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Abstract — Zusammenfassung

A Fast Algorithm for Solving Special Tridiagonal Systems. In this paper, a fast algorithm for solving the
special tridiagonal system is presented. This special tridiagonal system is a symmetric diagonally
dominant and Toeplitz system of linear equations. The error analysis is also given. Our algorithm is
quite competitive with the Gaussian elimination, cyclic reduction, special LU factorization, reversed
triangular factorization, and Toeplitz factorization methods. In addition, our result can be applied to
solve the near-Toeplitz tridiagonal system. Some examples demonstrate the good efficiency and stability
of our algorithm.
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Key words: Diagonally dominant matrices, error analysis, linear recurrences, Toeplitz matrices, tri-
diagonal matrices. .

Ein schneller Algorithmus zur Lésung spezieller tridiagonaler Systeme. In dieser Arbeit wird ein schneller
Algorithmus zur Losung symmetrischer, diagonaldominanter tridiagonaler Topflitz-Systeme vorgestelit.
Auch eine Fehleranalyse liegt vor. Der Algorithmus ist den folgenden Verfahren mindestens gleichwertig:
Gauss-Elimination, zyklische Reduktion, spezielle LU-Faktorisierung, umgekehrte Faktorisierung,
Toplitz-Faktorisierung. AuBerdem kann unser Vorgehen zur Losung in tridiagonalen fast-Toplitz-
Systemen verwendet werden. Einige Beispiele zeigen die Effizienz und Stabilitit unseres Algorithmus.

1. Introduction

Consider an n x n system of linear equations

Ax = b, (1)
where
B v Y
vy B v
A= )
vy B v
Y 7 B

and |B] > 2]y|. That is, the matrix A is strictly diagonally dominant. Special tri-
diagonal systems of equations having symmetric circulant coefficient matrices
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appear in many applications ([8], [9], [11], [14], [13]). Many methods have been
proposed for solving such systems. These methods are Gaussian elimination [4],
cyclic reduction [9], special LU factorization {[14], [10]), reversed triangular
factorization ([5], [6], [7]), and Toeplitz factorization with Sherman-Morrison
formula ([8], [12], [3]). The interested readers are suggested to consult the survey
paper by Boisvert [2].

In this paper, a fast algorithm for solving the special tridiagonal system is presented.
Our algorithm consists of three phases. The first phase is a Toeplitz factorization
of a slightly perturbed system, which is similar to the method of Fischer et al. [8].
The second phase uses a forward and backward substitution procedure to solve the
perturbed problem. In the third phase the solution to the original problem is
recovered from the solution to the perturbed problem; this is called the update
procedure. The major contributions of our algorithm are twofold: (1) based on the
diagonally dominant property, a new but simple update procedure is proposed and
(2) a detailed error analysis is given. Our efficient and stable algorithm is quite
competitive with previous methods [2]. In addition, our result can be applied to
solve near-Toeplitz tridiagonal systems. It also can be applied to solve the quadratic
B-spline curve fitting problem [11] and a parabolic PDE [13].

We begin by presenting our algorithm for solving the symmetric Toeplitz tridiagonal
system. We then give an extension to the symmetric circulant tridiagonal case.

2. Symmetric Toeplitz Tridiagonal Systems
Throughout this paper, matrices are represented by uppercase letters, vectors by
bold lowercase letters, and scalars by plain lowercase letters. The superscripts T

correspond to the transpose operation.

We first consider to solve the symmetric Toeplitz tridiagonal system Bx = b, where

B v
vy By
B= ,
y B v
y B
and [B] > 2|y|. Letd = §(1d| > 2) and
a 1
1 d 1
B = L. = LU, )

—
— Ry
N, =
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where

L= .. and U= .. ,

—-b 1 a

which implies that a —b=d and —ab=1. This, in turn implies that a =

(d + /d* — 4)/2. Since we wish the matrix U to be diagonally dominant, we will
select the sign so that the absolute value of a is greater than 1. That is, when d > 2,
we chose a = (d + \/d* — 4)/2 (> d/2 > 1), from which

b—a—d=(—d+Jd> —4)2.
When d < —2, we chose a = (d — \/d? — 4)/2 (< d/2 < —1), then
b—a—d=(—d—Jd* —4)2.

Since |ab| = 1 and |a| > 1, we have that |b| < 1, that is, the matrix L is diagonally
dominant. The computation of a and b provides the Toeplitz factorization of the
matrix B’, which can be done in O(1) time.

