
Theoretical Computer Science 246 (2000) 227–238
www.elsevier.com/locate/tcs

A space-e�cient Hu�man decoding algorithm and
its parallelism

Yih-Kai Lin, Kuo-Liang Chung ∗;1

Department of Information Management and Institute of Information Engineering, National Taiwan
University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, Taiwan 10672,

Republic of China

Received May 1998; revised October 1998
Communicated by M. Nivat

Abstract

This paper �rst transforms the Hu�man tree into a single-side growing Hu�man tree, then
presents a memory-e�cient data structure to represent the single-side growing Hu�man tree,
which requires (n + d)dlog2 ne-bits memory space, where n is the number of source symbols
and d is the depth of the Hu�man tree. Based on the proposed data structure, we present an
O(d)-time Hu�man decoding algorithm. Using the same example, the memory required in our
decoding algorithm is much less than that of [3]. We �nally modify our proposed data structure
to design an O(1)-time parallel Hu�man decoding algorithm on a concurrent read exclusive write
parallel random-access machine (CREW PRAM) using d processors. c© 2000 Elsevier Science
B.V. All rights reserved.

Keywords: Data structure; Decoding algorithm; Hu�man code, Parallel algorithm;
Single-side growing Hu�man tree

1. Introduction

Since D.A. Hu�man invented the Hu�man encoding scheme in 1952, the Hu�man
code has been widely used in text, image, and video compression [1]. For example,
it is used to compress the result of quantization stage in JPEG [6]. The simplest data
structure used in the Hu�man decoding is the Hu�man tree. Array data structure [4, 7]
has been used to implement the corresponding complete binary tree for the Hu�man
tree. However, the sparsity in the Hu�man tree causes a huge waste of memory space

∗ Corresponding author.
E-mail address: klchung@cs.ntust.edu.tw (K.-L. Chung)
1 Supported by the National Science Council of ROC under contracts NSC88-2213-E011-005 and

NSC88-2213-E011-006.

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(99)00080 -8

228 Y.-K. Lin, K.-L. Chung / Theoretical Computer Science 246 (2000) 227–238

for array implementation [4, 7] which needs O(2ddlog2 ne)-bits space, where n is the
number of source symbols and d is the depth of the Hu�man tree.
Based on the single-side growing Hu�man tree, Hashemian [3] presented an O(d)-

time decoding algorithm consisting of ordering and clustering scheme in order to alle-
viate the e�ect of sparsity due to single-side growth in the single-side growing Hu�man
tree and to support quick search in the look-up array. The memory space required in
[3] ranged from O((n+ d)dlog2 ne)-bits to O(2ddlog2 ne)-bits.
This paper �rst transforms the Hu�man tree into a single-side growing Hu�man

tree, then presents a memory-e�cient data structure to represent the single-side growing
Hu�man tree, which requires (n+d)dlog2 ne-bits memory space. Based on the proposed
data structure, we present an O(d)-time Hu�man decoding algorithm. Using the same
example, the memory required in our decoding algorithm is much less than that of [3].
We �nally modify our data structure to design an O(1)-time parallel Hu�man decoding
algorithm on a CREW PRAM model [2] using d processors.

2. Data structure

Consider the source symbols {s1; s2; : : : ; sn} with frequencies {w1; w2; : : : ; wn} for
w1¿w2¿ · · ·¿wn, where the symbol si has frequency wi. Using the Hu�man’s algo-
rithm [4], a Hu�man tree is obtained. Then the codeword ci for 16i6n, which is a
binary string, for symbol si can be determined by traversing the path from the root to
the leaf node associated with the symbol si, where the left edge is corresponding to ‘0’
and the right edge is corresponding to ‘1’. Let the level of the root be zero and the level
of the other node is equal to summing up its parent’s level and one. Codeword length li
for si can be known as the level of si. Then the weighted external path length

∑n
i=1 wili

is minimum. For example, the Hu�man tree corresponding to the source symbols
{s1; s2; : : : ; s8} with the frequencies {14; 13; 5; 3; 3; 2; 1; 1} is shown in Fig. 1, and we
have the two ordered sets 〈c1; c2; c3; c4; c5; c6; c7; c8〉= 〈11; 10; 010; 001; 000; 0111; 01101;
01100〉 and 〈l1; l2; l3; l4; l5; l6; l7; l8〉= 〈2; 2; 3; 3; 3; 4; 5; 5〉.
We now want to construct a single-side growing Hu�man tree from the given set

