
Pergamon

Comput. & Graphics. Vol. 18. No. 3. pp. 327-334. 1994
Copyright 0 1994 Ekvier Science Ltd

Printed in Great Britain
0097-8493/94 $6.00 t .OO

0097-8493(94)EOOlS-P

Technical Section

A FAST ALGORITHM FOR CUBIC B-SPLINE
CURVE FITTING

KUO-LIANG CHUNG

Department of Information Management. National Taiwan Institute of Technology.
Taipei, Taiwan 10672, R.O.C.

and

WEN-MING YAN

Department of Computer Science and Information Engineering, National Taiwan University,
Taipei. Taiwan 10764. R.O.C.

Abstract-Based on the matrix perturbation technique. a fast-fitting algorithm using uniform cubic B-spline

curves is presented. Our algorithm entails much less floating-point operations when compared with Gaussian
elimination method. In addition, our result can be applied to solve the closed cubic B-spline curve-fitting
problem. Experimental results are included for a practical version. These experimental values confirm our
theoretic results.

I. INTRODU(JTION

Curve fitting is important in computer graphics, com-
puter-aided design, pattern recognition, and picture
processing[11, 13, 151. The task of curve fitting is to
construct a smooth curve that fits a set of given points

in the space.
In practice, a curve-fitting algorithm should meet

two criterions: First, adjusting a control point of the
curve affects only its vicinity, and second, it should be

fast enough to be incorporated into an interactive pro-
gram. The cubic B-spline curve interpolation[I I] is a
good fitting tool to meet the first criterion. Gaussian
elimination has been used to solve the cubic B-spline

curve-fitting problem. How to speed up the compu-
tation of the cubic B-spline curve-fitting in order to
meet the second criterion is a very interesting research

problem. This paper only considers the uniform cubic
B-spline case[2].

Based on the matrix perturbation technique, a fast-
htting algorithm using uniform cubic B-spline curves

is presented. Given n points, the number of floating-
point (FP for short) operations required for our algo-

rithm is about Sn. While using Gaussian elimination,
it takes about 7n FP operations to solve the same fitting
problem. Our algorithm entails much less FP opera-
tions when compared with Gaussian elimination

method. In addition, our result can be applied to solve
the closed cubic B-spline curve-fitting problem, and
the number of FP operations used in our algorithm
over the number of FP operations used in Gaussian
elimination is about one-third. Experimental results
are included for a practical version. These experi-
mental values confirm our theoretic results derived in

this paper.

2. THE CUBIC B-SPLINE CURVE FIITING

Suppose we are given a set of points, B, = (hj”,
hj”. hl”) for I i i 5 n. According to [2], for an uniform

cubic B-spline curve, each given point can be expressed
by a weighted average of three control points:

B, = t(C,_, + 4C, + C,,,), 1 I i 5 n,

where C, = (cl , i’) d2’, cl”). They form a system of n

equations in n + 2 unknowns for all given points. In
order to completely solve the system, we need the fol-
lowing two additional equations to specify how the

boundary control points are interpolated: Co = C,; C,, ,
= C,,. For simplicity, we only consider b = (h,, b2, . ,
h,)’ = (h\‘), by’. . . , b!:‘)’ and c = (cl, c2, . . , c,)’ =
(cd,“, c$“, . , c’,“‘)’ throughout this paper. In what fol-

lows, matrices are represented by bold uppercase letters,
vectors by bold lowercase letters, and scalars by plain
lowercase letters. Thus, the above system of equations
can be equivalently transformed into

zz -AC = 6b. (I)

First, it takes n FP operations to perform the mul-
tiplication 6b. Using Gaussian elimination, the first is
the forward-elimination phase, where Eq. (1) is trans-
formed, by eliminating variables from equations, into
a system with all zeros below the diagonal. It takes
about 4n FP operations to perform this triangulation
phase. At this moment, the coefficient matrix A be-
comes an unit upper-triangular matrix. The second

327

p ~ (t) =

K.-L. CHUNG and W.-M. YAN

phase is the backward-substitution phase, where the
values of the variables are computed using the trian-
gulated matrix produced by the first phase. In this
phase, it takes about 2n FP operations. Totally, solving
Eq. (1) takes about 7n FP operations by using Gaussian
elimination. The C language code of the cubic B-spline
curve fitting algorithm using Gaussian elimination is
given in Appendix A.

