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Detecting circles from a digital image is very important in shape recognition. In
this paper, an efficient randomized algorithm (RCD) for detecting circles is presented,
which is not based on the Hough transform (HT). Instead of using an accumulator
for saving the information of the related parameters in the HT-based methods, the
proposed RCD does not heed an accumulator. The main concept used in the proposed
RCDisthatwe firstrandomly select four edge pixels in theimage and define a distance
criterion to determine whether there is a possible circle in the image; after finding a
possible circle, we apply an evidence-collecting process to further determine whether
the possible circle is a true circle or not. Some synthetic images with different levels
of noises and some realistic images containing circular objects with some occluded
circles and missing edges have been taken to test the performance. Experimental
results demonstrate that the proposed RCD is faster than other HT-based methods
for the noise level between the light level and the modest level. For a heavy noise
level, the randomized HT could be faster than the proposed RCD, but at the expense
of massive memory requirementsg 2001 Academic Press
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I. INTRODUCTION

Detecting circles from a digital image is very important in shape recognition [5]. Hou
transform (HT) [11, 16] is the most well-known method for circle detection. key)(be
an edge pixel on a circle with center coordinat@sh) and radiug; then the circle can be
expressed as

(x—a)+(y—b?=r2 1)
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From Eq. (1), every edge pixel in the image can be mapped into a conic surface in
3-dimensional (3-D)4d, b, r)-parameter space. Using the conventional HT (CHT) [6] fol
detecting circles, it requires a large amount of computing time to vote on such a 3-D ar
i.e., a 3-D accumulator.

Several HT-based methods for detecting circles have been developed. One type of me
decomposes the parameter space into many parameter spaces with lower dimension
Another type of method uses the gradient information of each edge pixel to reduce
computing time or the requirement of the accumulator [1, 4, 14, 22]. A third type
method uses the geometry property in the circle to improve the performance [9, 10]. He
ever, these three types of methods still need some amount of computing time and at |
a 2-D accumulator array. Some other recent HT-based variants for detecting circles
be found in [12, 17]. These mainly focus on the robustness and accuracy in detec
circles.

Xuetal [20, 21] presented a randomized Hough transform (RHT) which can significan
reduce the storage requirement and the computing time needed when compared to the
In the RHT, three noncollinear edge pixels are used to solve the three pararagkers (
in Eq. (1). That is, three noncollinear edge pixels are mapped into one point in the
rameter space. Each time the RHT randomly chooses three edge pixels in the image
equal probability, and their corresponding mapped point in the parameter space is colle
by voting on the accumulator implemented by an array or a link-list data structure [2
Continue the above mapping and voting procedure until some cells in the accumulator t
satisfactory scores and each of them represents a possible circle. For each possible
another evidence-collecting step follows, which counts the number of edge pixels lying
the possible circle to test whether the possible circle is the desired circle. Furthermore, w
a circle is detected, the edge pixels lying on the circle are taken out of the set of curi
edge pixels which leads to speeding up the detection of the next circle. The circle detec
work is performed iteratively until the given stopping criterion is reached. The readers
suggested to refer to the references [11, 13, 16, 23] on the comprehensive overview
comparison between the CHT and RHT.

In this paper, we present a new randomized circle detection algorithm called the R(
The proposed non-HT-based RCD first randomly selects four edge pixels in the im.
and defines a distance criterion to determine whether there is a possible circle in the im
After finding a possible circle, we apply an evidence-collecting process to further determ
whether the possible circle is the desired circle. Since the proposed RCD is not base
the technigue of voting in the parameter space, it does not need extra accumulator sto
In fact, the memory requirements needed in the proposed RCD are only a few variak
The proposed RCD has some other advantages such as real-time speed and being rol
noise. Some synthetic images with different levels of noise and some realistic images
contain circular objects with some occluded circles and missing edges have been take
justify the memory-saving and computational advantages of the proposed algorithm w
compared to previous methods [6, 14, 20].

The remainder of this paper is organized as follows: Section Il presents the proposed R
Some experimental results to confirm the memory-saving and computational advantag
the proposed RCD are demonstrated in Section Ill. In Section IV, two remarks about sc
other advantages of the proposed RCD are addressed. In Section V, some discussions
time complexities of the two randomized approaches, the proposed RCD and the RHT,
given. Finally, some conclusions are addressed in Section VI.
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IIl. THE PROPOSED ALGORITHM: RCD

This section consists of four subsections. The first subsection describes the basic id¢
the proposed RCD. The second subsection presents the distance criterion used to dete
whether the selected four edge pixels lie on a possible circle or not. The third subsec
describes how to check whether the possible circle is a true circle, i.e., the desired cir
The formal algorithm of the proposed RCD is listed in the fourth subsection.