By(2),d = g, and a — b = d, it is clear that

B=7yB + . 3)

1
To solve Bx = b, we first solve B'x’' = ¥b (=Db’) using a forward and backward

substitution procedure (second phase in our algorithm). It is not hard to verify that
the number of floating-point operations required in this procedure is about 5n.

By (3) and b = yb, we obtain
Bx' = yB'x' — ybxie,
=b — ybxie,, 4)
where e; = (1,0,...,0), Note that (4) can be derived from Sherman-Morrison
formula [1] and the equality B e, = y(1 — be, B'"*e,)B 'e, which can be derived
with some effort. Therefore, the solution x to be determined is x' + ybx, B te,. If

we can find a vector p such that Bp is equal to a multiple of e,, then we can solve
Bx = b approximately by adding a multiple of p to x'.
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To find p, we first solve the recurrence relation: yp;_, + Bp; + yp;4; = 0for2 <i <
n—1.Froma—b=d, —ab= 1,andd=§,itfollowsb2 +db+ 1=0andyb? +

fBb + v = 0. Hence, b is a zero of the characteristic polynomial of the above recur-
rence relation. Naturally, if we try p = (b,b%,...,1',0,...,0)7, then

z n—t

1
“Bp = (db + b%,b + db? + b3,... bt + db',b,0,...,0)7
y \ v —

t

(db + b%,0,...,0,b' + db', b,0,...,0)T
[N ~ I

t n—t

= —e, — b'le, + ble,,
= —e, + b'(e,., — be,). (5)
If
x =x' — bxip, (6)

then by (6), (4), and (5), we obtain Bx —b = —b""'yx/(e,.; — be,). The update
procedure in (6) is the third phase in our algorithm. It is not hard to verify that the
number of floating-point operations required in the update procedure (6) is about
2t. Taking sup-norm on both sides, because of |b| < 1, it gives

|Bx — b|| = [b*"yxi] < [By x| U
To estimate |x'[|, we need the following lemma.

Lemma 1. If B'x' = b, then |x'| < |d| |lb’[|

Proof: Because of B'x” = W, suppose ||x'|| = |x;|forsomei,2 <i<n— 1,wehave
dxj = b — Xj_y — Xj1y.
Using the triangle inequality, it follows that
ldx’{| = ldx;]
< 1B+ 1% |+ (X
< bl + 2lix7]]

1
X' < =— (]
]
The cases ||x'|] = |xi| and |X'|| = |x,| are considered next. Suppose ||x'] = |x][, we
have

,

axi = b, —x5.
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Using the triangle inequality again, it follows that

lax’|l = |axy]
< 1byl+ %3]
< |\b'\| + x|
XM < r | Hb’H
Finally, suppose ||x'|| = |x,|, we have

dx, = b, — x,_; .

Similatly, it follows that

ldx'll = |dx,|
< byl + 1%
< bl + Il
1
ST b’
X < = bl
We conclude that |[x'|| < max< L ! ! )Hb’” Since b =dand
< . a—b=dan
|d| —2"Jal — 1"]d| -
|b| < 1, we have |d| < |a] + |b| < |a| + 1, and hence 0 < |d] — 2 < |a| — 1, because
1 1 1 1
of |d| > 2. Hence, we obtain max (——— —_— ——) = Therefore,
|d| — 2" |a] — 1°|d| d| —
we have [|x'|| < ||b’l|. O

[l —
By (7), Lemma 1, and b = yb’, we have
IBx — bl <[5 ylx]

Il
< bt+1 _nea
<[] i
_ 1B by
| —
Immediately, we have the following theorem.

Recall that |b| < 1, so the bound of |Bx — b|| is decayed exponentially in terms of

b. For example, if we hope || Bx — b} < £|b]|, then

log(|d| — 2) + logé
log|b|

te) = —1. ®)
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The smallest t(£) of (8) will be small enough for some relative tolerance ¢ and
sufficiently large diagonal dominance ratio |d|. Using (8), Table 1 illustrates some
relations between |d|’s and the smallest ¢’s for some £. Note that the tolerance &
cannot be achieved when t(£) > n, and hence the algorithm will break down when
the required relative tolerance is sufficiently small and/or the diagonal dominance
ratio is sufficiently close to 2.

