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Kuo-Liang Chung∗, Ping-Chin Chen
Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, No. 43, Section 4,

Keelung Road, Taipei 10672, Taiwan, ROC

Received 15 January 2004; received in revised form 11 April 2005; accepted 11 April 2005

Abstract

Computing lower order moments is important in image processing. Suppose the input grey image with sizeN × N has
been compressed into the block representation where the number of blocks isK, commonlyK < N2 due to the compression
effect. This correspondence presents an efficient algorithm for computing lower order moments on the block representation
directly. Our proposed algorithm takesO(K) time which is proportional to the number of blocks. Experimental results reveal
the computational advantage of our proposed algorithm. In addition, the results of this paper can be viewed as a generalization
of the previous result by Spiliotis and Mertzios for computing lower order moments from the binary image domain to the
grey image domain.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Computing moments on a whole image is important in
image processing[1,2]. Given anN ×N image, letf (x, y)

denote the grey level of the pixel at location(x, y) for
0�x, y �N − 1. The(p + q)th order moment[1,2] is de-
fined as

mpq =
N−1∑
x=0

N−1∑
y=0

xpyqf (x, y). (1)

Among these different orders of calculated moments in Eq.
(1), lower order moments for 0�p + q �3 are especially
useful in several applications, such as determining motion
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parameters of a deformable object[3], deskewing rotation-
ally symmetric shapes[4], determining the centroid and the
major axis of an object[1,2], moment-preserving threshold-
ing [5], and recognizing visual patterns by moment invari-
ants [6]. Due to these applications, throughout this paper,
we only focus on computing lower order moments. Comput-
ing lower order moments on the original grey image domain
can be done inO(N2) time where the time complexity no-
tationO(N2) denotes the required time complexityf (N)

such that there exist two constant termsN0 andc satisfying
f (N)�cN2 for N �N0 [7].

Suppose the input binary image of sizeN × N has been
partitioned into a set ofK rectangular blocks where each
block is totally black or totally white. Under this block
representation of a binary image, Spiliotis and Mertzios[8]
presented an efficient algorithm for computing general order
moments on the block representation directly. Some elegant
formulas are derived in Ref.[8] to speed up the compu-
tation of moments. Considering the computation of lower
order moments, their algorithm can be done inO(K) time.

http://www.elsevier.com/locate/patcog
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Later, Flusser[9] presented an improved way to modify the
result by Spiliotis and Mertzios. Note that once a binary
image has been partitioned into a set of blocks, then these
partitioned blocks can be reused for different kinds of block-
based image algorithms and it can lead to computation-
saving due to the compression effect, i.e.K < N2, since
we only need to consider the relevant blocks instead of
considering the whole original image.

In real applications, we face grey images more often
than binary images. Based on the bintree partition prin-
ciple and the linear interpolation method, a grey image
can be partitioned into a set of blocks[10] which can
be viewed as a promising spatial data structure that ex-
tends the previous spatial data structures[11] from the
binary image domain to the grey image domain. Under
this block representation, anO(N

√
K)-time algorithm[12]

was presented to compute lower order moments. In Ref.
[12], based on the slice integration technique, the local
moment of each blockBi , 1� i �K, can be computed in
O(Li) time whereLi denotes the perimeter of the block
Bi . By the Cauchy–Schwarz inequality, it has been shown
that the total time required in computing lower order mo-
ments of all the blocks is bounded byO(N

√
K). How

to reduce the time complexity for computing lower or-
der moments fromO(N

√
K) to O(K) has been an open

problem since the lower bound is�(K) for computing
lower order moments on the block representation[10] di-
rectly where the time complexity notation�(K) denotes
the lower bound time complexityg(N) such that there
exist two constant termsN0 and c satisfying g(N)�cK

for N �N0 [7]. The motivation of this research is to
present a new algorithm, which takesO(K) time, for com-
puting lower order moments in order to meet the lower
bound complexity.

