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Abstract

Recently, Su and Chou presented an efficient point symmetry-based K-means algorithm. Extending their point symmetry-based K-
means algorithm, this paper presents a novel line symmetry-based K-means algorithm for clustering the data set with line symmetry prop-
erty. Based on some real data sets, experimental results demonstrate that our proposed line symmetry-based K-means algorithm is rather
encouraging.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Partitioning a set of data points into some nonoverlap-
ping clusters is an important topic in data analysis and
pattern classification. It has many applications, such as
codebook design (Gersho and Gray, 1992), data mining
(Ng and Han, 2002), image segmentation (Jain and Dubes,
1988), data compression (Sayood, 1996), etc. Many effi-
cient clustering algorithms (Fischer and Buhmann, 2003;
Bajcsy and Ahuja, 1998; Hartigan, 1975; Zhu and Po,
1998; Fred and Leitao, 2003; Su and Chou, 2001) have
been developed for data sets of different distributions in
the past several decades. Most of existing clustering algo-
rithms adopt the 2-norm distance measure in clustering
process.

Among these developed clustering algorithms, Su and
Chou (2001) first took the point symmetry issue (Zabrod-
sky et al., 1995; Kanatani, 1997) into account. Based on
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their proposed point symmetry distance (PSD) measure,
they presented a novel and efficient clustering algorithm,
which is very suitable for symmetrical intra-clusters; for
convenience, their proposed clustering algorithm is named
the PSK algorithm. Experimental results demonstrate that
the previous PSK clustering algorithm outperforms the tra-
ditional K-means algorithm. In essence, the PSK algorithm
not only inherits the simplicity advantage of the K-means
algorithm, but it also can handle the symmetrical intra-
clusters quite well. Recently, their proposed PSK algorithm
was improved by Chung and Lin (in press) and extended to
be able to handle both the symmetrical intra-clusters and
the symmetrical inter-clusters; for convenience, their pro-
posed clustering algorithm is called the IPSK algorithm.
From the geometrical symmetry viewpoint, point symme-
try and line symmetry are two widely discussed issues.
The motivation of our research is to develop a new cluster-
ing algorithm for handling the data set with line symmetry
property while preserving the advantages in the previous
PSK algorithm and the previous IPSK algorithm.

In this paper, we propose a line symmetry-based K-
means (LSK) algorithm for clustering the data set with line
symmetry property while preserving the advantages in the
previous PSK algorithm and the previous IPSK algorithm.
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Consequently, the proposed clustering algorithm can
handle the data set with point symmetry property, line
symmetry property, or both properties. Given a data set,
the K-means algorithm is first used to obtain k temporary
clusters. Second, the concept of centroid moment (Hu,
1962) is applied to determine the symmetrical line of each
cluster which has been obtained by the K-means algorithm.
Finally, the symmetry similarity level (SSL) operator is
modified and extended to measure the line symmetry level
between two data points. The modified SSL operator is
called the MSSL operator for convenience. Utilizing the
obtained symmetrical line of each cluster and the proposed
MSSL operator, our proposed LSK algorithm can deter-
mine the most line-symmetrical data points when we are
given a set of data points. Under some real data sets, exper-
imental results demonstrate the feasibility of our proposed
line-symmetry based K-means algorithm and the experi-
mental results are rather encouraging.

The remainder of this paper is organized as follows. In
Section 2, the previous PSK algorithm by Su and Chou is
surveyed. In Section 3, the proposed MSSL operator is pre-
sented to measure the level of symmetry and it will be used
in our propose LSK algorithm. In Section 4, our proposed
LSK algorithm is described. In Section 5, some experimen-
tal results are demonstrated to show the effectiveness of the
proposed LSK algorithm. In Section 6, some conclusion
remarks are addressed.
2. The past work by Su and Chou

Different natural scenes usually have different features.
Among these features, symmetry property is one of the
most popular ones. Based on K-means algorithm, recently
Su and Chou (2001) presented an efficient PSD measure to
help partitioning the data set into the clusters where each
cluster has the point symmetry property. In this section,
the previous PSK algorithm by Su and Chou is surveyed.