After solving the tridiagonal system of Eq. (1), we
can obtain the control points, Cg, of the n + 2 defining
polygon vertices. Letting P,{I) be the position vectors
along the ith piecewise cubic curve as a function of the
parameter t, the ith cubic B-spline curve segment is
given by

where

2

C~+jNj(t) for l _ < i _ < n - 1 (2)
j = I

and 0 ~ t < 1,

Fig. 1, where no curve end condition[1] is included to
handle the two end segments of the curve.

3. A FAST ALGORITHM
Based on the matrix perturbation technique, this

section presents a new three-phase algorithm for solving
Eq. (l). It will be shown that our algorithm entails
much less FP operations when compared with Gauss-
ian elimination method. Due to the coefficient matrix
A in Eq. (1) being near-Toeplitz, consider a perturbed
matrix of A,

O

O

7 ' 4 1
A' = = L 'U ' ,

l 4
1

where the Nj(t) are the normalized B-spline blending L =
functions. By the Cox-de Boor formulas[2], these
periodic uniform basis functions in Eq. (2) are de-

- t 3 + 3l 2 - 3t + 1
fined by: N ~(t) = ; No(t) =

6
3t 3 - 6t 2 + 4 -313 + 3fl + 3t + 1

6 , N~(I) = 6 ; N2(I) U =

t 3

6

Given 10 points denoted by the "star" symbols, by
Eqs. (1) and (2), the corresponding control points de-
noted by the "circle" symbols and the curve interpo-
lation denoted by a boldfaced line are illustrated in

lb - b 1
1

- b

and

1

a 1

a

then it implies that a - b = 4 and - a b = 1. By solving

the two equations, we obtain a = 2 + 1/3 and b =
- 2. It is clear that

328

Fig. 1. An example of the cubic B-spline curve fitting.

A = A ' +

b)
A fast algorithm for cubic B-spline curve fitting 329

o f the f ight h a n d side of Eq. (5) can be negligible w h e n
p _> 10. H e n c e x is a good a p p r o x i m a t i o n o f A]ej

(3) w h e n p >_ 10. Similar ly , let

T h e a b o v e Toepl i t z fac to r iza t ion p rocedu re is cal led
the first phase in our s a lgo r i thm, a n d it can be f inished
in O(1) t ime. T o solve Ac = 6b, we first solve A'c' -
6b (= b'). It can be solved by the fol lowing forward
a n d b a c k w a r d s u b s t i t u t i on p rocedure ; it is also cal led
the s econd phase in ou r a lgor i thm, where /~ =

1
- - because - a b = 1.

a

for i=l to n do b} : 6bi

d : bl

for i--2 to n do C; = b~ + b*d ,

c;, = - b , c ;

for i=n--i downto i do c; = b*(c~+l - b[)

It is no t ha rd to verify tha t the n u m b e r of F P opera t ions
requ i red in the a b o v e p rocedure , i.e., in the second
phase, is a b o u t 5n. By Eq. (3) a n d b' = 6b, we ob ta in

(4)

, t Ac' = A'c ' + (1 - b)c le l + ~ ,e .

= 6b + (1 - b)clel + c~en,

where e~ = (1, 0 0) ' a n d e. = (0, 0 0, 1)'

n n

Hence , it yields

c = c' (1 - b)c [A- le l - c ' A -] e . .

it can be easily verif ied tha t Ac = 6b.
Solv ing the r ecu r r ence relat ions: &] + 4& + x~+~