Suppose the input grey image with sizeN × N has been
compressed into the block representation where the number
of blocks used isK. For each blockBi , instead of computing
the local moment of that blockBi in O(Li) time [12], this
correspondence first derives some useful closed forms for
computing it inO(1) time. According to these closed forms,
we further present a newO(K)-time algorithm for comput-
ing moments on the whole block representation. The time
complexity required in our proposed algorithm meets the
lower bound�(K). For computing lower order moments,
our proposed algorithm generalizes the previous result by
Spiliotis and Mertzios[8] from the binary image domain
to the grey image domain. Finally, experimental results re-
veal a significant computational advantage of our proposed
algorithm.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the block representation used for repre-
senting grey images. Our proposed new optimal algorithm
for computing lower order moments on the block represen-
tation directly is presented in Section 3. Some related exper-
iments are illustrated in Section 4. Finally, some concluding
remarks are addressed in Section 5.

Fig. 1. Homogeneous blockB.

2. The block representation

In Ref.[10], the original grey image is first partitioned into
some homogeneous blocks based on the bintree decompo-
sition principle; then two simple arrays, namely, the linear-
tree table and the color table, are used to represent these
blocks. During the bintree partition processing, the bilinear
interpolation[13,14], is used to control the image quality
under the specified error tolerance. Under the same image
quality, the block representation presented in Ref.[10] has
a better encoding-time performance when compared to the
triangular approach[15]. In Section 4, some experimental
results are illustrated to show the reasonable compression
performance in terms of bits per pixel (BPP) and the quality
performance in terms of peak-signal-to-noise ratios (PSNR)
of our adopted block representation.

According to the preorder traversal technique[7], the bin-
tree decompression is based on recursively dividing the im-
age into two equal-sized subimages. At each division step,
the partition is alternated between thex- and y-axes. If a
subimage is not a homogeneous block, it is subdivided into
two equal-sized subimages again until all the blocks are ho-
mogeneous.

We now give a quantified definition for the homogeneous
block, say blockB, as shown inFig. 1 wheref1, f2, f3,
andf4 are grey-levels of the four corners. Using the linear
interpolation method[13,14], the estimated grey-level of the
pixel at (x, y) in the blockB is calculated by

fest (x, y) = f5 + f6 − f5

y2 − y1
(y − y1), (2)

where f5 = f1 + ((f2 − f1)/(x2 − x1))(x − x1) and
f6 = f3 + ((f4 − f3)/(x2 − x1))(x − x1). Given a
specified error tolerance�, by Eq. (2), if the condition
|f (x, y) − fest (x, y)|�� holds for all the pixels in the
block, x1�x �x2 and y1�y �y2, where f (x, y) is the
grey-level at (x, y), then we say that the blockB is a
homogeneous block.

For example, one grey image has been partitioned into
seven homogeneous blocks as shown inFig. 2(a) according
to the above partition principle. The corresponding binary
tree, i.e. bintree, representation is illustrated inFig. 2(b). In
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(a)

(b)

Fig. 2. An example: (a) The partitioned homogeneous blocks. (b)
The bintree representation.

Fig. 2(a), the seven partitioned homogeneous blocks are de-
noted byB0, B1, B2, B3, B4, B5, andB6, which correspond
to the seven leaves inFig. 2(b).

Traversing the bintree ofFig. 2(b) via preorder traversal
manner, at each iteration, we save the bit ‘0’ into the linear-
tree table when an internal node is encountered; save the bit
‘1’ into the linear-tree table and save the four grey-levels
of the four corners in the related homogeneous block, say
(f1, f2, f3, f4), into the color table when a leaf node is
encountered. The contents of the linear-tree table and the
color table forFig. 2 are listed below:

linear-tree table: 0 0 1 00 1 1 1 0 1 0 1 1
color table: (f1,0, f2,0, f3,0, f4,0),

(f1,1, f2,1, f3,1, f4,1),
(f1,2, f2,2, f3,2, f4,2),
(f1,3, f2,3, f3,3, f4,3),
(f1,4, f2,4, f3,4, f4,4),
(f1,5, f2,5, f3,5, f4,5),
(f1,6, f2,6, f3,6, f4,6).