A. Basic Idea

LetV denote the set of all edge pixels in the image. From the RHT [20], it is known th
if we randomly pick three edge pixels from, the three pixels are probably taken from a
circle in the image. It is well known that each time three noncollinear pixels can exac
determine one circle. Suppose that many sets of three chosen edge pixels all come fror
same circle; then it seems very probable that the circle is real. The RHT uses an accumu
to record all the instances of theses circles iteratively in order to find out a possible cir
in the accumulator. In this paper, we modify the above idea [20] and propose a hon-}
based randomized algorithm for detecting circles. Our proposed algorithm randomly pi
four edge pixels each time and defines a distance criterion to find a possible circle. T
modification can lead to memory-saving and computational efficient effects which will |
clarified later.

As shown in Fig. 1, four edge pixels can generally determine four circles. If the fol
randomly selected edge pixels all come from the same circle, then with high probabil
the circle seems to be real. When the four randomly selected edge pixels lie on the s
circle, we refer to this circle as a possible circle. After a possible circle is found, we apply
evidence-collecting process to further verify whether the possible circleis atrue circle orr

B. Determining Possible Circle

In this section, we describe how to determine a possible circle according to the fi
selected edge pixels.

FIG. 1. Four circles determined by four edge pixels.
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By returning to Eq. (1), we note that a circle can be written as
2xa+2yb+d = x% + y?, 2)
whered =r? —a? — b?. Letv; = (X, yi), i = 1, 2, 3, be three edge pixels in the image. If
v1, v2, andvs are noncollinear, they can exactly determine one circle (denot&€dAywith

center @123, by23) with radiusri,3. From Eq. (2) and the fact that the circle passes throug
the three pixels, we have

2Xq8123 + 2y1b1o3 + 1oz = X2 + Y2,
2Xa123 + 2Yab1o3 + 1oz = X3 + Y2,

and
2X38123 + 2Y3b123 + Gioz = X2 + Y2,

whered; 3 = r2,; — a2,5 — b2,,. A representation of the above three equations in terms ¢
matrix form yields

2X1 2y1 1 a123 X% + yf
2% 2y, 1 bz | = | X3+ v3
2x3 2y3 1 d123 X2 + y2

Applying Gaussian elimination, we have

2X1 2y1 1 aio3 X:Iz. + y:lz.
2(X2 —X1) 2(y2—vy1) O bios | = | X2 +y5— (X2 +V2) |. 3
2(xs—x1) 2(ys—y1) 0/ \dhzs X2 +y32 — (X2 +y?)

Sincevs, vo, andvs are noncollinear, we have{ — x1)(ys — Y1) — (X3 — X1)(Y2 — y1) # 0.
By Cramer’s rule, the centeaq»s, bi23) can be obtained by

X2+y2— (x2+VY2) 2(y2—y1)
X3+y3— (x2+VY2) 2(ys—y1)

a3 = 4
237 A — xa)(Ys — Y1) — (s — X2)(Y2 — Y1) @
and
206 —x1) X3+ Y5 — (X{ +¥f)
2(x3 — x1) X5+ y5— (X2 +y2)
b1 = : ®)
4((%2 — x1)(Y3 — Y1) — (X3 — X1)(Y2 — Y1)
After obtaining the centemaf,3, b1,3), the radius can be calculated by
ri2s= v/ (% — @129 + (yi — b123)? (6)

foranyi =1, 2, 3.
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FIG. 2. Adigital circle.

The casexX; — x1)(Yz — Y1) — (X3 — X1)(Y2 — y1) = O means that the three pixels are
collinear and they cannot form a circle.

Letvs = (X4, Y4) be the fourth edge pixel; then the distance betwgend the boundary
of the circleCi23, denoted by, . 123, can be calculated by

s 123 = |\/(Xa — @123)2 + (Ya — b123)? — I'123), (7)

where|z| denotes the absolute valueof

If v4 lies on the circleC, 23, the value ofd,_, 123in Eq. (7) is 0. Since the image is digital,
it rarely happens that these edge pixels lie exactly on a circle. Therefore, the goal of cil
detection is to detect a set of edge pixels which lie not exactly but roughly on a digi
circle (see Fig. 2). For convenience, the set of edge pixels that form a digital circle is a
called a circle and these edge pixels are called co-circular. As shown in Rigli&s on

FIG. 3. An example of four pixels in a digital circle.
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the boundary of the circl€;»3; then the value ofi,_, 123in Eq. (7) is very small. Therefore,
Eq. (7) can be used to determine whethelies on the circleC;,3 or not.

For convenience, we denote the circle which passes through, vk by Cijx and its
center and radius are denoted by, bijx) andr;j., respectively. Let the distance between
v and the boundary of the circ&jx be denoted by _ijx. This center, radius, and distance
can be calculated by Eqs. (4)—(7). For example, Eq. (7) can be written as

diijk = |\/(X| — aijk)? + (M — bij)? — riji- (®)

We next want to decide whether there is a circle determined by three of the four edge pi:
and whether the fourth edge pixel lies on the circle.

