
Pattern Recognition Letters 25 (2004) 1613–1617

www.elsevier.com/locate/patrec
An efficient law-of-cosine-based search for vector quantization

Kuo-Liang Chung *, Jenn-Yang Lai

Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology,

No. 43, Section 4, Keelung Road, Taipei 10672, Taiwan, ROC

Received 21 November 2003

Available online 19 July 2004

Abstract

Vector quantization (VQ) is a well-known compression method. In the encoding phase, given a block represented as

a vector, searching the closest codeword in the codebook is a time-consuming task. An efficient law-of-cosine-based

search algorithm for VQ is presented in this correspondence. In our proposed algorithm, some new formulae and a

dynamic rule for selecting the fixed vector are presented to speed up the search process. Experimental results reveal that

our proposed search algorithm has better execution-time when compared to the current result by Mielikainen and the

previous result by Huang et al.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Image compression; Full search; Law-of-cosines; Vector quantization
1. Introduction

Vector quantization (VQ) is an important

compression technique (Gersho and Gray, 1992;

Gray and Neuhoff, 1998) for low-bit-rate image

compression. In the encoding phase, given a block

represented as a vector, searching for the closest

codeword in the codebook is a time-consuming

task. For exposition, suppose we have constructed

a sorted codebook with size N , say Y ¼
fyiji ¼ 1; 2; . . . ;Ng where each codeword yi is of

size k and satisfies kyik6 kyjk for i < j. Given an
* Corresponding author. Tel.: +886-227301081; fax: +886-

227301080.

E-mail address: klchung@cs.ntust.edu.tw (K.-L. Chung).

0167-8655/$ - see front matter � 2004 Elsevier B.V. All rights reserv

doi:10.1016/j.patrec.2004.06.007
input
ffiffiffi
k

p
�

ffiffiffi
k

p
block represented by a k-dimen-

sional vector x ¼ ðx1; x2; . . . ; xkÞ, the search algo-
rithm for VQ wants to find the closest codeword yn
such that the squared Euclidean distance between

the input vector x and the closest codeword

yn ¼ ðyn1; yn2; . . . ; ynkÞ is the smallest. After finding

the closest codeword in the codebook, the input

vector x is replaced by the index n. Many different

fast search algorithms (Kaukoranta et al., 2000;

Lee and Chen, 1995; Li and Salari, 1995; Linde
et al., 1980; Orchard, 1991; Ramasubramanian

and Paliwal, 1992; Song and Ra, 2002) have been

developed. In (Huang et al., 1992), three variants

of search algorithms for VQ were presented. The

first one is based on the triangle inequality. The

second one is based on an inequality (see Lemma

1) to reduce the search space. The third one
ed.

mail to: klchung@cs.ntust.edu.tw


1614 K.-L. Chung, J.-Y. Lai / Pattern Recognition Letters 25 (2004) 1613–1617
combines the triangle inequality and the derived

inequality (see Lemma 1). Recently, according to

the law-of-cosines, Mielikainen (2002) presented

an efficient novel search algorithm for VQ. Using a

256 · 256 · 32 AVIRIS image, experimental results

reveal that Mielikainen’s algorithm is superior to
the GLA search algorithm (Linde et al., 1980).

An efficient law-of-cosine-based search algo-

rithm is presented in this correspondence. The

search region in VQ can be reduced significantly

and it leads to the computational advantage of our

proposed search algorithm. Experimental results

reveal that our proposed search algorithm has

better execution-time performance when com-
pared to (Mielikainen, 2002) and (Huang et al.,

1992).
2. Two past works

In this section, we survey two past works

(Huang et al., 1992; Mielikainen, 2002) related to

our proposed algorithm.

2.1. The work by Mielikainen

In (Mielikainen, 2002), the squared Euclidean

distance between the input vector x and the code-

word yi in Y is given by

di ¼ dðx; yiÞ ¼ kxk2 þ kyik2 � 2kxkkyik cos hx;i; ð1Þ
where hx;i denotes the angle between the two vec-

tors x and yi, �90�6 hx;i 6 90�. Arbitrarily selecting

a fixed vector f , hf ;x denotes the angle between f
and x and hf ;i denotes the angle between f and yi,
then we have cos hx;i 6 cosðhf ;x � hf ;iÞ. Let

d�
i ¼ kxk2 þ kyik2 � 2kxkkyik cosðhf ;x � hf ;iÞ; ð2Þ
then by Eq. (1), we have d�

i 6 di because of

cos hx;i 6 cosðhf ;x � hf ;iÞ.
To find the closest codeword by Eq. (2), first all

the approximate distances d�
i ’s for 16 i6N are

calculated. If d�
i is larger than the current mini-

mum distance dmin, it is unnecessary to calculate

the exact distance di and it saves computation

(Mielikainen, 2002). To reduce the time for cal-

culating cosðhf ;x � hf ;iÞ, the following cosine iden-

tity is applied
cosðhf ;x � hf ;iÞ ¼ cos hf ;x cos hf ;i þ sin hf ;x sin hf ;i;

so d�
i in Eq. (2) can be calculated by

d�
i ¼ kxk2 þ kyik2

� 2kxkkyikfcos hf ;x cos hf ;i þ sin hf ;x sin hf ;ig;

where kyik2, kyik, cos hf ;i, and sin hf ;i, 16 i6N , are

calculated in advance and can be accessed using a

look-up table.