Given N data points, {pi j for 1 6 i 6 N}, after running
the K-means algorithm, let the obtained k temporary clus-
ter centroids be denoted by {ck j for 1 6 k 6 K}. The PSD
measure between the data point pi and the data point pj

relative to the cluster centroid ck is defined as

dsðpj; ckÞ ¼ min
kðpj � ckÞ þ ðpi � ckÞk
kpj � ckk þ kpi � ckk

ð1Þ

for i 5 j and 1 6 i 6 N where k Æ k denotes the 2-norm dis-
tance. Using a similar data set as in (Su and Chou, 2001),
Fig. 1(a) illustrates a set of data points which contains two
point symmetrical clusters C1 and C2 associated with the
centroids c1 and c2, respectively. Fig. 1(b) demonstrates
the clustering result by running the K-means algorithm
on Fig. 1(a). In Fig. 1(b), the data point p2 is assigned to
the cluster C2 because the distance between p2 and c2 is less
than the distance between p2 and c1. However, from human
visualization, it will be better to assign the data point p2 to
the cluster C1 due to the point symmetrical distribution of
data points in C1. Applying the PSD measure shown in Eq.
(1) to Fig. 1(a), Fig. 1(c) illustrates the satisfactory cluster-
ing result after running the PSK algorithm on Fig. 1(a).

From Fig. 1, it is observed that the previous PSK algo-
rithm by Su and Chou worked for clustering the point sym-
metrical data set and experimental results demonstrated that
the PSK algorithm significantly outperforms the conven-
tional K-means clustering algorithm for this kind of data set.

Next section presents our proposed modified symmetry
level (MSSL) operator and the proposed MSSL operator
will be used in our proposed LSK clustering algorithm
for handling the data set with line symmetry property while
preserving the advantage in the previous PSK algorithm.

3. The proposed modified symmetry similarity

level operator

Given a set of data points, first the traditional K-means
algorithm is used to obtain k temporary clusters. Next, we
want to find the symmetrical line of each cluster by using
the central moment technique (Gonzalez and Wood,
2002). The found symmetrical line will be used to measure
the symmetry similarity level between two data points
relative to that symmetrical line.

Suppose the given data set is covered by an h · w integer
domain, the (p,q)th order moment is defined as

mpq ¼
X

16x6h

X
16y6w

xpyqf ðx; yÞ; ð2Þ

where f(x,y) is set to 1 when f(x,y) is the given data point at
location (x,y) in one obtained cluster after running the K-
means algorithm; otherwise f(x,y) is set to 0. By Eq. (2), the
centroid of the given data set for one cluster is defined to

m10

m00
; m01

m00

� �
. The central moment is defined as

upq ¼
X

16x6h

X
16y6w

ðx� �xÞpðy � �yÞqf ðx; yÞ; ð3Þ

where �x ¼ m10

m00
and �y ¼ m01

m00
. According to the calculated cen-

troid and Eq. (3), the major axis of each cluster can be
determined by the following two items:

(a) The major axis of the cluster must pass through the
centroid.

(b) The angle between the major axis and the x axis is
equal to 1

2
tan�1 2u11

u20�u02
.

Consequently, for one cluster, its corresponding major axis

is thus expressed by m10

m00
; m01

m00

� �
; 1

2
tan�1 2u11

u20�u02

� �
.