{l1; l2; : : : ; ln} while preserving the same weighted external path length as the original
Hu�man tree (see Fig. 1). Instead of using the description [8], a formula for this con-
struction is presented. Our proposed formula helps the derivations of some interesting
properties. The single-side growing Hu�man tree of Fig. 1 is shown in Fig. 2 whose
construction will be described later.
From the set of codeword lengths {l1; l2; : : : ; ln} in the original Hu�man tree, we

present a codeword-assignment scheme to generate a new set of codewords for source
symbols. Based on the proposed codeword-assignment scheme, a single-side growing
Hu�man tree is constructed. The �rst symbol s1 in the single-side growing Hu�man
tree is assigned to codeword c′1 = 11 : : : 1︸ ︷︷ ︸

l1

. The next symbol s2 is assigned to codeword

c′2 = (c
′
1 × 2l2−l1)− 1. The new codeword c′2 is obtained by shifting the codeword c′1

Y.-K. Lin, K.-L. Chung / Theoretical Computer Science 246 (2000) 227–238 229

Fig. 1. An example of the Hu�man tree.

Fig. 2. The single-side growing Hu�man tree of Fig. 1.

(l2 − l1) bits to the left and appending (l2 − l1) 0’s to the tail, then subtracting from
one. In general, the ith symbol si for 26i6n is assigned to codeword c′i =(c

′
i−1 ×

2li−li−1)− 1, where li and li−1 are the codeword lengths for si and si−1, respectively,
and summing up the length of c′i−1 and (li − li−1) is equal to the length of c′i . Note
that c′n= 00 : : : 0︸ ︷︷ ︸

ln

.

From the preceding example, we have 〈l1; l2; l3; l4; l5; l6; l7; l8〉= 〈2; 2; 3; 3; 3; 4; 5; 5〉,
so s1 is assigned to codeword c′1 = 11︸︷︷︸

2

based on our codeword-assignment scheme.

The remaining symbols are assigned to codewords as shown below:

c′2 = (11 × 22−2)− 1=10;
c′3 = (10 × 23−2)− 1=011;
c′4 = (011 × 23−3)− 1=010;

230 Y.-K. Lin, K.-L. Chung / Theoretical Computer Science 246 (2000) 227–238

c′5 = (010 × 23−3)− 1=001;
c′6 = (001 × 24−3)− 1=0001;
c′7 = (0001 × 25−4)− 1=00001;
c′8 = (00001 × 25−5)− 1=00000:

It is observed that the generated new set of codewords using our codeword-assignment
scheme are consistent with the set of codewords in Fig. 2.
The following lemma guarantees that for the same symbol, i.e., s3, the length of the

codeword in the original Hu�man tree is (see Fig. 1) equal to the one in the single-
side growing Hu�man tree (see Fig. 2). It implies that for the two Hu�man trees, the
weighted external path length is the same.

Lemma 1. If a leaf node associated with the symbol si in the original Hu�man tree
has codeword-length li; the corresponding codeword c′i obtained by using the above
codeword-assignment scheme has the same length li.

Proof. We prove it by induction. From c′1 = 11 : : : 1︸ ︷︷ ︸
l1

, the basis is satis�ed since the

codeword-length of s1, i.e., the length of c1, is equal to l1. Assume that the length of
c′i−1 for 36i6n is equal to li−1 is true. We do the induction part. If li= li−1, then
c′i = c

′
i−1 × 20− 1= c′i−1− 1 and the length of c′i is equal to li−1 = li because c′i−1¿0

for 36i6n; if li 6= li−1, then c′i = c′i−1 × 2li−li−1−1, where the length of c′i is enforced
to li by adding (li− li−1) 0’s. So, the length of c′i is equal to li (= li−1 + (li− li−1)).

From the preceding codeword-assignment scheme and Lemma 1, we have the fol-
lowing result immediately.

Theorem 1. For each level in the constructed single-side growing Hu�man tree; all
the internal nodes are to the left side of all the leaf nodes at the same level.