The above block representation consists of two arrays. In
the color table, each entry contains four grey-levels. The bi-
nary string 0010 011101011 in the linear-tree table is used
to keep the geometrical relationship among these homoge-
neous blocks. After scanning the linear-tree table, all the
(x, y)-coordinates of the four corners of each homogeneous
block can be calculated inO(K) time, whereK denotes the
number of blocks. For example, upon scanning the three
bits ‘001’ in the linear-tree table, the coordinates of the four
corners of blockB0 (seeFig. 2) can be derived and the four

corresponding grey levels(f1,0, f2,0, f3,0, f4,0) can be ob-
tained. Upon obtaining the coordinates and the relevant grey
levels of all homogeneous blocks, our proposed block-based
algorithm for computing estimated lower order moments is
presented in next section.

3. The proposed block-based algorithm for computing
lower order moments

Instead of computing local lower order moments of each
blockBi inO(Li) time[12], whereLi denotes the perimeter
of the blockBi , this section first presents a new method to
compute local lower order moments of each block inO(1)
time. Then we present anO(K)-time algorithm to compute
lower order moments for all the blocks.

For clarity, let the width and height of blockBi be de-
noted bywi (=x2,i − x1,i + 1) andhi (=y2,i − y1,i + 1),
respectively. By Eq. (2), the estimated grey-level at position
(x1,i + x, y1,i + y), 0�x �wi − 1 and 0�y �hi − 1, is
equal to

fest (x1,i + x, y1,i + y)

= fest (x1,i + x, y1,i ) + y

× fest (x1,i + x, y2,i ) − fest (x1,i + x, y1,i )

hi − 1

= f1,i + x × f2,i − f1,i

wi − 1

+ y

hi − 1

[(
f3,i + x × f4,i − f3,i

wi − 1

)

−
(

f1,i + x × f2,i − f1,i

wi − 1

)]

= f1,i + x × f2,i − f1,i

wi − 1
+ y × f3,i − f1,i

hi − 1

+ xy × f1,i − f2,i − f3,i + f4,i

(wi − 1)(hi − 1)
. (3)

Let �fst ,i = (f2,i − f1,i )/(wi − 1), �fsl ,i = (f3,i −
f1,i )/(hi −1), andD1,i =(f1,i −f2,i −f3,i +f4,i )/((wi −
1)(hi − 1)). Then Eq. (3) can be written as

fest (x1,i + x, y1,i + y)

= f1,i + x�fst ,i + y�fsl ,i + xyD1,i . (4)

By Eq. (4), Eq. (1) is represented by

mpq =
K−1∑
i=0

mpq,i

=
K−1∑
i=0

wi−1∑
x=0

hi−1∑
y=0

(x1,i + x)p(y1,i + y)q

× fest (x1,i + x, y1,i + y). (5)

In what follows, we want to present a novel approach for
computingmpq,i in O(1) time. Instead of using the slice
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integration technique[12], according to the binomial expan-
sion technique, the termmpq,i in Eq. (5) can be written as

mpq,i =
wi−1∑
x=0

hi−1∑
y=0

[
x
p
1,i +

(p

1

)
x
p−1
1,i x + · · · + xp

]

×
[
y
q
1,i +

(q

1

)
y
q−1
1,i y + · · · + yq

]

× fest (x1,i + x, y1,i + y)

= x
p
1,iy

q
1,i

wi−1∑
x=0

hi−1∑
y=0

fest (x1,i + x, y1,i + y)

+
(q

1

)
x
p
1,iy

q−1
1,i

wi−1∑
x=0

hi−1∑
y=0

y

× fest (x1,i + x, y1,i + y)

+ · · · + x
p
1,i

wi−1∑
x=0

hi−1∑
y=0

yq

× fest (x1,i + x, y1,i + y)

+
(p

1

)
x
p−1
1,i y

q
1,i

wi−1∑
x=0

hi−1∑
y=0

x

× fest (x1,i + x, y1,i + y)

+
(p

1

) (q

1

)
x
p−1
1,i y

q−1
1,i

wi−1∑
x=0

hi−1∑
y=0

xy

× fest (x1,i + x, y1,i + y)