The obtained major axis is treated as the symmetric line
of the relevant cluster. We now define the proposed MSSL
operator to measure the symmetry level between two data
points relative to the same major axis. Our proposed MSSL
operator contains two suboperators, namely, the modified
distance similarity level (MDSL) operator and the modified
orientation similarity level (MOSL) operator. The pro-



Fig. 1. One example to demonstrate the power of the PSK algorithm. (a) The given point symmetrical data set. (b) Two obtained clusters by running
K-means algorithm on (a). (c) Two obtained clusters by running the PSK algorithm on (a).
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posed two operators improve the previous DSL and OSL
operators (Chung and Lin, in press). DSL operator and
OSL operator are used to overcome the problems occurred
in PSD measure (Su and Chou, 2001), and the problems
are (1) lacking the distance difference symmetry property,
and (2) leading to an unsatisfactory clustering result for
the case of symmetrical inter-cluster.

An example is given to illustrate the first possible pro-
blem. In Fig. 2, there are four data points, namely the
centroid ck and the three data points pi, pj, and pj+1 at
Fig. 2. An example for indicating the distance difference symmetry
problem.
locations ck = (0, 0), pi = (�di, 0), pj = (di � l, 0), and
pj+1 = (di + l, 0), respectively. It is known that the unit vec-

tors of pick
��!, ckpj

��!, and ckpjþ1
���!, i.e.

pick
��!
kpick
��!k ¼ ckpj

��!
kckpj
��!k ¼ ckpjþ1

���!
kckpjþ1
���!k,

are equivalent and the two related distance differences
kpick � ckpjk ð¼ lÞ and kpick � ckpjþ1k ð¼ lÞ are equivalent
too. In Fig. 2, the most symmetrical point of pi relative to
the centroid ck is the data point pj or the data point pj+1. By
Eq. (1), we have

dsðpi; ckÞ ¼ min
kðpi � ckÞ þ ðpj � ckÞk
kðpi � ckÞk þ kðpj � ckÞk

;

(

kðpi � ckÞ þ ðpjþ1 � ckÞk
kðpi � ckÞk þ kðpjþ1 � ckÞk

)

¼ min
l

2di � l
;

l
2di þ l

� �
¼ l

2di þ l
;



Fig. 3. An example of symmetrical intra-/inter-clusters.

Fig. 4. Measure the distance difference symmetry.
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so the data point pj+1 is selected as the most symmetrical
point of pi relative to the centroid ck. This indicates that
the PSD measure favors the far data point when we have
more than two candidate data points and this may degrade
the symmetrical robustness, and this is the first problem.

Next, a case of symmetrical inter-clusters (Chung and
Lin, in press) is considered to explain why the PSD mea-
sure may generate an unsatisfactory clustering results. In
Fig. 3, there are nineteen data points and the centroid of
the first cluster C1 is c1; the centroid of the second cluster
C2 is c2, and the centroid of the third cluster C3 is c3. Let
p1 = (�10,4), p2 = (�14,1), p3 = (�14,4), p4 = (10,�5),
p5 = (14,�9), c1 = (�12,2), c2 = (0,0), and c3 = (12,�7).
We now consider the data point p1, and by Eq. (1), it yields

dsðp1; c1Þ ¼ min
16i616;i 6¼1

kðp1 � c1Þ þ ðpi � c1Þk
kp1 � c1k þ kpi � c1k

¼ kðp1 � c1Þ þ ðp2 � c1Þk
kðp1 � c1Þk þ kðp2 � c1Þk

¼ 1ffiffiffi
8
p
þ

ffiffiffi
5
p ¼ 0:20;

dsðp1; c2Þ ¼ min
16i616;i 6¼1

kðp1 � c2Þ þ ðpi � c2Þk
kp1 � c2k þ kpi � c2k

¼ kðp1 � c2Þ þ ðp4 � c2Þk
kðp1 � c2Þk þ kðp4 � c2Þk

¼ 1ffiffiffiffiffiffiffiffi
116
p

þ
ffiffiffiffiffiffiffiffi
125
p ¼ 0:05;

