
Concise Papers __

A Strip-Splitting-Based Optimal Algorithm
for Decomposing a Query Window

into Maximal Quadtree Blocks

Yao-Hong Tsai,
Kuo-Liang Chung, Senior Member, IEEE, and

Wan-Yu Chen

Abstract—Decomposing a query window into maximal quadtree blocks is a

fundamental problem in quadtree-based spatial database. Recently, Proietti

presented the first optimal algorithm for solving this problem. Given a query

window of size n1 � n2, Proietti’s algorithm takes OðnlÞ time, where

nl ¼ maxðn1; n2Þ. Based on a strip-splitting approach, this paper presents a new

optimal algorithm for solving the same problem. Experimental results reveal that

our proposed algorithm is quite competitive with Proietti’s algorithm.

Index Terms—Maximal quadtree blocks, optimal algorithm, spatial database,

window queries.

�

1 INTRODUCTION

EFFICIENTmanagement of quadtee-based structures is important in
many fields such as image databases, geographic information
systems, image processing, computer graphics, robotics, and so on
[8], [6], [4], [5].

A well-known strategy to perform a window query is first to

decompose the correspondingwindowW into square subwindows,

then the window query becomes the integration of the smaller

subqueries over smaller subwindows. These subwindows are

named maximal quadtree blocks. For convenience, these maximal

quadtree blocks are denoted by B. In [9], it has been shown that the

number of B inside an n� n W is bounded by 3ð2n� lognÞ � 5. It

implies that, for an n1 � n2 W , the number of B inside this W is

bounded by �ðnlÞ, where nl ¼ maxðn1; n2Þ. On the other hand, the

lower bound for solving this decomposition problem is�ðnlÞ. In [3],

a general formula is given for the n-dimensional space.
In 1993, Aref and Samet [1] presented an Oðnl log logT Þ-time

algorithm for solving this decomposition problem, where T � T is

the size of the queried image. In the past few years, researchers

tried to design an optimal algorithm running in OðnlÞ time. In 1999,

based on a top-down approach, Proietti [7] presented the first

OðnlÞ-time algorithm for solving this decomposition problem.

Experimental results reveal that the time performance of Proietti’s

algorithm is superior to that of Aref and Samet’s algorithm

considerably.
Based on a strip-splitting approach, this paper presents a new

optimal algorithm for solving the same problem. The key concept

of the proposed optimal algorithm is quite different from the

Proietti’s algorithm [7]. Although the time complexity of our

proposed algorithm is the same as Proietti’s algorithm, the

constant factor in the time complexity of our proposed algorithm

is half of that of Proietti’s algorithm according to a large amount of

test data. Experimental results reveal that our proposed algorithm
is quite competitive with Proietti’s algorithm.

2 THE WORK BY PROIETTI

The quadtree represents a binary image as a set of quadrants.
Thus, quadrants correspond to square blocks in the image and they
are not overlapped. If the entire image is totally black or white, the
image is represented by a single root node; otherwise, it is gray and
the image is split into four equal-sized quadrants. The regular
decompositions are repeated recursively until all corresponding
subquadrants are totally black or white. If a subdivision is either
black or white, then its corresponding node is an external (leaf)
node; otherwise, it is an internal node. Given a binary image of size
T � T ¼ 2N � 2N , the level of the root is N and the four quadrants
of the root are at level N � 1. Fig. 1 shows an example of a binary
image and its quadtree representation.

For performing the window query in a quadtree-based spatial
database, a well-known strategy is first to decompose the window
into a set of square subwindows according to the quadtree
decomposition. Then, the query becomes the integration of those
smaller subqueries over those smaller subwindows. The subwin-
dows are the blocks corresponding to the leaf nodes in the
quadtree, which represent the window region within the image
space. These square subwindows are named maximal quadtree
blocks and comprise the set B. In the following, a query window
will be denoted by wðx; y; n1; n2Þ, where x and y represent the x

and y-coordinates of its upper-left corner, n1 is the height, and n2 is
the width of the query window, respectively. For example, we
consider the window W ¼ wð1; 1; 9; 8Þ as shown in Fig. 2, where W
is highlighted by four thick lines on its boundary. In total, W can
be decomposed into 33 maximal blocks; among these, 24 maximal
blocks are of width 1, eight maximal blocks are of width 2, and one
maximal block is of width 4.