+ · · · +
(p

1

)
x
p−1
1,i

wi−1∑
x=0

hi−1∑
y=0

xyq

× fest (x1,i + x, y1,i + y)

+ · · ·
+ · · ·

+ y
q
1,i

wi−1∑
x=0

hi−1∑
y=0

xpfest (x1,i + x, y1,i + y)

+
(q

1

)
y
q−1
1,i

wi−1∑
x=0

hi−1∑
y=0

xpy

× fest (x1,i + x, y1,i + y)

+ · · · +
wi−1∑
x=0

hi−1∑
y=0

xpyq

× fest (x1,i + x, y1,i + y). (6)

Looking at each double summation term at the right side of
Eq. (6), the kernel computation involved in Eq. (6) is

Spq,i =
wi−1∑
x=0

hi−1∑
y=0

xpyqfest (x1,i + x, y1,i + y)

=
wi−1∑
x=0

hi−1∑
y=0

xpyq [f1,i + x × �fst ,i + y

× �fsl ,i + xy × D1,i ]

= f1,i

wi−1∑
x=0

hi−1∑
y=0

xpyq + �fst ,i

wi−1∑
x=0

hi−1∑
y=0

xp+1yq

+ �fsl ,i

wi−1∑
x=0

hi−1∑
y=0

xpyq+1

+ D1,i

wi−1∑
x=0

hi−1∑
y=0

xp+1yq+1. (7)

In Eq. (7), the summation termsp
0,wi−1 = ∑wi−1

x=0 xp for
a specificp, 0�p�4, can be computed inO(1) time by
using the following five closed forms:

s00,wi−1 =
wi−1∑
x=0

x0 = wi ,

s10,wi−1 =
wi−1∑
x=0

x1 = wi(wi − 1)

2
,

s20,wi−1 =
wi−1∑
x=0

x2 = wi(wi − 1)(2wi − 1)

6
,

s30,wi−1 =
wi−1∑
x=0

x3 = w2
i
(wi − 1)2

4
,

s40,wi−1 =
wi−1∑
x=0

x4

= wi(wi − 1)(2wi − 1)(3w2
i

− 3wi − 1)

30
. (8)

By the same arguments as in Eq. (8), the summation term

s
q
0,hi−1 = ∑hi−1

y=0 yq , 0�q �4, can be computed inO(1)
time. Thus, Eq. (7) can be written as

Spq,i = f1,i s
p
0,wi−1s

q
0,hi−1 + �fst ,i s

p+1
0,wi−1s

q
0,hi−1

+ �fsl ,i s
p
0,wi−1s

q+1
0,hi−1

+ D1,i s
p+1
0,wi−1s

q+1
0,hi−1. (9)

Eq. (9) implies that the computation ofSpq,i can be done
in O(1) time. Further, we have the following result.

Theorem 1. The estimated lower order moments of the ith
block, i.e.mpq,i , 0�p + q �3, can be calculated inO(1)
time.
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Fig. 3. Three original images: (a) Lena; (b) F16; (c) Pepper.

Proof. (see Appendix A). �

The main result follows from Theorem 1 and Eq. (5).

Theorem 2. Supposing the givenN × N grey image has
been represented by the block representation with K blocks
mentioned in Section2, our proposed new algorithm can
compute the estimated lower order moments inO(K) time.

By Theorem 2, note that the error inmpq is bounded by∑N−1
x=0

∑N−1
y=0 xpyq�, where� is the specified error toler-

ance.

4. Experimental results

In this section, first some experimental results are illus-
trated to show the reasonable compression performance in
terms of BPP and the quality performance in terms of PSNR
of our block representation. As shown inFig. 3, three real
images, namely the Lena, the F16, and the Pepper, are used
in the experiments. Each image is of size 512× 512 and
each pixel requires 8 bits. All experiments are performed
on the IBM Pentium III microprocessor with 667MHz and
128MB RAM. The operation system is MS-Windows 2000
and the program developing environment is Borland C++
Builder 5.0. Following the same performance evaluation
used in Refs.[11,8,12], we ignore the decomposition time
in our proposed block-based method since once a grey im-
age has been compressed into the block representation, the
block representation can be reused for many block-based
image algorithms. There are three possible ways to compute
lower order moments, namely, (1) the conventional method
which runs on the originalN × N grey image, (2) our pro-
posed method on the compressed image in terms of block
representation directly, or (3) the indirect method (first de-
compressing the compressed image, then computing mo-
ments on the decompressed image). Therefore we compare
the computational performance among the three methods.