2.2. The work by Huang et al.

There are three search methods presented by

Huang et al. (1992). As shown in the following

lemma, the inequality used in their second method

can be used to eliminate some unnecessary search

region in the early stage.

Lemma 1 (Huang et al., 1992). Given an input
vector x, the codeword yi in Y is an impossible
candidate to be the closest codeword of x, if the
condition ðkxk � kyikÞ2 > dmin holds.
3. The proposed search algorithm for VQ

In this section, we present a new pruning

strategy that has two contributions: (1) we derive
some new formulae to reduce the search region in

order to speed up the search time and (2) instead

of using the static fixed vector f for all the input

vectors (Huang et al., 1992), we propose a dynamic

method for selecting a more suitable fixed vector

for the input vector x.
First, we find ym from the codebook Y satisfying

ym ¼ yij min
16 i6N

ðkxk
�

� kyikÞ2
�
; ð3Þ

then by Eq. (3), the distance dðx; ymÞ is calculated
as the initial minimum distance which is given by

dmin ¼ kxk2 þ kymk2 � 2kxkkymk cos hx;m: ð4Þ
From Eqs. (3) and (4), the found codeword ym is

closest to the input vector x from the sense of

2-norm difference although we cannot guarantee

that the condition kx� ymk ¼ min16 i6N fkx� yikg
always holds. After all, for each new input vector



1y

ym-1

my

ym+1

yN

1st
2nd

3th
5th

4th

6th

...

...

...

...

Fig. 1. The alternative search order.

K.-L. Chung, J.-Y. Lai / Pattern Recognition Letters 25 (2004) 1613–1617 1615
x, ym could be selected as the current fixed vector,

say f too. Since x is dynamic, we need to build up a

table S for keeping these kyik’s in advance,

16 i6N , in an ascending order in order to find

the fixed vector f ð¼ ymÞ via the binary search
method, and it leads to faster computation of dmin.

In fact, when the codebook size is N , the binary

search process takes OðlogNÞ time to find the

fixed vector, and therefore saves time. For exam-

ple, for a codebook with 1024 (2048) codewords,

the binary search process needs at most 10 (11)

steps.

Lemma 2. Suppose the angles hf ;i’s for 16 i6N
have been calculated in advance and the angles hf ;x
and hx;m have also been obtained, then the codeword
yi is not a possible candidate to be the closest
codeword of x if the two conditions, jhf ;x � hf ;ij >
hx;m and kyik > kymk, hold.

Proof. (See Appendix A)
By Lemma 2, we have the following result to

reduce the search region further.

Lemma 3. Given an input vector x, the fixed vector
f is selected as ym. The codeword yi in Y is a possible
candidate to be the closest codeword if
06 hi;m 6 2hx;m or kyik6 kymk holds.

Proof. (See Appendix B)

Consequently, our proposed search algorithm

consisting of four steps is listed below where the

Boolean table U ½ � is virtually used to explain the

proposed algorithm, but in practice, it is unneces-

sary to implement the table.

Step 1. Compute kxk, kxk2 and initialize a Boolean
table U ½i� ¼ 1 for 16 i6N to record

whether the codeword yi needs to be exam-

ined.

Step 2. Select the initial best codeword ym from

table S via the binary search method. We

calculate the distance dm denoted as dmin.

Setting the fixed vector f as ym, we set

U ½m� ¼ 0.
Step 3. Select the next candidate codeword yi ac-

cording to the search order (see Fig. 1;

the first selected codeword to be checked
is ym�1 and the second selected codeword

is ymþ1), and do the following two substeps

until all the values in U are 0’s.
Step 3.1. By Lemma 1, if ðkxk � kyikÞ2 6

dmin, then do Step a or Step b:
(a) While ði > mÞ, by Lemma 3,

if ðhi;m 6 2hx;mÞ, then calcu-

late di. Replace dmin by di
when di < dmin. We set

U ½i� ¼ 0.

(b) While ði < mÞ, calculate di
directly. Replace dmin by di
when di < dmin. We set

U ½i� ¼ 0.