and

dsðp1; c3Þ ¼ min
16i616;i 6¼1

kðp1 � c3Þ þ ðpi � c3Þk
kp1 � c3k þ kpi � c3k

¼ kðp1 � c3Þ þ ðp5 � c3Þk
kðp1 � c3Þk þ kðp5 � c3Þk

¼
ffiffiffiffiffiffiffiffi
481
pffiffiffiffiffiffiffiffi

605
p

þ
ffiffiffi
8
p ¼ 0:80.
From the above three PSD values, since ds(p1,c2) (=0.05) is
the smallest, among the three concerning PSD values, the
data point p1 should be assigned to the cluster C2, but it
conflicts our visual inspection. From the data distribution
of C1, instead of assigning p1 to C2, it will be better to as-
sign the data point p1 to the cluster C1. This is the second
problem.

Due to the above two problems, Chung and Lin (in
press) proposed the SSL operator which contains DSL
operator and OSL operator to satisfy the distance differ-
ence symmetry property. In Fig. 4, ck denotes the cluster
centroid; pi and pj denote two related data points. Let
di ¼ pick and dj ¼ pjck, and then the distance similarity
level (DSL) operator for measuring the distance difference
symmetry between the distance pick and the distance pjck is
defined by

DSLðpi; ck; pjÞ ¼
1� jdi � djj

n� di
; if 0 6

dj

di
6 nþ 1;

0; otherwise,

8<
:

where the parameter n in the above equation is selected to
be 1.

Besides the DSL operator, another operator used to
proposed SSL operator, say orientation similarity level
(OSL), was presented. Applying the projection concept
(Hoffman and Kunze, 1961), the orientation similarity level
between the two vectors, vi ¼ pick

��! ¼ ðck � piÞ and vj ¼
ckpj
��! ¼ ðpj � ckÞ, is defined by

OSLðpi; ck; pjÞ ¼
vi � vj

2kvikkvjk
þ 0:5. ð4Þ

Now combining the DSL operator and OSL operator
can obtain the symmetry similarity level (SSL) operator,
and it is defined by

SSLðpi; ckÞ ¼ max
16j6N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DSL2ðpi; ck; pjÞ þOSL2ðpi; ck; pjÞ

2

s
.

ð5Þ
In their experiments (Chung and Lin, in press), the clus-

tering result with SSL operator is better than PSD measure
As shown in Fig. 5.

Examining the previous DSL operator in detail, one
problem may happen. As shown in Fig. 6, the distance dif-
ference between the two data points di and dj is constant, so
intuitively the value of DSL for di or dj relative to the cen-
troid ck must be the same. However, the above DSL oper-
ator violates this intuition since the value of DSL for point



Fig. 5. Clustering performance comparison with SSL operator and PSD measure. (a) The data set contains three compact circles. Clustering result using
PSD measure (b) and using SSL operator (c).

Fig. 6. An example to highlight the problem occurred in the previous DSL
operator.
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pi relative to ck is 1� 1
5
¼ 0:8, but the value of DSL for

point pj relative to ck is 1� 1
4
¼ 0:75. In order to compen-

sate the shortcoming and to satisfy the symmetry property,
the DSL operator is modified into the following MDSL
operator:

MDSLðpi; pki; pjÞ ¼ exp � jdi � djj
q2

� 	
; ð6Þ

where the value of q is specified by 5 empirically.
From Eq. (6), it is obvious that we have

0 < MDSL(pi,pki,pj) 6 1 and the larger value of
MDSL(pi,pki,pj) is, the larger the distance similarity level
between di ð¼ pipkiÞ and dj ð¼ pjpkiÞ is. When di = dj, we
have MDSL(pi,pki,pj) = 1; it means that the distance pipki

and the distance pjpki have the highest MDSL values.
The parameter q in Eq. (6) is used to control the tolerance
of distance difference between two concerned data points,
and empirically, the range of q can be selected from 5 to 10.