Although some data structures for representing the single-side growing Hu�man tree
have been presented in [3, 8, 5], our codeword-assignment scheme for constructing the
single-side growing Hu�man tree brings out the design of the space-e�cient Hu�man
decoding algorithm using only (n+d)dlog2 ne-bits memory space, where d is the depth
of the single-side growing Hu�man tree; d is also the depth of the original Hu�man
tree. The memory requirement in our proposed method is the least when compared to
the previous methods [3, 8, 5]. We now want to assign logical addresses for storing
those symbols {si; 16i6n} in the single-side growing Hu�man tree.
Let fk be the number of leaf nodes at level k, each leaf node with codeword-length k;

let Ik be the number of the internal nodes at level k, where Ik satis�es the recurrence
relation: I0 = 1 and Ik =Ik−1 × 2− fk: In the remainder of this section, we discuss
how to use an array called the symbol table to store the si’s for 16i6n, which will
be used in the decoding phase.

Y.-K. Lin, K.-L. Chung / Theoretical Computer Science 246 (2000) 227–238 231

The logical address, ai, for storing si in the symbol table is given by the following
address-assignment scheme:

ai= c′i −Ili +
li∑
k=2
fk−1 for 16i6n:

Lemma 2. At the same level; if the leaf node p in the single-side growing Hu�man
tree is to the left side of the leaf node q; the logical address of p is smaller than
that of q.

Proof. Let si and si+1, 16i¡n, be at the same level, i.e., li= li+1. We have that
Ili =Ili+1 and

∑li
k=2 fk−1 =

∑li+1
k=2 fk−1. In addition, we see that the ordered sequence

〈c′e+fli−1; c
′
e+fli−2; : : : ; c

′
e〉 at level li, where c′e is the largest codeword at level li, is a

strictly increasing sequence. Therefore, from the above address-assignment scheme, we
have ai+1¿ai for e6i¡e+fli − 1. By using the transitive property, we complete the
proof.

Following the same notation c′e+fli−1 used in Lemma 2, Fig. 2 shows that I3 = 1
and I3 − c′5 = 1− 1=0. In general, we have the following lemma:

Lemma 3. Subtracting Ik from c′e+fk−1 at level k; 06k6d; is equal to zero.

Proof. We prove it by induction. The basis is satis�ed since we have Il1 − c′1+fl1−1 =
(2l1 − fl1) − (11 : : : 1︸ ︷︷ ︸

l1

−fl1 + 1)=0 when k = l1. Assume Lemma 3 is true for k = i,

l1¡i¡d. We want to induce that Lemma 3 is also true for k = i + j, j¿0, where
i + j is the smallest level whose fi+j is larger than 0. From the de�nition of I,
we have Ii+j =Ii × 2j − fi+j. In addition, from the codeword assignment, we have
c′e+fi+j−1 = c

′
e+fi−1 × 2j − 1 − fi+j + 1= c′e+fi−1 × 2j − fi+j. From the hypothesis,

it follows that Ii= c′e+fi−1. We then have Ii+j = c′e+fi−1 × 2j −fi+j = c′e+fi+j−1. We
complete the proof.

Lemma 4. If the level of the leaf node sq in the single-side Hu�man tree is larger
than the level of the leaf node sp; the logical address of sp is smaller than that of sq;
where 06lp¡lq6d.

Proof. From the proof in Lemma 3, it is clear that at any level lp whose flp is larger
than 0 for 06lp¡d and the value of (c′p −Ilp) ranges from 0 to flp − 1. Let c′p be
the codeword of one leaf node at level lp and c′q′ be the codeword of one leaf node at
level lq′¿lp, where lq′ is the smallest level which has flq′¿0, it follows that aq′¿ap
because aq′ − ap=(c′q′ − Ilq′) − (c′p − Ilp) + flp¿0. By the transitive property, we
complete the proof.

The range of the logical address is shown in the following theorem:

232 Y.-K. Lin, K.-L. Chung / Theoretical Computer Science 246 (2000) 227–238

Fig. 3. The constructed single-side growing Hu�man tree.

Theorem 2. Let ai be the logical address of si, then we have 06ai6n−1 for 16i6n.

Proof. From the logical address-assignment and the proof in Lemma 3 we have a1 = 0.
By Lemmas 2 and 4, it is clear that 06ai for 16i6n. On the other hand, from the
logical address-assignment and the proof in Lemma 4, we have ai¡n− 1 for 16i6n.