Eachmaximal block inB is denoted byMBðx; y; sÞ, where (x; y) is
the x and y-coordinates of its upper-left corner and s is the width of
the maximal block. Therefore, these 33 maximal blocks are denoted
by MBð1; 1; 1Þ, MBð1; 2; 1Þ; . . . ;MBð4; 4; 4Þ ¼ B3, MBð8; 4; 2Þ ¼ B4,
and MBð8; 6; 2Þ ¼ B5.

We now take an example to briefly review the optimal algorithm
proposed by Proietti [7] for solving the decomposition problem. As
shown in Fig. 3a, suppose the input image is of size 8� 8 and the
query window isW ¼ wð1; 1; 5; 4Þ. According to Lemma 3 in [7] and
the given query window W , we have k1 ¼ 4 and k2 ¼ 4, where k1
and k2 are the greatest power of two integers such that k1 � 5 and
k2 � 4. Then, we obtain the smallest square W 0 ¼ wð0; 0; 16; 16Þ ¼
ðb 1

2k1
c � 2k1; b 1

2k2
c � 2k2; 4� k1; 4� k2Þ that containsW . The obtained

square W 0 is depicted in boldface (see the boundary of Fig. 3b).
Similarly, if the given query window isW ¼ wð1; 1; 9; 8Þ in a 24 � 24

image space, the determined smallest square isW 0 ¼ wð0; 0; 32; 32Þ.
Since W 0 6¼ W , the determined square W 0 is divided into four

quadrants, say Bð1Þ (to the west-north direction), Bð2Þ (to the west-
south direction), Bð3Þ (to the east-north direction), and Bð4Þ (to the
east-south direction). Each BðiÞ and the query window W must
satisfy one of the following three conditions:

1. BðiÞ TW ¼ �,
2. BðiÞ TW � W , and
3. BðiÞ TW ¼ BðiÞ.

If condition 1 holds, W 0 doesn’t need to be divided into four
quadrants further. If condition 2 holds, the quadrant BðiÞ is divided
into four quadrants. If condition 3 holds, the quadrant BðiÞ is
reported as one member of the maximal quadtree blocks B. In [7],

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 4, APRIL 2004 519

. The authors are with the Department of Computer Science and Information
Engineering, National Taiwan University of Science and Technology,
No. 43, Sec. 4, Keelung Rd., Taipei, Taiwan 10672, R.O.C.
E-mail: {yhtsai, klchung, wychen}@cs.ntust.edu.tw.

Manuscript received 29 June 2001; revised 24 Sept. 2002; accepted 7 Jan.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 114452.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

the above division and testing are performed recursively until all

the maximal quadtree blocks are obtained.
Returning to Fig. 3b, after dividing W 0, we have four quadrants,

Bð1Þ ¼ wð0; 0; 8; 8Þ, Bð2Þ ¼ wð7; 0; 8; 8Þ, Bð3Þ ¼ wð0; 7; 8; 8Þ, a n d

Bð4Þ ¼ wð7; 7; 8; 8Þ. Among the four quadrants, Bð2Þ, Bð3Þ, and Bð4Þ

satisfy condition 1, so they don’t have any intersection with W .

However, this redundant test is an overhead. Excepting the

determination of those 12 1� 1 maximal quadtree blocks and two

2� 2 (see Fig. 3), all the redundant tests on those 26 white blocks for

sizes 8� 8, 2� 2, and 1� 1 are the overhead.
In [7], Proietti has shown that his optimal algorithm takes OðnlÞ

time when the query window is of size n1 � n2, where

nl ¼ maxðn1; n2Þ. The motivation of this research is to present a

new optimal algorithm without the overhead mentioned above.

3 PROPOSED ALGORITHM BASED

ON A STRIP-SPLITTING APPROACH

3.1 Strip Splitting Approach

Based on the quadtree decomposition rule, the concept of maximal

zones [1] inside a query window is employed to develop our

proposed strip-splitting-based optimal algorithm. In what follows,

the maximal zones is defined first.
Suppose the query window wðx0; y0; n1; n2Þ is considered.