Fig. 4. The BPP performance of the adopted block representation.

Fig. 5. The PSNR performance of the adopted block representation.

Fig. 4 (Fig. 5) shows the average BPP (PSNR) perfor-
mance for different�’s. It is observed that when�=20, one
pixel of the block representation only needs 1.266 bits, while
it needs 8 bits to save one pixel in the original image. It is
encouraging that under the same�, i.e. � = 20, the PSNR of
the decompressed image based on our block representation
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Fig. 6. Three decompressed images: (a) Lena; (b) F16; (c) Pepper.

is still higher than 33.052. Here, the PSNR is defined by

PSNR

= 10 log10
2552

1/N2∑N−1
x=0

∑N−1
y=0 (f (x, y) − fest (x, y))2

.

For the error tolerance� = 20, Fig. 6 depicts the three
decompressed images. Comparing the three original images
as shown inFig. 3 with the three decompressed images,
both relevant images, e.g. the original Lena image and the
decompressed Lena image, are quite similar from our visual
inspection.

After demonstrating the BPP and PSNR performance of
our block representation, we now evaluate the execution
time performance among the three methods.Fig. 7(a)–(c)
illustrate the execution time in terms of seconds required
in our proposed method, the indirect method, and the con-
ventional method, respectively. FromFig. 7, it is observed
that our proposed optimal algorithm for computing lower
order moments is faster than the indirect method and the
conventional method. When� = 20, the average execut-
ing time improvement ratio of our proposed method over
the indirect method is 80%= (Time(Indirect Method)−
Time(Proposed Method))/Time(Indirect Method)=(0.087−
0.017)/0.087 and the average executing time improvement
ratio of our proposed method over the conventional method
is 76%= (0.07− 0.017)/0.07.

Table 1 illustrates the accuracy of calculated values of
the relevant moments when�=20. InTable 1, the moments
calculated by using the conventional method are the exact

moments and the moments calculated by using our proposed
method are the estimated moments. It is observed that the
estimated moments calculated by our proposed method are
encouraging when compared to the conventional method.
For example, the calculated value ofm10 is 8.60 × 109

using the proposed method on the compressed image and the
calculated value ofm10 is 8.56×109 using the conventional
method on Lena.

5. Conclusions

The computation of lower order moments for grey images
is very important in many applications in the image process-
ing field. Under the block representation, we have presented
a new algorithm for computing lower order moments. The
time complexity of our proposed algorithm meets the lower
bound. Experimental results reveal that the average execu-
tion time improvement ratio of our proposed method over
the indirect method is 80% and the average execution time
improvement ratio of our proposed method over the conven-
tional method is 76%.

For lower order moments only, the closed forms in Eq.
(8) are quite elegant. However, for arbitraryp, Eq. (8) can

be extended to arbitrary order by employing the following
recursive summation formulas used in Ref.[8]:

s
p
0,wi−1 =

wi−1∑
x=0

xp

=
w

p+1
i

− wi −
(

p+1
1

)
s10,wi−1 −

(
p+1
2

)
s20,wi−1 − · · · −

(
p+1
p−1

)
s
p−1
0,wi−1

p + 1
,

where
(

i
j

)
= i!

j !(i−j)! . Recursive summation formulas simi-

lar to the above,sq
0,hi−1 also can be extended to arbitraryq.



