol. 4 (1994) 504–509.

[4] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, T. Ishiguro, Motion
compensated interframe coding for video conferencing, in:
Proceeding of the National Telecommunications Conference,
November/December 1981, pp. G.5.3.1–G.5.3.5.

[5] M. Ghanbari, The cross-search algorithm for motion
estimation, IEEE Trans. Commun. 38 (1990) 950–953.

[6] L.M. Po, W.C. Ma, A novel four-step algorithm for fast block
motion estimation, IEEE Trans. Circuits Syst. Video Technol.
6 (1996) 313–317.

[7] L.K. Liu, E. Feig, A block-based gradient descent search
algorithm for block motion estimation in video coding, IEEE
Trans. Circuits Syst. Video Technol. 6 (1996) 419–422.

[8] F.H. Cheng, S.N. Sun, New fast and eGcient two-step search
algorithm for block motion estimation, IEEE Trans. Circuits
Syst. Video Technol. 9 (1999) 977–983.

[9] S. Zhu, K.K. Ma, A new diamond search algorithm for
fast block-matching motion estimation, IEEE Trans. Image
Process. 9 (2000) 287–290.

[10] X. Song, T. Chiang, X. Lee, Y.Q. Zhang, New fast binary
pyramid motion estimation for MPEG2 and HDTV encoding,
IEEE Trans. Circuits Syst. Video Technol. 10 (2000)
1015–1028.

[11] Y. Wang, Y. Wang, H. Kuroda, A globally adaptive
pixel-decimation algorithm for block-motion estimation, IEEE
Trans. Circuits Syst. Video Technol. 10 (2000) 1006–1011.

[12] M. Bierling, Displacement estimation by hierarchical block
matching, in: Proceedings of the SPIE Conference Visual
Communication, Image Processing’88, Vol. 1001, November
1988, pp. 942–951.

[13] Y.L. Chan, W.C. Siu, New adaptive pixel decimation for block
motion vector estimation, IEEE Trans. Circuits Syst. Video
Technol. 6 (1996) 113–118.

[14] B. Liu, A. Zaccaring, New fast algorithms for the estimation
of block motion vectors, IEEE Trans. Circuits Syst. Video
Technol. 3 (1993) 148–157.

[15] D. Hilbert, UUeber die stetige abbildung einer linie aufein
VUachenstUuck, Math. Ann. 38 (1891) 459–460.



1458 K.-L. Chung, L.-C. Chang / Pattern Recognition 37 (2004) 1451–1458

About the Author—KUO-LIANG CHUNG received the B.S., M.S., and Ph.D. degrees in Computer Science and Information Engineering
from National Taiwan University in 1982, 1984, and 1990, respectively. From 1984 to 1986, he was a soldier. From 1986 to 1987, he was a
research assistant in the Institute of Information Science, Academic Sinica. He has been a Professor in the Department of Computer Science
and Information Engineering at National Taiwan University of Science and Technology since 1995. Now he is the Chairman. Prof. Chung
received the Distinguished Professor Award from the Chinese Institute of Engineers in May 2001. He is also an IEEE senior member. Prof.
Chung received the Outstanding I.T. Elite Award from the R.O.C. Information Month in November 2003. His research interests include
image compression, image processing, video compression, coding theory, and algorithms.

About the Author—LUNG-CHUN CHANG received the B.S. degree in Mathematics from Dong-Hai University. Dr. Chang received the
Ph.D. degree from National Taiwan University of Science and Technology in 2002. His research interests include image and video processing,
video coding, and algorithms.


	A novel two-phase Hilbert-scan-based search algorithm for block motion estimation using CTF data structure
	Introduction
	Intra-phase: segmentation of Hilbert curve and CTF data structure
	Segmentation of Hilbert curve
	CTF data structure

	Inter-phase: predicting initial motion vector
	The proposed two-phase motion estimation algorithm
	Intra-phase
	Inter-phase

	Experimental results
	Conclusion
	References