Let the query window be divided by pþ 1 vertical lines, fx ¼
vi for 0 � i � pg, and q þ 1 horizontal lines, fy ¼ hj for

0 � j � qg, where vp ¼ x0 þ n2 and hq ¼ y0 þ n1. For conve-

nience, let F ðvj; 2ki Þ ¼ ðvj mod 2ki Þ. For example, v0 ¼ x0 ¼ 1

and ki ¼ 1, we have F ð1; 21Þ ¼ 1. The above pþ 1 vertical

lines, for i ¼ 1; . . . p, are defined by x ¼ vi ¼ vi�1 þ 2ki such

that F ðvi�1; 2
ki Þ ¼ 0, F ðvi�1; 2

kiþ1Þ 6¼ 0, and vi�1 þ 2ki � vp.
For example, the window W in Fig. 2 has five vertical lines

and they are x ¼ v0 ¼ 1, x ¼ v1 ¼ 2, x ¼ v2 ¼ 4, x ¼ v3 ¼ 8, and

x ¼ v4 ¼ 9 for k1 ¼ 0, k2 ¼ 1, k3 ¼ 2, and k4 ¼ 0. Similarly, the

above q þ 1 horizontal lines are given by y ¼ hj ¼ hj�1 þ 2kj

such that F ðhj�1; 2
kjÞ ¼ 0, F ðhj�1; 2

kjþ1Þ 6¼ 0, and hj�1 þ 2kj � hq .

For example, the window W in Fig. 2 has five horizontal lines,

y ¼ h0 ¼ y0 ¼ 1, y ¼ h1 ¼ 2, y ¼ h2 ¼ 4, y ¼ h3 ¼ 8, and y ¼ h4 ¼
10 for k1 ¼ 0, k2 ¼ 1, k3 ¼ 2, and k4 ¼ 1. It is easy to verify that

all the possible values of kis (kjs) to be checked in determining

these pþ 1ðq þ 1Þ vertical (horizontal) lines are bounded by

2� blog n2cð2� blog n1cÞ. On the other hand, there are at most

2� blog n2cð2� blog n1cÞ vertical (horizontal) lines to be deter-

mined based on the above constraints.
A maximal zone denoted by MZðvi; hj; 2

kjþ1 ; 2kiþ1 Þ for 0 � kj �
blog n1c and 0 � ki � blog n2c is the rectangular region between

two successive vertical lines, x ¼ vi and x ¼ vi þ 2kiþ1 , and two

successive horizontal lines, y ¼ hj and y ¼ hj þ 2kjþ1 . In addition,

each of the height and width of the maximal zone is a power of

two. An example of such a decomposition of the window W is

shown in Fig. 4. There are 16 maximal zones in W , e.g., the

maximal zone Z1 is denoted by MZðv1; h2; 2
2; 21Þ ¼ MZð2; 4; 22; 21Þ

which is located at (2,4) and has size 4� 2.
From the definitions of maximal blocks and maximal zones, we

have the following property.

520 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 4, APRIL 2004

Fig. 3. One example for Proietti’s algorithm. (a) The 8� 8 image and the query

window W ¼ wð1; 1; 5; 4Þ. (b) The simulation result using Proietti’s algorithm.

Fig. 1. A 23 � 23 binary image and its corresponding quadtree.

Fig. 2. A query window of size 9� 8 on the binary image of size 24 � 24.

Property 1: [1]. Each maximal block in a query window is entirely

contained in one and only one maximal zone of that window.

Return to Fig. 2. Considering maximal blocks B1 and B2, they

are in the maximal zone Z1 in Fig. 4. The maximal blocks B4 and B5

are in Z3, while the maximal block Z2 has a single maximal block

B3. From Property 1, we see that each maximal block is in one and

only one maximal zone. Since each maximal block is a square, we

have the following property.

Property 2. A maximal zone of size 2m1 � 2m2 for m1 � m2ðm2 � m1Þ
can be decomposed into 2m2�m1 ð2m1�m2Þ equal-sized square blocks

(i.e., maximal blocks) using 2m1 ð2m2 Þ as the width of those square

blocks.