Besides the MDSL operator defined above, we continue
using the original OSL operator, but for convenience, we
change the symbol OSL to symbol MOSL, and it would
be written as

MOSLðpi; pki; pjÞ ¼
vi � vj

2kvikkvjk
þ 0:5. ð7Þ

Combining the two operators, the MDSL and the
MOSL, which are defined in Eqs. (6) and (7), respectively,
our proposed MSSL operator to measure the symmetry
similarity level between the two vectors, pipki

��! and pkipj
��!, is

defined by

MSSLðpi; pki; pjÞ

¼ max
16j6N

MDSLðpi; pki; pjÞ þMOSLðpi; pki; pjÞ
2

ð8Þ

for 1 6 k 6 K and 1 6 i 6 N.
Because the values of MDSL(pi,pki,pj) and MOSL(pi,

pki,pj) range from 0 to 1, it is easy to verify Eq. (8) that
the value of MSSL(pi,pki,pj) is also between 0 and 1. The
larger MSSL(pi,pki,pj) value is, the larger symmetry simi-
larity level is. For the data point pi relative to the projected
point pki on the major axis of the corresponding cluster,
our proposed MSSL operator is a good tool to find the
most symmetrical data point pj relative to pki where its
MSSL(pi,pki,pj) value is maximal among all the concerning
data points.

4. The proposed line symmetry-based K-means algorithm

In this section, we present the proposed line symmetry-
based K-means (LSK) algorithm which extends the previ-
ous PSK algorithm by Su and Chou from handling the
point symmetrical data set to handling the point symmetri-
cal data set, the line symmetrical data set, or both of them.

The proposed LSK algorithm adopts the conventional
K-means algorithm as a preprocessing step, then utilizes
the concept of a major axis and the proposed MSSL oper-
ator to measure the symmetry level of the concerning two
data points. Our proposed LSK algorithm is shown below
where Step 3 of the proposed algorithm constitutes the
main contribution of this paper.

Step 1. (Select K initial cluster centroids)
Give N data points, we choose K data points ran-
domly as the initial K cluster centroids.

Step 2. (Coarse-tuning by running the K-means algorithm)
Apply the K-means algorithm to update the selec-
ted K cluster centroids until the K cluster centroids
are converged to fixed points or the terminating
criteria is satisfied.

Step 3. (Fine-tuning)
Step 3.1. (Find the symmetrical line for each cluster)

As described in the first paragraph of
Section 3, for each cluster, we use the
moment-based approach to find out the
relevant symmetrical line.

Step 3.2. (Prune impossible candidate symmetrical
data points)
For each data point pi, calculate the pro-
jected point pki on the relevant symmetri-
cal line of cluster Ck, and then find out
all possible candidate symmetrical data
points pj relative to each symmetrical
line of the corresponding cluster such that
MDSL(pi,pki,pj) P a (=0.6) and MOSL-
(pi,pki,pj) P b (=0.97) are held, 1 6 i, j 6

N and 1 6 k 6 K, where pj belongs to the
kth cluster already.

Step 3.3. (Search the most symmetrical data points
among the candidates)
For data point pi, find out the data point
pj relative to the symmetrical line of



Fig. 7. Flow chart for the proposed LSK algorithm.
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cluster Ck such that the value of
MSSL(pi,pki,pj) is the largest. If such a
data point pj does not exist since the rele-
vant value of MSSL is still less than the
threshold, then the data point pi would
be assigned to the cluster with the short-
est Euclidean distance relative to the clus-
ter centroid; otherwise the data point pi is
assigned to the kth cluster.
Fig. 8. Clustering results for data set with intra-symmetry property. (a) Given
proposed LSK algorithm (c).
Step 4. (Update the centroid and the symmetrical line for
each cluster)
After assigning all data points to the corresponding
proper clusters, we then update the centroid and
the symmetrical line for each cluster.

Step 5. (Continue or terminate)
If all the centroids are converged to fixed points or
the number of iterations is larger than the allowable
bound, stop the algorithm; otherwise go to Step 3.