= 0 f o r 2 _ < i _ < n - l, we o b t a i n x, = ~b i + - for

s o m e c o n s t a n t s ~ a n d 3'. I f 7 =P 0, t h e n the va lue o f x i
will b e c o m e too large for sufficiently large i. In o rder
to der ive an a p p r o x i m a t e d so lu t ion , t empora r i ly , we

try x, = fib ~. By the first e q u a t i o n 5& + .v2 = 1, we
b ~

have & - for 1 _<: i _< n. W h e n i is sufficiently
b 1

large, say, i = n, x~ ~ 0 a n d the last e q u a t i o n x,-z +

5x . ~ O.
Since the s equence (x3 converges to zero soon. let

IS / / if 1 < i -< p (p : a smal l integer)
- 1

if p + 1 < _ i < _ n
) (i =

a n d x = (&, x2 x ,) ' , t h e n we have

hi,+ i b p
.;Ix : el - ~ ep + ~ e,,+l. (5)

No te tha t since b = - 0 . 2 6 7 9 4 9 2 the last two t e rms

bn+]-i if n -- p + 1 _< i < n

~b[0- 1 if 1 < i < _ n - p
vi =

, t a n d y = 0'1.)'2 3 .) . t h e n we have

by+ 1 b p
Ay = e . - b - - ~ - 1 e.+l p + ~ e,_, . (6)

Let

c : c ' - c'l(1 - b)x - c~y

= C' + c'](b, b 2 b v, 0 0) '

p n p

C'n bp /)2
b 1 (0, 0 b) ' ,

n p p

which will be p e r f o r m e d in the upda te phase (the th i rd
phase in ou r a lgor i thm) , t hus is yields

Ac - 6b = -c 'abP+lep + c'jbPep+]

'~ 1 bP+le"+~ p (' ~ / + b b -]
- - - bPe,,_p. (7)

U n d e r a sa t isfactory res idual r e q u i r e m e n t , say,]IAc
- 6bll is o f o rde r 10 -3, how to d e t e r m i n e the va lue o f
p to satisfy the res idual r e q u i r e m e n t d e p e n d s on Eq.
(7) a n d the fo l lowing L e m m a .

L e m m a 1 . IIc'll -< 3Ltbl[, where [IxlL = m a x l < i < . (Ix, I).
P r o o f . Suppose IIc'll > 311bll. If Ic'il = IIc'll, for s o m e i
(2 < i ~< n - 1), we have c', 1 + 4c'i + c',+j = 6bi. T h u s

it gives t4# ,1-< [6bil + [c~ i1 + Ic ' ,+~l , i .e . ,

_ , t
16b~[> t4c '~L- [c , -] l - IC;+ll

411c'11 - IIc'll - IIc'H = 211c'll > 611bll.

It is a con t r ad i c t i on .

(') ' I f Ic*il = IIc'[I fo r i = l , w e have - ~ c~ = 6b~ -

2, a n d - c~ _< 16b~l + I c i I . T h u s i t g i v e s

16b, I >_ (- ~) c ' ~ - Ichl > - (- ~) l l c ' [I - I [c ' l l

= (l + ¢3)LIc'11 > 3(1 + ¢3)11b11.

It is a con t r ad i c t i on .
I f Ic',l = Hc'l[for i = n. we have 4c.' = 6b., - ~." i,

_ , P a n d [4c~,l < 16b.] + I (. ,[. T h u s it gives

330 K.-L. CHUNG and W.-M. YAN

16b.I ~> 14c~[- IcL-, I ~ 4] l c ' l l - Ile'll

: 311e'll > 9[Ibll.

It is a contradiction. We complete the proof. Q. E. D.
From Eq. (7) and Lemma 1, assuming that p, p +

1, n + 1 - p, and n - p are distinct, then]our three-
phase algorithm has the residual

IIAc - 6bll

~n bp+l c' < m a x Ic '~b '+~l , Ic'~b~l, b - 1 ' b~-n l bp

= max(I c'mb p I c" ' b - 1 bp) 4

<-max(3[lb[llbP['3[[b[] bb~P-1)=3][blllbP] (i

That is, we have

IIAc - 6bll -< 31lbll IbPl .

For example, if [[bll -< 1000 and p = 10, then the
residual _<5.7 × 10 -3. Under this conditions, in our
implementation, the residual for the solution e(n > 10)
is about of order 10 -3. Totally, it takes about 5n FP
operations to solve Eq. (1) using our three-phase al-
gorithm. Our algorithm entails much less FP operations
when compared with Gaussian elimination method.
Note that it takes 7n FP operations to solve Eq. (1) by
using Gaussian elimination. The C language code of
our fast cubic B-spline curve fitting algorithm is given
in Appendix B.