For example, the maximal zone Z1 of size 4� 2 in Fig. 4 can be

decomposed into two maximal blocks, each with size 2� 2, i.e., B1

and B2 (see Fig. 2). Similarly, the maximal zone Z3 of size 2� 4 also

has two maximal blocks, each with size 2� 2, i.e., B4 and B5 (see

Fig. 2).

Property 3. There are at most two columns (rows) of maximal zones,

each maximal zone with the same width (height), at the boundary of

the query window. If these columns (rows) of maximal zones are

stripped off, that window will become a smaller one, but there are still

at most two columns (rows) of maximal zones at the boundary of that

smaller window until that window becomes null.

For example, at the boundary of the querywindowof Fig. 4, there

are two columns of maximal zones, the leftmost column of maximal

zones and the rightmost column of maximal zones, where each

maximal zone is of width 1. However, there is only one row of

maximal zones, the top (bottom) row of maximal zones, where each

maximal zone is of height 1 (2) . In Fig. 4, the leftmost column of

maximal zones in wð1; 1; 9; 8Þ are MZð1; 1; 20; 20Þ, MZð1; 2; 21; 20Þ,
MZð1; 4; 22; 20Þ, and

MZð1; 8; 21; 20Þ:

If that column of maximal zones is stripped off, the window

becomes a smaller one, namely, wð2; 1; 9; 7Þ. In that smaller

window, the maximal zones along the topmost row are

MZð2; 1; 20; 21Þ, MZð4; 1; 20; 22Þ, and MZð8; 1; 20; 20Þ. After per-

forming the above two stripping steps, the maximal zones along

the rightmost column of the remaining window wð2; 2; 8; 7Þ are

MZð8; 2; 21; 20Þ, MZð8; 4; 22; 20Þ, and MZð8; 8; 21; 20Þ. This is the

basic concept of the proposed strip-splitting approach and each

column (row) of maximal zones can be viewed as a strip. By

Property 2, each strip can be decomposed into a set of equal-sized

maximal blocks.
For decomposing the initial query window

W ð0Þ ¼ wðx; y; n1; n2Þ

into a set of maximal blocks, the kth strip-splitting process for 1 �
k � blog ðmaxðn1; n2ÞÞc is denoted by the procedure SSðkÞðW ðk�1ÞÞ,
including four steps Vl, Ht, Vr, and Hb for splitting the leftmost

boundary, topmost boundary, rightmost boundary, and bottom-

most boundary, respectively. Each of Vl, Ht, Vr, and Hb is used to

split one boundary strip of the current window and to generate a

possible set of maximal blocks, each with size 2k�1 � 2k�1. Suppose

the current window is W ðk�1Þ. After performing the kth strip-

splitting process on W ðk�1Þ, we have W ðkÞ ¼ SSðkÞðW ðk�1ÞÞ. In other

words, we have W ð1Þ ¼ SSð1ÞðW ð0ÞÞ, W ð2Þ ¼ SSð2ÞðW ð1ÞÞ; . . . , and

W ðblog nlcÞ ¼ SSðblog nlcÞðW ðblog nlc�1ÞÞ;

where nl ¼ maxðn1; n2Þ. For example, the initial window W ð0Þ is set

to W ¼ wð1; 1; 9; 8Þ, as shown in Fig. 2. Then, W ð1Þ ¼ wð2; 2; 8; 6Þ is
obtained by performing SSð1ÞðW ð0ÞÞ, i.e., splitting the leftmost,

topmost, and rightmost strips of W ð0Þ. The four steps, Vl, Ht, Vr,

and Hb, in each strip-splitting process are listed as follows: In fact,

each step is quite similar only different in the related coordinates:

1. Vl: If F ðx; 2kÞ 6¼ 0, then

{output n1

2k�1 maximal blocks, MBðx; y; 2k�1Þ,
MBðx; yþ 2k�1; 2k�1Þ; . . . , and
MBðx; yþ n1 � 2k�1; 2k�1Þ;

x ¼ xþ 2k�1;

n2 ¼ n2 � 2k�1g

2. Vt: If F ðy; 2kÞ 6¼ 0, then

{output n2

2k�1 maximal blocks, MBðx; y; 2k�1Þ,
MBðxþ 2k�1; y; 2k�1Þ; . . . , and
MBðxþ n2 � 2k�1; y; 2k�1Þ;

y ¼ yþ 2k�1;

n1 ¼ n1 � 2k�1g

3. Vr: If F ðxþ n2; 2
kÞ 6¼ 0, then

{output n1

2k�1 maximal blocks,

MBðxþ n2 � 2k�1; y; 2k�1Þ,
MBðxþ n2 � 2k�1; yþ 2k�1; 2k�1Þ; . . . , and
MBðxþ n2 � 2k�1; yþ n1 � 2k�1; 2k�1Þ;

n2 ¼ n2 � 2k�1g

4. Vb: If F ðyþ n1; 2
kÞ 6¼ 0, then

{output n2

2k�1 maximal blocks,

MBðx; yþ n1 � 2k�1; 2k�1Þ,
MBðxþ 2k�1; yþ n1 � 2k�1; 2k�1Þ; . . . , and
MBðxþ n2 � 2k�1; yþ n1 � 2k�1; 2k�1Þ;

n1 ¼ n1 � 2k�1g.

3.2 The Proposed Algorithm

Based on the strip-splitting approach described in Section 3.1, the

formal algorithm for decomposing a query window into a set of

maximal blocks is described in this section. The proposed

algorithm indeed performs the strip-splitting SSðkÞðW ðk�1ÞÞ for

1 � k � blog nlc, where nl ¼ maxðn1; n2Þ. That is, the number of

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 4, APRIL 2004 521

Fig. 4. The maximal zones of the query window W in Fig. 2.

strip-splitting processes in the proposed algorithm is bounded by

blog nlc. The formal algorithm is shown as follows:

Algorithm: Decomposing a query window into maximal blocks.

Input: A query window W ð0Þ ¼ wðx; y; n1; n2Þ.
Output: Maximal blocks of the query window stored in an output

array.

k is initially set to 1;

Repeat the following steps on W ðk�1Þ

Vl; /* stripping the leftmost strip */

Ht; /* stripping the topmost strip */

Vr; /* stripping the rightmost strip */

Hb; /* stripping the bottommost strip */

k ¼ kþ 1;

Until W ðk�1Þ becomes null;

Return to Fig. 2. The query window W is used as an example to
demonstrate the proposed algorithm. Initially, the window is
wð1; 1; 9; 8Þ. The variable k is initially set to one. For Vl, since
F ð1; 21Þ 6¼ 0, nine maximal blocks MBð1; i; 1Þ for 1 � i � 9 are
generated and the windowW is split by moving out a vertical strip

of size 9� 1. Then, the remaining window is wð2; 1; 9; 7Þ. Similarly,
we have F ð1; 21Þ 6¼ 0, forHt, thus seven maximal blocksMBði; 1; 1Þ
for 2 � i � 8 are generated. The remaining window is denoted by
wð2; 2; 8; 7Þ. Since F ð2þ 7; 21Þ 6¼ 0, for Vr, eight maximal blocks

MBð2þ 7� 1; i; 1Þ for 2 � i � 9 are generated and the remaining
window is denoted by wð2; 2; 8; 6Þ. For Hb, we do nothing since
F ð2þ 8; 21Þ ¼ 0. After performing the above four steps, k is
increased by one. That is, k ¼ 2. The other maximal blocks can
be obtained by the same way and the detailed simulation for

decomposing the window W into a set of maximal blocks is
illustrated in Table 1. The outputted maximal blocks are stored in
an array.

3.3 Time Complexity Analysis

Lemma 1: ([8], p. 60). Given a query window, each maximal block of

smaller size is not surrounded by other maximal blocks of greater size,

i.e., a quadtree node cannot be adjacent to two nodes of greater size on

opposite edges or on diagonally opposite vertices.