After describing the above LSK algorithm, the following
flow chart as shown in Fig. 7 is supplemented to make the rel-
evant processes in the proposed LSK algorithm more clear.

5. Experimental results

In this section, several artificial and real data sets are
used to demonstrate the feasibility and the extension capa-
bility of our proposed LSK algorithm. Experimental results
reveal that our proposed LSK algorithm has encouraging
results. Throughout the following experiments, the para-
meter q is selected to be five. In addition, the thresholds
for MDSL and MOSL are selected to be 0.60 and 0.97,
respectively.

Using the same experimental data set as in the PSK
algorithm (Su and Chou, 2001), the given two crossed ellip-
soidal shells data set with intra-symmetry property is
shown in Fig. 8(a). Fig. 8(b) illustrates the clustering result
by using the K-means algorithm, but the clustering result is
unsatisfactory from the human visualization judgment.
Fig. 8(c) illustrates the clustering result by using our pro-
posed LSK algorithm and it has the same satisfactory clus-
tering result as in the previous PSK algorithm.

Besides the data set with intra-symmetry property, the
data set with both intra-symmetry property and inter-sym-
metry property used in (Chung and Lin, in press) is inves-
tigated in Fig. 9. The data set contains two compact ellipses
and two crossed ellipsoidal shells as shown in Fig. 9(a).
After running the K-means algorithm on Fig. 9(a), there
are several misclassified data points as shown in Fig. 9(b)
data points. Clustering result using K-means algorithm (b) and using our



Fig. 9. Clustering results for data set with both intra- and inter-symmetry properties. (a) Given data points. Clustering result using K-means algorithm (b)
and using our proposed LSK algorithm (c).
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on the crossed ellipsoidal shells. Fig. 9(c) demonstrates the
clustering result by using our proposed LSK algorithm and
it has the same satisfactory clustering result as in the previ-
ous IPSK algorithm. According to the experimental results,
it reveals that both the previous IPSK algorithm and our
proposed LSK algorithm can cluster the data set with
intra-symmetry property, the data set with inter-symmetry
property, or both kinds of data sets quite well.

Experimental results in Figs. 8 and 9 have demonstrated
that our proposed LSK algorithm can handle the clustering
work for the data set with intra-symmetry property, the
data set with inter-symmetry property, and the data set
with both intra- and inter-symmetry properties. In what
follows, two data sets are examined to confirm that our
proposed LSK algorithm also can cluster data set with line
symmetry property.

Most of natural scenes, such as leaves of plants, have the
line symmetry property rather than the point symmetry
property. Fig. 10(a) shows two real leaves of Ficus microcapa

and Wedelia trilobata and they overlap a little each other.
Fig. 10. Clustering result for the first data set with line symmetry property. (a)
result using K-means algorithm (c), using IPSK algorithm (d) and using our p
First the Sobel edge detector (Gonzalez and Wood, 2002)
is used to obtain the edge pixels as the input data points
which are shown in Fig. 10(b). After running the K-means
algorithm, Fig. 10(c) demonstrates two temporary clusters
and the corresponding two major axes which are obtained
by using the moment-based technique. Furthermore, after
running IPSK algorithm and our proposed LSK algorithm,
the two clustering results are shown in Fig. 10(d) and (e),
respectively. It is observed that IPSK algorithm cannot han-
dle this case very well while our proposed LSK algorithm
demonstrates a satisfactory clustering result.

Fig. 11(a) shows the two real leaves of Erechtites valeri-
anifolia and they also overlap a little. Fig. 11(b) depicts all
the data points of the two leaves. After running the K-
means algorithm and using the moment-based technique,
Fig. 11(c) demonstrates two temporary clusters and the
corresponding two major axes. Furthermore, after running
IPSK algorithm and our proposed LSK algorithm, the two
clustering results are depicted in Fig. 11(d) and (e), respec-
tively. It is obvious that IPSK algorithm cannot handle this
Two input leaves. (b) Edge pixels of leaves as input data points. Clustering
roposed LSK algorithm (e).