Step 3.2. If ðkxk � kyikÞ2 > dmin, then do

Step c or Step d:

(c) While ðkyikP kxkÞ, we set

U ½j� ¼ 0 when jP i.
(d) While ðkyik6 kxkÞ, we set

U ½j� ¼ 0 when j6 i.
Step 4. The resulting codeword yi corresponding

to dmin is the closest codeword of x.

Based on the above proposed algorithm, in

order to speed up the search performance, we

build up a table T to store all the angles hi;j’s
between any two different codewords yi and yj in Y .
Under the precomputed look-up table T , after

finding the suitable fixed vector for the input vec-

tor x, we can reduce the number of comparisons

and arccosine calculations.



1616 K.-L. Chung, J.-Y. Lai / Pattern Recognition Letters 25 (2004) 1613–1617
4. Experimental results

In this section, some experiments are carried

out to compare the computation performance

among the full search (FS), the search algorithm
by Mielikainen (2002), the three search algorithms

by Huang et al. (1992), and our proposed search

method for VQ. The fixed vector in (Mielikainen,

2002) is selected as the mean of all the codewords

in codebook. For fairness, all algorithms include

the partial distortion search technique (Bei and

Gray, 1985) except the FS. Two 512 · 512 images,

Lena and Pepper, are used in the experiments. The
sizes of the codebooks used are 256, 512, 1024 and

2048. The dimension of each codeword is 16. All

the experiments are executed on a Pentium III PC

with 700 MHz. The OS environment is Windows

2000 and the language used is Borland C++

Builder. The time unit is 10�3 s.

Let Mielikainen’s search algorithm be abbrevi-

ated to MSA and let Huang et al.’s search algo-
rithm be abbreviated to HSA which has three

variants, namely HSA_1, HSA_2, and HSA_3,

respectively. Our proposed search algorithm is

denoted by OURs. Besides evaluating the true

execution-time, denoted by TIME, in terms of

milliseconds required by still method, for each

input vector x, we still list the number of related

arithmetic operations, such as the number of
additions (ADD), the number of multiplications

(MUL), the number of comparisons (COM), the

number of square root calculations (SQR), the
Table 1

Computation performance among FS, MSA, HSA, and OURs when

Image Algorithm ADD MUL COM S

Lena FS 7936 4096 255 –

MSA 1207.2 1354.3 435.3 2

HSA_1 535.8 293.8 524.9 1

HSA_2 682.0 488.1 464.0 1

HSA_3 668.4 480.2 711.2 1

OURs 297.5 168.0 152.3 1

Pepper FS 7936 4096 255 –

MSA 1260.1 1367.7 458.5 2

HSA_1 729.7 393.4 624.5 1

HSA_2 840.5 568.9 544.9 1

HSA_3 826.7 561.2 792.2 1

OURs 465.3 255.6 247.7 1
number of arccosine calculations (COS�1), and the

number of binary search process (BS). Table 1

demonstrates the computation performance

among the FS, MSA, HSA, and OURs. From

Table 1, when N ¼ 256, the execution-time

improvement ratios (IR) of our proposed search
algorithm over the FS, the MSA, the HSA_1, the

HSA_2, and the HSA_3 are 91.9%, 43.3%, 55.2%,

48.1%, and 54.0%, respectively, where the execu-

tion-time improvement ratio is defined by

IR ¼ TIMEðAÞ � TIMEðOURsÞ
TIMEðAÞ � 100%:

Here the symbol A denotes the comparison algo-

rithm. When N ¼ 512, the corresponding IRs are

94.0%, 45.3%, 64.5%, 58.8%, and 65.0%. More-

over, when N ¼ 1024, the corresponding IRs are

95.4%, 46.4%, 70.8%, 65.1%, and 71.9%. Even

when N ¼ 2048, the corresponding IRs are 96.0%,

48.1%, 72.4%, 65.3%, and 73.5%. It comes to a

conclusion that our proposed search algorithm for
VQ is faster than the FS, the MSA (Mielikainen,

2002), and the three variants in (Huang et al.,

1992).
Acknowledgement

This work was supported by the National Sci-
ence Council of ROC under contract NSC91-2213-

E011-022.
N ¼ 256

QR COS�1 BS TIME IR (%)

– – 2243 93.3

– – 308 51.2

– 1 361 58.4

– 1 317 52.6

– 1 355 57.7

1 1 150 –

– – 2263 90.6

– – 329 35.5

– 1 443 52.1

– 1 376 43.6

– 1 428 50.4

1 1 212 –



K.-L. Chung, J.-Y. Lai / Pattern Recognition Letters 25 (2004) 1613–1617 1617
Appendix A. The proof of lemma 2