Table 1 shows the performances of running our al-
gorithm and the one using Gaussian elimination on
IBM-386 personal computer (PC for short), where the
symbol "s" denotes the time unit "second."

It is observed that our three-phase algorithm for
solving Eq. (1) is faster than the method using Gaussian
elimination. The value of "ratio" denotes the time
spent on our algorithm over the time spent on Gaussian
elimination method. The value of "ratio" is near to
the theoretic value 5/7.

4. APPLICATION TO C L O S E D CUBIC B-SPLINE
CURVE FITTING

In this section, the application of the closed cubic
B-spline curve fitting is investigated. Following the no-

tations used in Section 2 and the definitions in [2], in
the closed cubic B-spline curve fitting, each given point
can be expressed by a weighted average of three control
points:

B, = ~(C. + 4C, + C2).

B. = ~ (G - , + 4(7. + e l) ,

O i = l (c i _ I q- 4 (7 + G + ,)

and

for 2 < i -< n - 1 .

They form a system of n equations in n unknowns for
all given points. The above system of equations can
be equivalently transformed into

1

4 1

1 4

1

l ~ [c,

1 c~ j

4 / \ c,

=6(1:/ • -~ T c : 6b. (8)

First, it takes n FP operations to perform the mul-
tiplication 6b. Using Gaussian elimination, the first is
the triangulation phase, where Eq. (8) is transformed,
by eliminating variables from equations, into a system
with all zeros below the diagonal. It takes about 10n
FP operations to perform this triangulation phase. The
second phase is the backward-substitution phase, where
the values of the variables are computed using the unit-
triangulated matrix produced by the first phase. In this
phase, it takes about 4n FP operations. Totally, it takes
about 15n FP operations to solve Eq. (8) using Gaussian
elimination.

After solving the circulant tridiagonal system of Eq.
(8), we can obtain the control points ci of the n defining
polygon vertices. Given 10 given points denoted by
the "'star" symbols, by Eq. (8) and the similar definition
in Eq. (2), the corresponding control points denoted
by the "circle" symbols and the curve interpolation
denoted by a boldfaced line are illustrated in Fig. 2.

Following our three-phase approach described in
Section 3, to solve Eq. (8) we first solve the perturbed
system A'c' = 6b, where A' and c' have been defined in
Section 3. Then c can be obtained by updating c'. It is
clear that

Table 1. Time required when running on IBM-386 PC for
cubic B-spline curve fitting.

Gaussian Our
n elimination algorithm Ratio

64 0.0027s 0.0022s 0.815
128 0.0055s 0.0043s 0.782
256 0.0Il ls 0.0083s 0.747
512 0.0223s 0.0164s 0.735

1024 0.0446s 0.0326s 0.731
2048 0.0894s 0.0651s 0.728

T = A ' +

- b)
By Eq. (9) and b' = 6b, we obtain

T c ' = A 'c '+ (c~ - bc])el +c]e.

(9)

= 6b + (c" - bc'Oe, + c'~e,. (10)

A fast algorithm for cubic B-spline curve fitting 331

1 1
Let v = ~ - ~ (x + by) and w = ~ (bx + y), then

we have

0

0 0

o

Fig. 2. An example of the closed cubic B-spline curve fitting.

Therefore , we have

c = c ' - - (1 -- b) c ' l A Je~ - c ; ,A le,.

It can be easily verified that Tc = 6b. By the s imilar
a r g u m e n t s in c o m p u t i n g x and y, which are approxi -

m a t e d so lu t ions o f A-%~ and A ~e. [see Eqs. (5) and
(6)], the a p p r o x i m a t e d so lu t ion o f c can be solved as
follows.