Fig. 11. Clustering result for the second data set with line symmetry property. (a) Two input leaves. (b) Leaves as input data points. Clustering result using
K-means algorithm (c), using IPSK algorithm (d) and using our proposed LSK algorithm (e).
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case very well. However, our proposed LSK algorithm
illustrates a satisfactory clustering result.

6. Conclusions

In this paper, we have presented the line symmetry-
based K-means algorithm. The proposed new clustering
algorithm not only can cluster data sets with the property
of line symmetry successfully, but also preserves the clus-
tering advantages in the previous PSK algorithm and the
previous IPSK algorithm. Under some real data sets,
experimental results demonstrate that the feasibility of
our proposed line-symmetry based K-means algorithm
and the relevant experimental results are rather encourag-
ing. Other than the clustering experiments using leaf exam-
ple, it is an interesting future research topic to extend the
results of this paper to face recognition.

References

Bajcsy, P., Ahuja, N., 1998. Location and density based hierarchical
clustering using similarity analysis. IEEE Trans. Pattern Anal.
Machine Intel. 20 (9), 1011–1015.

Chung, K.L., Lin, J.S., in press. Faster and more robust point symmetry-
based K-means algorithm. Pattern Recognit., doi:10.1016/
j.patcog.2005.09.015.
Fischer, B., Buhmann, J.M., 2003. Bagging for path based clustering.
IEEE Trans. Pattern Anal. Machine Intel. 25 (11), 1411–1415.

Fred, L.N., Leitao, M.N., 2003. A new cluster isolation criterion based on
dissimilarity increments. IEEE Trans. Pattern Anal. Machine Intel. 25
(8), 944–958.

Gersho, A., Gray, R.M., 1992. Vector Quantization and Signal Com-
pression. Kluwer, Norwell, MA.

Gonzalez, R.C., Wood, R.E., 2002. Digital Image Processing, second ed.
Prentice Hall, New Jersey.

Hartigan, J., 1975. Clustering Algorithms. Wiley, New York.
Hoffman, K., Kunze, R., 1961. Linear Algebra. Prentice Hall, New Jersey.
Hu, M.K., 1962. Visual pattern recognition by moment invariants. IEEE

Trans. Inform. Theory 8 (2), 179–187.
Jain, A.K., Dubes, R.C., 1988. Algorithms for Clustering Data. Prentice

Hall, Englewood Cliffs, NJ.
Kanatani, K., 1997. Comments on ‘‘Symmetry as a continuous feature’’.

IEEE Trans. Pattern Anal. Machine Intel. 19 (3), 246–247.
Ng, R.T., Han, J., 2002. CLARANS: A method for clustering objects for

spatial data mining. IEEE Trans. Knowledge Data Eng. 14 (5), 1003–
1016.

Sayood, K., 1996. Introduction to Data Compression. Morgan Kauf-
mann, San Francisco.

Su, M.C., Chou, C.H., 2001. A modified version of the K-means algorithm
with a distance based on cluster symmetry. IEEE Trans. Pattern Anal.
Machine Intel. 23 (6), 674–680.

Zabrodsky, H., Peleg, S., Avnir, D., 1995. Symmetry as a continuous
feature. IEEE Trans. Pattern Anal. Machine Intel. 17 (12), 1154–1166.

Zhu, C., Po, L.M., 1998. Minimax partial distortion competitive learning
for optimal codebook design. IEEE Trans. Image Process. 7 (10),
1400–1409.

http://dx.doi.org/10.1016/j.patcog.2005.09.015
http://dx.doi.org/10.1016/j.patcog.2005.09.015

	An efficient line symmetry-based K-means algorithm
	Introduction
	The past work by Su and Chou
	The proposed modified symmetry similarity	level operator
	The proposed line symmetry-based K-means algorithm
	Experimental results
	Conclusions
	References