Consider a new example. The given set of source symbols is 〈s1; s2; : : : ; s8〉 with the
frequencies 〈9; 7; 3; 3; 1; 1; 1; 1〉 and the lengths 〈l1; l2; l3; l4; l5; l6; l7; l8〉= 〈2; 2; 3; 3; 4; 4;
4; 4 〉, respectively. Using our preceding codeword-assignment scheme, we have 〈c′1; c′2;
c′3; c

′
4; c

′
5; c

′
6; c

′
7; c

′
8〉= 〈11; 10; 011; 010; 0011; 0010; 0001; 0000〉 and the single-side grow-

ing Hu�man tree is shown in Fig. 3. In addition, it follows that 〈f1; f2; f3; f4〉= 〈0; 2;
2; 4〉 and 〈I0;I1;I2;I3〉= 〈1; 2; 2; 2〉. Further, using our address-assignment scheme,
the logical address ai, 16i6n, for si is shown below:

a1 = 3− (2 × 2− 2) + 0=1;
a2 = 2− (2 × 2− 2) + 0=0;
a3 = 3− (2 × 2− 2) + 2=3;
a4 = 2− (2 × 2− 2) + 2=2;
a5 = 3− (2 × 2− 4) + 4=7;
a6 = 2− (2 × 2− 4) + 4=6;
a7 = 1− (2 × 2− 4) + 4=5;
a8 = 0− (2 × 2− 4) + 4=4:

Thus, the corresponding symbol table S for saving si of Fig. 3, 16i6n, is shown in
Fig. 4, where the logical address of si in S is denoted by ai. For example, the logical
address of s8(s7) is a8 = 4(a7 = 5).
The skip table is de�ned to be F= (f1; f2; : : : ; fd), where d is the depth of the single-

side growing Hu�man tree and fi for 16i6d has been de�ned. The corresponding

Y.-K. Lin, K.-L. Chung / Theoretical Computer Science 246 (2000) 227–238 233

Fig. 4. The symbol table.

Fig. 5. The skip table.

skip table of Fig. 3 is shown in Fig. 5. The symbol table and the skip table will be
used in our Hu�man decoding algorithm. Since the value of each entry in the skip table
and the symbol table is dominated by the index of the source symbol, i.e., at most n,
dlog2 ne bits are enough to save each entry. Here, in each entry of the symbol table, we
use index i to represent si. In the case of a source with 256 symbols, 8 (= log2 256)
bits are required to save each entry. Therefore, the memory space required in the two
tables needs (n+ d) log2 n bits.

3. Decoding algorithm

In this section, we take the same example as shown in Fig. 3 to demonstrate our
decoding algorithm.
Given an input code H= h0h1 : : : hr ; hi ∈{0; 1}; 06i6r, to be decoded, let code ptr

denote the current position of H processed so far; pre�x H(t) be h0h1h2 : : : ht−1 when
code ptr= t− 1; cpre�x H(t) be ∑t−1

i=0 hi×2t−1−i. One variable, namely, symbol ptr, is
used to point to the current position in the symbol table.
Consider an input code H=011. The decoding procedure starts with code ptr = 1. At

this time, we have pre�x H(1)=0, cpre�x H(1)=0, and I1 = 2. Since cpre�x (1)¡I1
and F(code ptr)= 0, we continue the decoding process and the value of code ptr is
increased by one, i.e., code ptr= 2. We then have pre�x H(2)=01, cpre�x H(2)=1,
and I2 = 2. Since cpre�x H(2)=1¡I2 and F(code ptr)=F(2)=2, we continue the
decoding process. Next, the value of code ptr becomes 3 and the value of symbol ptr
becomes 2. Now we have cpre�x H(3)=3¿I3 = 2, so the decoded symbol equals
S(symbol ptr + cpre�x H(3) – I3)=S(3)= s3 and is shown below.

↓
0 1 2 3 4 5 6 7
s2 s1 s4 s3 s8 s7 s6 s5

234 Y.-K. Lin, K.-L. Chung / Theoretical Computer Science 246 (2000) 227–238

Following the preceding simulation example, the formal decoding algorithm based
on the proposed data structure is listed below.