1
We have k n o w n that x - (b, b 2 b p,

b - 1 , •

1
0 0) ' y : ~ - - 7 (0 , . . . , 0 , b p, b2, b) ' . S o w e

n--p n p p

have

(1 - 1)Tx : Q4b + b 2 , 0 O, b v ' + 4 b v,

P

b v, 0 0, b) ~

.~,

= el + ben - - bp+lep + bPep+l . (11)

Similarly, we have

(b - l)Ty = bej - e . - bP+len+l_p + b P e . p. (12)

By Eqs. (11) and (12), it gives

(b 1)T(x + by) = b 2 - 1)el - b P + J %

+ bPep+l -- bV+2e.+l p 11 b P + l e , p;

(b - 1)T(bx + y) = (b 2 -- l)e , - bp+2ep

+ b]'+Jep+~ - bV+te.+~ p + b V e . _ w

Tv = e l - - -

T w = en -- - -

b p

h 2 1

b v

b 2 - 1

(bep -- ep+l + b2e.+l p -- be . p):

(b2ep - bep+l + b e . + l p - e . p).

Let c = c' - (c " - b c ' O v - c~w, t hen Tc = Tc' -

(c ; - b c ' l) T v - c~ T w . F u r t h e r m o r e , we have

b p
Tc - 6 b = (c), - b e ' 0 ~ (bep - ep+l

b v
+ 32e .+1 p - bet, p) + c'i ~ (b2% b % + ,

b p
+ be.+ j p C. p) = ~ (c~+bep - - ('~ep+ i

+ (c',,b 2 + c'l(b - b3))e.÷l p

-- (c'nb + C'I(I -- b2))en p).

Before discussing the b o u n d o f II Tc - 6bll, we first

need the fol lowing l emma .

L e m m a 2. Itc'll -< 31Lbll.
P r o o [) T h e p r o o f is s imilar to L e m m a 1.

If/y+ p + 1, n + 1 - p+ n - p are dis t inct , by L e m m a

2, t hen it yields

[I Wc - 6bll b P t d + 2
~5--L--~_ 1 max(]bc , , I , I~ol, Ic,,b

+ G (b - b3)l, [(c ' b + 4 (1 b2)l)

b t,
= ~-2-i-_ 1 max(Ic ' l , I(c'b + 4(1 - b2)l)

= ~ m a x (3 1 1 b l l , 3llb[l(Ibl

+ I I - t72t))

= b ~ 311bll¢lbl + II - h 2 P)

3 (3 - 4
41/3 - 6 Ibl"31lbll < 3.8661blV[lbll.

For example , if Hbl[-< 1000 and p = 10, then the re-
sidual is <7 .4 × 10 3. U n d e r this cond i t ions , in our
i m p l e m e n t a t i o n , the residual for the so lu t ion c (n >
10) is o f o rde r IO 3.

Therefore , the closed cubic B-spl ine curve fitting be-
c o m e s a th ree -phase process, namely , pe r fo rming Toe-
plitz fac tor iza t ion first, s econd solving A'c' - 6b for c'
and then c o m p u t i n g

332 K.-L. CHUNG and W.-M. YAN

c = c ' - (c ' . - b c ' O v - c '~w

- - C'
c" bc" + (1 - b2)c~

b + l x b + l Y

- - C '
c'.

b l(b,b o)'
p n - p

bc" + (1 - b2)c]
b 2 1 (0 O, b p b ~, b) t,

n'-p ~"

which is performed in the update phase, the third phase,
to obtain c. The corresponding three-phase algorithm
can be designed in a similar way as in the open case,
and the number of FP operations required is also about
5n. It comes to a conclusion that the number of FP
operations required in our algorithm is one-third as
many as the one using Gaussian elimination. The C
language code of the closed cubic B-spline curve fitting
algorithm using Gaussian elimination and our three-
phase approach are given in Appendix C and Appendix
D, respectively.

Table 2 shows the performances of running our al-
gorithm and the one using Gaussian elimination on
IBM-386 PC.

It is observed that our three-phase approach for
solving Eq. (8) is faster than Gaussian elimination
method. The value of "rat io" is near to the theoretic
value 1/3.