By Lemma 1 and the proposed algorithm for decomposing a

query window into a set of maximal blocks, the concerning
maximal blocks are generated along the boundary of the current
window iteratively and the size-sequence of those generated
maximal blocks is an increasing sequence. For example, the size-
sequence of the maximal blocks of W in Fig. 2 is

h1� 1; 1� 1; . . . ; 1� 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
24 maximal blocks

; 2� 2; 2� 2; . . . ; 2� 2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
8 maximal blocks

; and 4� 4i:

It is known that, the proposed algorithm includes k� strip-

splittings, SSð1Þ, SSð2Þ, . . . , and SSk� , for k� � blognlc. In one

strip-splitting, the time complexity required in each of Vl, Ht, Vr,

and Hb ranges from Oð1Þ to Oðn�Þ, where n� is the number of those

generated maximal blocks in each step. Thus, the time complexity

of the proposed algorithm is dominated by the total number of

generated maximal blocks. Before analyzing the time complexity of

the proposed algorithm, we need the following result.

Lemma 2: ([3]). The number of maximal blocks inside an n� n query

window is bounded by 3ð2n� lognÞ � 5ð¼ OðnÞÞ.

By Lemma 2, the total number of maximal blocks of a square

window is linearly proportional to one dimension of the query

window. For any arbitrary rectangular window of size n1 � n2, the

total number of maximal blocks of the given window is linearly

proportional to maxðn1; n2Þ. For example, a 1� 100 window has

100 maximal blocks. Thus, the proposed algorithm takes OðnlÞ time

to generate all the maximal blocks inside the given window, where

nl ¼ maxðn1; n2Þ. In addition, the size of the working memory

required is also OðnlÞ. Thus, we have the following main result.

Theorem 1. Given a query window of size n1 � n2, the proposed

algorithm takes OðnlÞ time to generate all the maximal blocks in that

window and needs OðnlÞ working memory, where nl ¼ maxðn1; n2Þ.

Although Proietti’s algorithm takes OðnlÞ time and is the first

optimal algorithm for solving this decomposition problem, it does

perform some redundant checks even when no maximal block is in

one divided block (see Section 2). However, in our proposed

algorithm, there is no such overhead.

4 EXPERIMENTAL RESULTS

In this section, both algorithms are coded in C programming
language and are executed on a Pentium 133-based PC with the
same inputs. Given a 210 � 210 queried image, we randomly
generate 10,000 square query windows as inputs.

In the experimentation, we set n1 ¼ n2 ¼ n and randomly

choose the starting points for the generated query windows. From

Theorem 1, the execution time required in the proposed algorithm

can be rewritten as Tours ¼ Cours � n seconds for some constant

Cours. Similarly, the execution time required in Proietti’s algorithm

[7] is denoted by TPr ¼ CPr � n seconds for some constant CPr.

Experimental results reveal that our proposed algorithm is

linearly proportional to the width of the window within a small

range centered around 2:5� 10�5 and the execution time of the

algorithm by Proietti [7] has constant term CPr centered around

5:3� 10�5. The improvement ratio of the average execution time

required in our proposed algorithm over Proietti’s algorithm is

denoted by Rs ¼ TPr�Tours

TPr
� 100% and experimental results reveal

522 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 4, APRIL 2004

TABLE 1
The Simulation for Generating Maximal Blocks of W

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 4, APRIL 2004 523

that our proposed new algorithm has about 48-57 percent time
improvement.

5 CONCLUSION

We have presented a new optimal algorithm for decomposing a
query window into a set of maximal quadtree blocks. From the big-
O complexity notation, the proposed algorithm has the same time
complexity as the previous algorithm of Proietti [7]; however, the
proposed algorithm has about 48-57 percent time improvement
due to the computational advantage of strip-splitting approach. In
fact, the proposed algorithm in this paper can be applied to the
gray images decomposed by the S-tree representation [1].

ACKNOWLEDGMENTS

Kuo-Liang Chung was supported by the National Science Council
under contracts NSC89-2213-E011-017 and NSC91-2213-E011-028.

REFERENCES

[1] W.G. Aref and H. Samet, “Decomposing a Window into Maximal Quadtree
Blocks,” Acta Informatica, vol. 30, pp. 425-439, 1993.

[2] K.L. Chung and J.G. Wu, “Improved Image Compression Using S-Tree and
Shading Approach,” IEEE Trans. Comm., vol. 48, no. 5, pp. 748-751, 2000.