Proof. From Eq. (3), we know ym ¼ fyij
min16 i6N ðkxk � kyikÞ2g. For all the other code-

words yi’s in Y , we have

ðkxk � kyikÞ2 P ðkxk � kymkÞ2:
Equivalently, it yields

ðkxk � kyikÞ2 � ðkxk � kymkÞ2

¼ kyik2 � kymk2 þ 2kxkðkymk � kyikÞP 0:

ðA:1Þ

By Eq. (1) and the law-of-cosines, we have

dm ¼ kxk2 þ kymk2 � 2kxkkymk cos hx;m
P kxk2 þ kymk2 � 2kxkkymk cosðhf ;x � hf ;mÞ

and

di ¼ kxk2 þ kyik2 � 2kxkkyik cos hx;i
P kxk2 þ kyik2 � 2kxkkyik cosðhf ;x � hf ;iÞ;

where 16 i6N , then it is unnecessary to calculate

di if the condition

kxk2 þ kyik2 � 2kxkkyik cosðhf ;x � hf ;iÞ

> kxk2 þ kymk2 � 2kxkkymk cos hx;m;

i.e.,

kyik2 � kymk2 þ 2kxkkymk cos hx;m
� 2kxkkyik cosðhf ;x � hf ;iÞ > 0; ðA:2Þ

holds. Considering the case when the left side of

Eq. (A.2) is larger than the left side of Eq. (A.1), if

we subtract the left side of Eq. (A.1) from the left

side of Eq. (A.2), we have

2kxkfkymk cos hx;m � kyik cosðhf ;x � hf ;iÞg
� 2kxkfkymk � kyikg > 0:

After some algebraic simplifications, we have

kyikf1� cosðhf ;x � hf ;iÞg � kymkf1� cos hx;mg > 0:

On the other hand, it is unnecessary to calculate

di if the two conditions, jhf ;x�hf ;ij>hx;m and kyik>
kymk, hold. We complete the proof. h
Appendix B. The proof of lemma 3

Proof. From the opposite meaning of Lemma 2,

the codeword yi is a possible candidate to be

the closest codeword if jhf ;x � hf ;ij6 hx;m, i.e.,
hf ;x � hx;m 6 hf ;i 6 hf ;x þ hx;m, or kyik6 kymk holds.

Since f is selected as ym, then hf ;x is equal to hx;m.
The equation hf ;x � hx;m 6 hf ;i 6 hf ;x þ hx;m can be

simplified to 06 hi;m 6 2hx;m. We complete the

proof. h
References

Bei, C.D., Gray, R.M., 1985. An improvement of the minimum

distortion encoding algorithm for vector quantization.

IEEE Trans. Commun. 33 (10), 1132–1133.

Gersho, A., Gray, R.M., 1992. Vector Quantization and Signal

Compression. Kluwer Academic Pub., Boston.

Gray, R.M., Neuhoff, D.L., 1998. Quantization. IEEE Trans.

Inf. Theory 44 (6), 2325–2383.

Huang, C.M., Bi, Q., Stiles, G.S., Harris, R.W., 1992. Fast full

search equivalent encoding algorithms for image compres-

sion using vector quantization. IEEE Trans. Image Process.

1 (3), 413–416.

Kaukoranta, T., Franti, P., Nevalainen, O., 2000. A fast exact

GLA based on code vector activity detection. IEEE Trans.

Image Process. 9 (8), 1337–1342.

Lee, C.H., Chen, L.H., 1995. A fast search algorithm for vector

quantization using mean pyramids of codewords. IEEE

Trans. Commun. 43 (2/3/4), 1697–1702.

Li, W., Salari, E., 1995. A fast vector quantization encoding

method for image compression. IEEE Trans. Circ. Systems

Video Technol. 5 (2), 119–123.

Linde, Y., Buzo, A., Gray, R.M., 1980. An algorithm for vector

quantizer design. IEEE Trans. Commun. 28 (1), 84–

95.

Mielikainen, J., 2002. A novel full-search vector quantization

algorithm based on the law of cosines. IEEE Signal Process.

Lett. 9 (6), 175–176.

Orchard, M.T., 1991. A fast nearest-neighbor search algorithm.

IEEE Internat. Conf. Acoust., Speech, Signal Process. 4,

2297–2300.

Ramasubramanian, V., Paliwal, K.K., 1992. Fast k-dimen-

sional tree algorithms for nearest neighbor search with

application to vector quantization encoding. IEEE Trans.

Signal Process. 40 (3), 518–531.

Song, B.C., Ra, J.B., 2002. A fast search algorithm for vector

quantization using L2-norm pyramids of codewords. IEEE

Trans. Image Process. 11 (1), 10–15.


	An efficient law-of-cosine-based search for vector quantization
	Introduction
	Two past works
	The work by Mielikainen
	The work by Huang et al.

	The proposed search algorithm for VQ
	Experimental results
	Acknowledgements
	The proof of lemma 2
	The proof of lemma 3
	References