5. CONCLUSIONS

We have presented fast three-phase algorithms for
open and closed cubic B-spline curve fittings. Our al-
gorithms have been implemented in C language codes
on IBM-386 PC to show the good performances when
compared with Gaussian elimination methods. In fact,
our result can be applied to design fast algorithms for
solving many other curve fitting problems such as the
quadratic B-spline curve fitting[14, 16]. However, our
result cannot be extended to handle the nonuniform
case[12] but how to speed up the computat ion for this
case is our future research topic.

Previously, many methods were proposed for solving
the tridiagonal near-Toeplitz systems. These methods
are special L U factorization[10], cyclic reduction[9],
reversed triangular factorization[5-7], and Toeplitz
factorization with Sherman-Morrison formula[8]. The
interested readers are suggested to consult the survey
paper by Boisvert[3]. For solving the open as well as

the closed cubic B-spline curve fitting problems, the
number of FP operations required in our new algo-
rithms is the same as the previous fastest ones such as
the special L U factorization and reversed triangular
factorization[3]. Pham[14] proposed a digital filter ap-
proach to solve the quadratic B-spline curve fitting
problem, but his paper did not analyze the t ime com-
plexity needed, error analysis, and the comparison with
Gaussian elimination.

Acknowledgements--This research was supported in part by
the National Science Council of R. O. C. under Grant NSC82-
0415-E011-180.

REFERENCES
1. B. A. Barsky, End conditions and boundary conditions

for uniform B-spline curve and surface representations.
Comp. Industry 3 (1/2), 17-29 (1982).

2. R. H. Barrels, J. C. Beatty, and B. A. Barsky, An Intro-
duction to Splines Jor Use in Computer Graphics and
Geometric Modeling. Section 4.2: Uniform Cubic B-
splines, Morgan Kaufmann, San Mateo, CA (1987).

3. R. F. Boisvert, Algorithms for special tridiagonal systems.
SIAM J. Sci. Stat. Comp. 12, 423-442 (1991).

4. G. M. Chaikin, An algorithm for high-speed curve gen-
eration. Comp. Graph. Image Proc.. 3, 346-349 (1974).

5. D.J. Evans and C. D. V. Forrington, Note on the solution
of certain tri-diagonal systems of linear equations. Comp.
J. 5, 327-328 (1963).

6. D.J. Evans, An algorithm for the solution of certain tri-
diagonal systems of linear equations. Comp. J. 15, 356-
359 (1972).

7. D. J. Evans, On the the solution of certain Toeplitz tri-
diagonal linear systems. SIAMZ Numer. Anal 17, 675-
68O (1980).

8. D. Fischer, G. Golub, O. Hald, C. Levia, and O. Winlund,
On Fourier-Toeplitz methods for separable elliptic prob-
lems. Math. Comp. 28 (126), 349-368 (1974).

9. R.W. Hockney, A fast direct solution of Poisson's equa-
tion using Fourier analysis, a[ACM. 12, 95-113 (1965).

10. M.A. Malcolm and J. Palmer, A fast method for solving
a class of tridiagonal linear systems. Comm. ACM. 17,
14-17 (1974).

11. J. D. Foley and Van Dam, Fundamentals ~flnterative
Computer Graphics, Addison-Wesley, Reading, MA
(1982).

12. J. Hoschek and D. Lasser, Fundamentals ~fComputer
Aided Geometric Design, A. K. Peters, Ltd. (1993).

13. T. Pavlidis, Curve fitting as a pattern recognition problem.
In Proceedings qf the 6th International Confi, rence on
Pattern Recognition, Munich, Germany, IEEE Computer
Society Press, 853-859 (1982).

14. B. Pham, Quadratic B-splines for automatic curve and
surface fitting. Comp. & Graph. 13, 471-475 (1989).

15. A. Rosenfeld and A. C. Kak, Digital Picture Processing.
Academic Press, New York (1982).

16. R. F. Riesenfeld, On Chaikin's algorithm. Comp. Graph.
Image Proc. 4, 304-310 (1974).

Table 2. Time required when running on IBM-386 PC for
closed cubic B-spline curve fitting.