Algorithm
Input:

Hu�man[] : array of binary values =* input code *=
symbol[] : array of integers =* symbol table *=
skip[] : array of integers =* skip table *=

Output:
the source symbol corresponding to the input code

begin
code ptr := 1 =* point to the �rst position in the given code *=
symbol ptr := 0 =* point to the �rst position in the symbol table *=
internal node := 1 =* indicate the number of internal nodes at the current level *=
cpre�x H:= 0
while (Hu�man[code ptr]= 0 or Hu�man[code ptr]= 1)
do begin
internal node := internal node× 2 – skip[code ptr]
cpre�x H := cpre�x H× 2 + Hu�man[code ptr]
if cpre�x H¿internal node then =* arrive at a leaf node *=
return symbol[symbol ptr+cpre�x H – internal node]

end
symbol ptr := symbol ptr+skip[code ptr] =* skip symbol*=
code ptr := code ptr+1 =* go to the next level *=

end
end

Since the time complexity of the above decoding algorithm is dependent on the depth
of the single-side growing Hu�man tree, we have the result.

Theorem 3. The Hu�man decoding algorithm can be performed in O(d) time using
(n+ d)dlog2 ne-bits memory space.

Under the same time bound O(d), we now compare the memory space required in
our decoding method to the Hashemian’s method [3] by using the same example in
[3]. Consider the single-side growing Hu�man tree [3] as shown in Fig. 6. The look-
up array needs 122 bytes by using Hashemian’s method. The readers are referred to
the detailed array-construction [3]. Based on our proposed data structure described in
Section 2, the symbol table and the skip table are shown below

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
01 00 07 06 05 04 03 02 08 0b 0a 09 0d 0c 12 11 10 0f 0e 15 14 13 1a 19 18 17 16 1d 1c 1b 1f 1e

The symbol table.

Y.-K. Lin, K.-L. Chung / Theoretical Computer Science 246 (2000) 227–238 235

Fig. 6. A 13-level single-side growing Hu�man tree.

1 2 3 4 5 6 7 8 9 10 11 12 13
0 2 0 6 1 3 2 5 3 5 0 3 2

The skip table:

Totally, our data structure takes 45 bytes. It is obvious that the memory required in
our method is much less than that of [3]. Theoretically, our data structure needs (n+
d)dlog2 ne-bits memory while the memory required in [3] ranges from (n+d)dlog2 ne-
bits to O(2ddlog2 ne)-bits. On the other hand, the memory required in this paper is the
lower bound required by Hashemian’s method.

4. O(1)-time parallel decoding algorithm

In this section, we �rst modify the data structure described in Section 2 slightly. Then
an O(1)-time parallel Hu�man decoding algorithm for determining a source symbol
each time is presented on a CREW PRAM [2] model using d processors.
Since the decoding algorithm described in Section 3 traverses the path in the single-

side growing Hu�man tree logically, the number of internal nodes at level i can
be computed by Ii=Ii−1×2 − fi for 16i6d. In our parallel decoding algorithm,
we need keep Ii for 16i6d, so an internal table I= (I1;I2; : : : ;Id) is built. The

236 Y.-K. Lin, K.-L. Chung / Theoretical Computer Science 246 (2000) 227–238

Fig. 7. The internal table.

Fig. 8. The pre�x-skip table.

corresponding internal table of Fig. 3 is shown in Fig. 7. In addition, we need a
pre�x-skip table P= (0; f1; f1 + f2; : : : ;

∑d−1
i=1 fi), which can be computed from the

skip table F= (f1; f2; : : : ; fd). The corresponding pre�x-skip table of Fig. 3 is shown
in Fig. 8. In fact, the two tables I and P can be obtained in the preprocessing step.
We now take the same example as shown in Fig. 3 to demonstrate how our parallel

decoding algorithm works. Then a formal parallel algorithm is given.
Suppose we have a CREW PRAM with d processors, say PE1; PE2; : : : ; and PEd.

One shared variable, say base, is used to point out the current position of the given
Hu�man code H= h1h2 : : : hr and the variable base can be accessed by each PEi
for 16i6d. Initially, base=1. For convenience, let Hbase; d= hbasehbase+1 : : : hbase+d−1.
For decoding the corresponding source symbol in Hbase; d, PEi, for 16i6d, com-
pares Val(hbasehbase+1 : : : hbase+i−1) to Ii, where Val(hbasehbase+1 : : : hbase+i−1) denotes
the decimal value of hbasehbase+1 : : : hbase+i−1. If Val(hbasehbase+1 : : : hbase+i−1) is larger
than or equal to Ii, then PEi outputs the source symbol S[

∑i−1
j=1 fj + Val(hbasehbase+1 : : :

hbase+i−1)−Ii]. From the pre�x property of Hu�man code, at each time only one PE,
say PEi for 16i6d, does output one source symbol with respect to Hbase; d. Then the
value of base is changed into base+ i. Computing

∑j
i=1 fi and Ii for 16j6d− 1 in

preprocessing stage is the main di�erence between the parallel decoding algorithm and
sequential decoding algorithm. So, the proposed parallel decoding algorithm is correct
as described in Sections 2 and 3.
Consider an input code H=011110011. The decoding procedure starts with base= 1.