2584 K.-L. Chung, P.-C. Chen / Pattern Recognition 38 (2005) 2578–2586

Consequently, the computation ofmpq,i as shown in Eq.
(7) can be rewritten as

mpq,i =
wi−1∑
x=0

hi−1∑
y=0

(x1,i + x)p(y1,i + y)q

× fest (x1,i + x, y1,i + y)

= x
p
1,iy

q
1,iS00,i +

(q

1

)
x
p
1,iy

q−1
1,i S01,i

+ · · · + x
p
1,iS0q,i

+
(p

1

)
x
p−1
1,i y

q
1,iS10,i

+
(p

1

) (q

1

)
x
p−1
1,i y

q−1
1,i S11,i

+ · · · +
(p

1

)
x
p−1
1,i S1q,i

+ · · ·
+ · · ·
+ y

q
1,iSp0,i +

(q

1

)
y
q−1
1,i Sp1,i +

(q

2

)
y
q−2
1,i Sp2,i

+ · · · + Spq,i .

Based on the above identity, it is not hard to verify that it
takesO(r2) time to compute all moments up to certain order
r for p, q �r since there areO(pq) terms to be calculated
in the above identity.

Besides the moments used in this paper (see Eq. (1)),
there are other different kinds of moments, such as Zernike
moments[16] and geometric moments[17]. The appli-
cations of the results of this paper to the computation of
these different moments on the adopted block represen-
tation for grey images is an interesting research issue.
In addition, it is also of interest to apply the results of
this paper and the window query approach[18] to com-
pute the moments of grey images in small windows for
certain applications.

Appendix A. The proof of Theorem 1

We only prove the validity form11,i , m20,i , andm03,i
since the proof technique is also valid for the remaining
cases. From Eqs. (8) and (9), we have

m11,i =
wi−1∑
x=0

hi−1∑
y=0

(x1,i + x)1(y1,i + y)1

× fest (x1,i + x, y1,i + y)

=
wi−1∑
x=0

hi−1∑
y=0

(x1,iy1,i + x1,iy + y1,ix + xy)

× fest (x1,i + x, y1,i + y)

= x1,iy1,iS00,i + x1,iS01,i + y1,iS10,i + S11,i ,

(a)

(b)

(c)

Fig. 7. The execution time performance among our proposed
method, the indirect method, and the conventional method: (a) exe-
cution time performance for Lena; (b) execution time performance
for F16; (c) execution time performance for Pepper.

m20,i =
wi−1∑
x=0

hi−1∑
y=0

(x1,i + x)2(y1,i + y)0

× fest (x1,i + x, y1,i + y)

=
wi−1∑
x=0

hi−1∑
y=0

(x21,i + 2x1,ix + x2)

× fest (x1,i + x, y1,i + y)

= x21,iS00,i + 2x1,iS10,i + S20,i ,
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Table 1
Accuracy comparison

Conventional method Proposed method

Lena F16 Pepper Lena F16 Pepper

m00 3.22E07 4.68E07 3.14E07 3.21E07 4.67E07 3.13E07
m10 8.60E09 1.22E10 8.05E09 8.56E09 1.22E10 8.03E09
m01 7.98E09 1.18E10 7.76E09 7.95E09 1.17E10 7.73E09
m11 2.17E12 3.05E12 1.93E12 2.16E12 3.04E12 1.92E12
m20 2.99E12 4.24E12 2.75E12 2.97E12 4.23E12 2.74E12
m02 2.67E12 4.02E12 2.61E12 2.67E12 4.01E12 2.60E12
m21 7.65E14 1.06E15 6.44E14 7.62E14 1.06E15 6.43E14
m12 7.32E14 1.03E15 6.32E14 7.29E14 1.02E15 6.30E14
m30 1.15E15 1.65E15 1.06E15 1.15E15 1.56E15 1.05E15
m03 1.02E15 1.55E15 9.97E14 1.01E15 1.55E15 9.93E14

m03,i =
wi−1∑
x=0

hi−1∑
y=0

(x1,i + x)0(y1,i + y)3

× fest (x1,i + x, y1,i + y)

=
wi−1∑
x=0

hi−1∑
y=0

(y31,i + 3y21,iy + 3y1,iy
2 + y3)

× fest (x1,i + x, y1,i + y)

= y31,iS00,i + 3y21,iS01,i + 3y1,iS02,i + S03,i . (10)

Since eachSpq,i (see Eq. (9)) can be done inO(1) time,
it follows that each lower order momentmpq,i can also be
computed inO(1) time. This completes the proof.
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