Gaussian Our
n elimination algorithm Ratio

64 0.0060s 0.0023s 0.383
128 0.0160s 0.0043s 0.269
256 0.0285s 0.0084s 0.295
512 0.0534s 0.0164s 0.307

1024 0.1030s 0.0326s 0.316
2048 0.2032s 0.0649s 0.319

APPENDIX A
/*Gaussian Elimination for Open Cubic B-spline
Curve Fitting*/
#include <stdio.h>
#include <stdlib.h)
main()
{ float res,temp,a[5000],b[5000],c[5000];
int i,n;
printf(''GaussianEliminationforOpenCubic
B-spline Curve Fitting\n");
printf(''INPUTN:''); /*N:numberofthegiven
points*/
scanf(''%d'',&n);

A fast algorithm for cubic B-spline curve fitting 333

/*Generate Random Given Points*/
for (i=l; i<=n; i++) la[i]-rand() %
1000;b[i]=a[i];}
for (i=l;i<=n;i++) a[i]*-6.0;

/*Forward-elimination*/
c[i]=0.2;a[i]*=0.2;
for (i-2;i<:n--l;i++) I
c[i]-i/(4.0--c[i-l]);
a[i]-(a[i] a[i-l])*c[i];

I
a[n]-(a[n]--a[n 1])/(5.0 c[n--l]);

/*Backward-substitution*/
for (i=n l;i>=l;i -) a[i] =c[i]*a[i+l];

/*Check the Residual of Solution*/
res-5.0*a[l]+a[2] 6.0*b[l];/*resisusedto
save the residual*/
if (res<0) res- res;
for (i-2;i<-n-l;i++) I
temp-a[i-l]+4.0*a[i]+a[i+l]-6.0*b[i];
if (temp<0) temp- temp;
if (res<temp) res-temp;

temp-a[n l]+5.0*a[n]-6.0*b[n];
if (temp<0) temp--temp;
if (res<temp) res=temp;
printf(''\nThe Residual=%10.7f\n",res);

APPENDIX B
/*Our Method for Open Cubic B-spline Curve Fit-
ting*/
#include <stdio.h>
#include <stdlib.h>
#define alpha -0.2679492 /
sqrt(3)-2- 0.2679492/
#define p i0
main()
I float temp,res,x[20],a[5000],b[5000];
int i,n;
printf(''Our Method for Open Cubic B-spline
Curve Fitting\n");
printf(''INPUTN:'');/*N:numberofthegiven
points*/
scanf(''%d'',&n);

/*Generate Array X for Updation*/
for (i=l,x[0]=l.0;it-p;i++)
x[i]=alpha*x[i-l];

/*Generate Random Given Points*/
for (i=l;i<-n;i+4) la[i] rand() %
1000;b[i]-a[i]; ~

/*Solving L'Y=6B*/
for (i-l;i<=n;i+4 -) a[i]*-6.0;
for (i-2;i<=n;i++) a[i]+-alpha*a[i--l];

/*Solving U'C=Y*/
a[n]*-(alpha);
for (i-n l;i>=l;i -)
a[i]=alpha*(a[i+l]-a[i]);

/*Updation*/
temp-a[l];
for (i-l;i<-p;i+4) a[i]+=x[i]*temp;
temp-a[n]/(alpha-l);
for (i=l;i<=p;i++) a[n+l i]--x[i]*temp;

/*Check the Residual of Solution*/
res-5.0*a[l]+a[2]--6.0*b[l];/*res is used to
save the residual*/
if (res<0) res=-res;
for (i-2;i<=n-l;i++){
temp-a[i-l]+4.0*a[i]+a[i+l]-6.0*b[i];
if (temp<0) temp--temp;
if (res<temp) res=temp;

I
temp a[n-l]+5.0*a[n]-6.0*b[n];
if (temp<0) temp- temp;
if (res<temp) res-temp;

printf(''\nTheResidual=%10.7f\n'',res);

APPENDIX C
/*Gaussian Elimination for Closed Cubic B-
spline Curve Fitting*/
#include <stdio.h~
#include<stdlib.h~
main()
I float res,temp,a[3000],b[3000],c[3000],
d[3000];
int i,n;
printf(''GaussianEliminationforClosedCu o
bic B-splineCurve Fitting\n'');
printf(''INPUTN:'');/*N:numberofthegiven
points*/
scanf(''%d'',&n);