[3] C. Faloutsos, H.V. Jagadish, and Y. Manolopoulos, “Analysis of
n-Dimensional Quadtree Decomposition of Arbitrary Rectangles,” IEEE
Trans. Knowledge and Data Eng., vol. 9, no. 3, pp. 373-383, May/June 1997.

[4] E. Nardelli and G. Proietti, “Efficient Secondary Memory Processing of
Window Queries on Spatial Data,” Information Sciences, vol. 84, pp. 67-83,
1995.

[5] E. Nardelli and G. Proietti, “Time and Space Efficient Secondary Memory
Representation of Quadtrees,” Information Systems, vol. 22, pp. 25-37, 1997.

[6] J.A. Orenstein and F.A. Manola, “Probe Spatial Data Modeling and Query
Processing in an Image Database Application,” IEEE Trans. Software Eng.,
vol. 14, no. 5, pp. 611-629, 1988.

[7] G. Proietti, “An Optimal Algorithm for Decomposing a Window into
Maximal Quadtree Blocks,” Acta Informatica, vol. 36, no. 4, pp. 257-266,
1999.

[8] H. Samet, Applications of Spatial Data Structures. Addison Wesley, 1990.
[9] C.A. Shaffer, “A Formula for Computing the Number of Quadtree Node

Fragments Created by a Shift,” Pattern Recognition Letters, vol. 7, no. 1,
pp. 45-49, 1988.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

Discovery of Context-Specific Ranking
Functions for Effective Information Retrieval

Using Genetic Programming

Weiguo Fan, Michael D. Gordon, and
Praveen Pathak

Abstract—The Internet and corporate Intranets have brought a lot of information.

People usually resort to search engines to find required information. However,

these systems tend to use only one fixed ranking strategy regardless of the

contexts. This poses serious performance problems when characteristics of

different users, queries, and text collections are taken into account. In this paper,

we argue that the ranking strategy should be context specific and we propose a

new systematic method that can automatically generate ranking strategies for

different contexts based on Genetic Programming (GP). The new method was

tested on TREC data and the results are very promising.

Index Terms—Intelligent information retrieval, personalization, search engine,

term weighting, ranking function, text mining, genetic programming, contextual

information retrieval, information routing, information retrieval.

�

1 INTRODUCTION

THE Internet has brought far more information than anybody can
absorb. Similarly, organizations store a large amount of informa-
tion in manuals, procedures, documentation, expert knowledge,
e-mail archives, news sources, and technical reports. Such a large
amount of information serves as a huge information repository for
organizations. However, it also makes finding relevant informa-
tion from it extremely difficult. How to help users find their
required information is the central task of any information retrieval
(IR) system or search engine. However, precision and recall, the
two most commonly used performance measures, of commonly
used search engines are usually very low [2].

Retrieval performance of an IR system can be affected by many

factors: the ambiguity of query terms, unfamiliarity with system

features, as well as factors relating to document representation [6].

Many approaches have been proposed to address these issues. For

example, query expansion techniques based on a user’s relevance

feedback have been used to discover a user’s real information need

[3]. Similarly, document descriptions have been modified [1].

Another very important factor that is often overlooked by most

researchers is the ranking/matching function. It is this ranking

function that we focus most of our discussion on.
A ranking function is used to order documents in terms of their

predicted relevance to a particular query. It is very difficult to

design such a ranking function that can be successful for every

query, user, or document collection (which we will call contexts).

In this paper, we argue in favor of a method that systematically

adapts a ranking function and tailors it to different users’ needs

(i.e. in different contexts). In particular, we will use Genetic

. W. Fan is with the Department of Accounting and Information Systems,
Virginia Polytechnic Institute and State University, 3007 Pamplin Hall,
Blacksburg, VA 24061. E-mail: wfan@vt.edu.

. M.D. Gordon is with the Department of Computer and Information
Systems, University of Michigan, E2420 Business Adminstration Build-
ing, 701 Tappan Stree, Ann Arbor, MI 48109.
E-mail: mdgordon@umich.edu.

. P. Pathak is with the Decision and Information Sciences Department,
Warrington College of Business, University of Florida, PO Box 117169,
Gainesville, FL 32611. E-mail: praveen@ufl.edu.

Manuscript received 4 June 2002; revised 4 Mar. 2003; accepted 20 May 2003.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 116690.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