At this time, PE3 has Val(h1h2h3)=Val(011)=3¿2=I3, but the value of Val(h1
h2 : : : hi) in the other PEi for 16i 6= 364 is smaller than Ii. Then the symbol S[2 +
3− 2]=S[3]= s3 is output by PE3, and the base is changed into 4= base + 3. Now,
PE2 has Val(h4h5)=Val(11)= 3¿2=I2. So, the symbol S[0 + 3 − 2]=S[1]= s1 is
output by PE2 and the base is changed into 6= base+2. Continuing this way, PE4 has
Val(h6h7h8h9)=Val(0011)=3¿1=I4. Finally, the symbol S[4 + 3 − 0]=S[7]= s5
is returned by PE4 and the base is changed into base + 4=10 by PE4.
Following the preceding description, the formal parallel decoding algorithm and one

theorem are listed below.

Y.-K. Lin, K.-L. Chung / Theoretical Computer Science 246 (2000) 227–238 237

Algorithm
Input: The arrays H= (h1; h2; : : : ; hr);P= (0; f1; f1+f2; : : : ;

∑d−1
i=1 fi),

I = (I1;I2; : : : ;Id) and S = (s1; s2; : : : ; sn) stored in the shared memory.
Output: the source symbols corresponding to H
begin
base := 1
while (base6r) do
begin
for each i, 16i6d− 1 do in parallel
if Val(base; : : : ;base +i− 1)¿I[i]
begin
output S[P[i] + Val(base; : : : ;base +i− 1)−I[i]]
base := base + i

end
end

end

Fig. 9. The O(1)-time parallel decoding algorithm.

Theorem 4. Given an input code; the Hu�man decoding algorithm for determining
one source symbol can be performed in O(1) time on a CREW PRAM with O(d)
processors.

5. Conclusions

The signi�cance of the Hu�man code is due to its popular use in image and data com-
pression. The major contributions of this paper are two fold: �rst, we have presented a
space-e�cient Hu�man decoding algorithm based on a newly proposed data structure;
secondly, an O(1)-time parallel Hu�man decoding algorithm on CREW PRAM has
been developed. Our future research topics focus on (1) preprocessing the single-side
growing Hu�man tree in a more compact form as well as keeping the e�ciency of the
decoding process and (2) modifying the proposed data structure to handle the dynamic
Hu�man coding.

Acknowledgements

The authors are indebted to the reviewers and Prof. M. Nivat for making some
valuable suggestions and corrections that lead to the improved version of the paper.

238 Y.-K. Lin, K.-L. Chung / Theoretical Computer Science 246 (2000) 227–238

References

[1] T.C. Bell, J.G. Cleary, I.H. Witten, Text Compression, Prentice-Hall, Englewood Cli�s, NJ, 1990.
[2] S. Fortune, J. Wyllie, Parallelism in random access machines, in: Proc. ACM Symp. on Theory of

Computing, 1978, pp. 114–118.
[3] R. Hashemian, Memory e�cient and high-speed search Hu�man coding, IEEE Trans. Commun. 43 (1995)

2576–2581.
[4] D.A. Hu�man, A method for the construction of minimum redundancy codes, Proc. IRE 40 (1952)

1098–1101.
[5] A. Mo�at, A. Turpin, On the implementation of minimum redundancy pre�x codes, IEEE Trans.

Commun. 45 (1997) 1200–1207.
[6] W.B. Pennebaker, J.L. Mitchell, JPEG: Still Image Data Compression Standard, Van Nostrand Reinhold,

New York, 1993.
[7] S. Roman, Coding and Information Theory, Springer, New York, 1992.
[8] B.W.Y. Wei, T.H. Meng, A parallel decoder of programmable Hu�man codes, IEEE Trans. Circuits

Systems Video Technol. 5 (1995) 175–178.