/*Generate Random Given Points*/
for (i=l;i<-n;i++)la[i]-rand()
%1000;b[i]-a[i]; I
for (i-l;i<-n;i++) a[i]*-6.0;

/*Forward-elimination*/
c[l] 0.25;d[l]-0.25;a[l]*-0.25;
for (i-2;i<-n-2;i++){
c[i]-i/(4.0-c[i l]);d[i]- d[i l]*c[i];
a[i] (a[i] a[i-l])*c[i];

c[n--l] 0;
temp-l.0/(4 c[n-2]);
d[n-l]-(l.0-d[n 2])*temp;
a[n l]-(a[n-l] a[n--2])*temp;

temp-l.0/(4.0 d[n--l]);
a[n]-(a[n] a[n l])*temp;
d[n]-l.0;
for (i-l;i<-n 2;i++) I
a[n]=a[n]-temp*a[i];
d[n]-d[n]-temp*d[i];
temp- c[i]*temp;

a[n]-(a[n] temp*a[n-l])/
(din] temp*d[n-l]);

/*Backward-substitution*/
for (i-n-l;i>-l;i -)
a[i]-a[i] c[i]*a[i+l]-d[i]*a[n];

/*Check the Residual of Solution*/
res=4.0*a[l]+a[2]+a[n] 6.0*b[l];
if (res<0) res--res;
for (i-2;i<-n l;i++) I
temp--a[i l]+4.0*a[i]+a[i+l]-6.0*b[i];
if (temp<0) temp -temp;
if (res<temp) res-temp;

temp=a[l]+a[n l]+4.0*a[n]--6.0*b[n];
if (temp<0) temp--temp;
if (res<temp) res-temp;
printf(''\nThe Residual=%10.7f\n'',res);

APPENDIX D
/*Our Method for Closed Cubic B-spline Curve
Fitting*/
#include <stdio.h~.
#include <stdlib.h~
#define p i0
#define alpha -0.2679492
main()
I float templ,temp2,temp,res,x[20],a[5000],
b[5000];
int i,n;
printf(''OurMethodforClosedCubicB-spline
Curve Fitting\n'');
printf(''INPUTN:'');/*N:numberofthegiven
points*/

334 K.-L. CHUNG and W.-M. YAN

scanf (' '%d' ' , &n) ;
/*Generate Array X for Updation*/

for (i=l,x[0]=l.0;i<=p;i++)
x[i]=alpha*x[i-l] ;

/*Generate Random Given Points*/
for (i=l;i<=n;i++) {a[i]=rand() %
1000;b[i]=a[i] ; }

/*Solving L'Y= 6B*/
for (i=l;i<=n;i++) a[i]*=6.0;
for (i=2;i<=n;i++) a[i]+=alpha*a[i--l];

/*Solving U'C=Y*/
a [n] *= (--alpha) ;
for (i=n--l;i>=l;i -) a[i]=alpha *
(a[i+l]--a[i]) ;

/*Updation*/
templ =a [n] / (alpha*alpha-i) ;
temp2 =-a [1] +a [n] *alpha/(alpha*alpha--1) ;

for (i=l;i<=p;i++) a[i]--=x[i]*templ;
for (i=l;i<=p;i++) a[n+l-i]--=x[i]*temp2;

/*Check the Residual of Solution*/
res=4.0*a[l]+a[2]+a[n]-6.0*b[l] ; /*res is
used to save the residual*/
if (res<0) res=-res;
for (i=2;i<=n-l;i++){

temp=a [i-l] +4 • 0*a [i] +a [i+l] -6.0*b [i] ;
if (temp<0) temp=-temp;
if (res<temp) res=temp;

}
temp=a [i] +a In-l] +4.0*a [n] -6.0*b In] ;
i f (temp< 0) temp =-temp ;
if (res<temp) res=temp;
printf (' '\nThe Residual=%10.7f\n ' ' ,res) ;