Table 1
|d) t(1072) H1074) t(107%) t(107%)
2.001 364 509 655 800
2.01 92 138 184 230
2.05 34 54 75 95
2.1 21 36 51 65
2.5 7 14 20 27
4 2 6 9 13
6 1 4 7 9
8 1 3 5 8

In summary, based on our three-phase algorithm described in this section, solving
the symmetric Toeplitz tridiagonal system Bx = b takes about 51 + 2¢. For some
relative tolerance and highly diagonal dominance ratio, we have that ¢ is O(1). That
is, it takes about 5n to solve Bx = b for this case. The number of floating point
operations required in our algorithm is the same as the previous fastest ones such
as the special LU factorization and reversed triangular factorization [2].

3. Symmetric Circulant Tridiagonal Systems

We now consider the symmetric circulant tridiagonal system Ax = b, where

B v Y
7 By
A= . 9)
vy B v
Y v B
By(Z),d:E,anda—bzd,wehave
7
—yb Y
A=7yB + (10)
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1 . .
To solve Ax = b, we first solve B'x’ = —b (= b’) as described in Section 2. From
Y

(10), we obtain
Ax = yB'x" + y(x, — bx})e, + yxie,
=b + y(x; — bxi)e; + yxie,. (11)
From b* + db + 1 = 0 (derived in Section 2), it follows that
L ip = @b+ b2b + db® + b, b1 + b0, .0, b)T
vy w J L . J

—~—
H n—t

=(db + b%,0,...,0,b"! + db, 1,0,...,0,b)T
L J\ _J

—~
t n—t

= —e, — b'"'e, + ble,,, + be,
= (—e; + be,) + b'(e,+; — be,). (12)
With respect to the reverse form of p, naturally, we let q = (0,...,0,5",...,b% bY)¥,
n—t 4
from which
1
;Aq =(—e, + be,) + b'(e,_, — be, ,.,)
= (bel - en) + bt(en—t - ben—t+1)' (13)
1 1
Letu= ;(p + bg)and v = ;(bp + q). By (12) and (13), we have
Au = (bz — e, + bt(et+1 — be, + be,_, — bzen—H—l);

(14)
Av = (b* — 1)e, + b'(be,,; — b%e, + €,_, — be,_,.,).
Let
x=x’—#[(x,’,—bx’1)u+x’lv], (15)
by (15), (11), and (14), we obtain

bt
r g Do — bxie, + (bx, + (1 = bA)x)e,
— (5%, + (b = B)xi)e-ra .

Suppose {t + 1,t} n{n —t,n—t + 1} = . Since |b| < 1, we have

Ax —b= —

i3

b
4% = bjl = | 5 | max(ixil, bx, + (1 = b))

<

.
F]—_—l‘(wi + 11— b7 X
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. 1
Using the same arguments as Lemma 1, we also have [x'|| < Hb’ . Therefore,

i -2

Il

o .(|b| T

[Ax —b| <

ld] —

(lbl +[1 = b?))|b|
—1](1d1 - 2)

So, the bound of ||Ax — b] is decayed exponentially in terms of b. For example, if

we require |Ax — b|| < £|b|, then

log(ld| — 2) + log|b* — 1| — log(|b] + |1 — b?|) + log &

log|b]
Table 2 illustrates some relations between [d|’s and the smallest ’s for some &. Note
that the tolerance £ cannot be achieved when ¢(¢) > n, and hence the algorithm will

break down when the required relative tolerance is sufficiently small and/or the
diagonal dominance ratio is sufficiently close to 2.

bl (16)

t(¢) =

—1. an

Table 2
|d| t(1072) t(107%) £(1079) £(1073)
2.001 454 599 745 891
2.01 111 157 203 249
2.05 40 60 81 102
2.1 25 40 55 69
2.5 9 16 22 29
4 4 7 11 14
6 2 5 8 10
8 2 4 6 9
By (15), we have
X=X — ’ ((x, — bx)u + x1v)

1
= X' =y (0, = bx1)(p + ba) + X (bp + @)

1
= X' — o (B + (b, + (1 = b)x)g)

, X, , bx]
=X TP\ T o)t

It is easy to verify that the number of floating-point operations required in the above
update procedure is about 4z. In summary, based on our three-phase algorithm,
solving the symmetric circulant Toeplitz tridiagonal system Ax = b takes about
5n + 4t. For some relative tolerance and highly diagonal dominance ratio, we have
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that ¢ is O(1) too. It follows that the number of floating-point operations needed in
our algorithm can complete with the previous fastest ones [2]. Following the
derivations of our three-phase algorithm, the special near-Toeplitz tridiagonal
system Cx = b can be solved in a similar way, where

x y 7
v By
C =
voB oy
i v
and C is diagonally dominant.
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