Given four edge pixelsyi, i = 1, 2, 3, 4, there are‘3‘0 = 4 circles, i.e.C123, C124, C134,
andC,34, with respect to the four distances, i.@y,. 123, d3 124, Oz, 134, andd;_, 234, t0 be
considered. Once we find one distance that is smaller than a given thréshsdgTy = 0.5
or 1, we claim that these four edge pixels are co-circular. For example, ib3is the first
distance satisfyingls . 123 < Ty, we claim that these four edge pixels are co-circular an
the circleCyo3is the possible circle. Here, wh&j is the possible circle, the three edge
pixelsv;, vj, anduy are referred to as the agent pixels of the possible circle.

Let us consider an undesirable case. When two of the three agent pixels of the pos:
circle are too close, the possible circle may not be the true circle. As shown in kigv4,
andujg lie on a true circle (the bigger circle), but the circle (the smaller circle) determine
by v1, v, andvs differs from the true circle. The undesirable case occurs whemdvs
are too close. To avoid this case, the distance between any two agent pixels must be gr
than a given threshold,. If so, it means that the three agent pixels have strong evidence
be the representatives of the possible circle.

C. Determining True Circles

After detecting a possible circle with centerjf, bijx) and radius;jk, whether the pos-
sible circle is a true circle can be checked by the following evidence-collecting proce

Vo

FIG. 4. Anundesirable case.
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Initially, we set a counte€ = 0 for this possible circle in order to count how many edge
pixels lie on the possible circle. For each edge pixeh V, the distancel ;< can be
obtained by Eq. (8). Itl_.ijx is not larger than the given distance thresh®d we in-
crement the counte€ by one and take;, out of V; otherwise we proceed to the next
edge pixel. We continue the above process until all the edge pixélshiave been ex-
amined. In the evidence-collecting process,rgtdenote the number of edge pixels on
the possible circle. In fact, the final value Gfis equal tony. If n, is larger than the
given global thresholdy, we claim that the possible circle is a true circle. Otherwise
the possible circle is a false circle and we return thogeedge pixels into the sey.
Note that when a true circle is detected, then the edge pixels lying on the circle are ta
out of the set of current edge pixels. This leads to speeding up the detection of the r
circle.

The above technique using a global thresh@jdhas a normalized problem. Circles
with different radii have different circumferences. Therefore, employing some large glot
thresholdTy is unfair to those circles with small radii. To overcome the normalized probler
aratio threshold scheme is presented. Previously, Kulpa [15] showed that asoo, then
the number of pixels on the boundary of the circle with radiis4+/2 r. Since any circle
in a digital image has a finite radius, the number of pixels on the boundary of a cirt
is estimated to bes2 . Therefore, when there arg, edge pixels lying on the possible
circle Gjjx and the ratio oh, over the theoretical valuenz;ji is larger than the given ratio
thresholdT,, we claim that the possible circle is a true circle. Otherwise, the possible circ
is a false circle and we return thosg edge pixels into the sat.

D. The Proposed RCD

From the above description, this section presents the formal RCD consisting of -
following six steps.

Step 1. Store all edge pixels, = (x;, ;) to the seV and initialize the failure countefr
tobe 0. LefT¢, Tmin, Ta, Ta, andT; be the five given thresholds. Heflg, denotes the number
of failures that we can tolerate. If there are less tfign pixels inV, we stop the task of
circle detection. The distance between any two agent pixels of the possible circle shc
be larger thanT,. T4 and T, are the distance threshold and ratio threshold, respectivel
Moreover, letV| denote the number of edge pixels retaine®¥in

Step 2. If f =T; or |V| < Tmin, then stop; otherwise, we randomly pick four pixels
vi,i =1, 2,3, 4,outolV. Whenv; has been chosen, sét=V — {v;}.

Step 3. From the four edge pixels, find out the possible circle such that the distan
between any two of the three agent pixels is larger thaand the distance between the
fourth pixel and the boundary of the possible circle is larger Hyago to Step 4. Otherwise,
putvi,i =1, 2, 3, 4, back to/; perform f := f 4+ 1; go to Step 2.

Step 4. AssumeCijy is the possible circle. Set the coun®&to be 0. For each in V, we
check whethed,_,jjk is not larger than the given distance threshijdif yes,C :=C + 1
and takevy out of V. After examining all the edge pixels M, assumeC = ny, i.e., there
arenp edge pixels satisfyind _ijx < Tq.

Step 5. If np > 271k Ty, go to Step 6. Otherwise, regard the possible circle as a fal
circle, return these, edge pixels intd/, performf := f 4 1, and go to Step 2.
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Step 6. The possible circl€;jx has been detected as a true circle. B&t be 0 and go
to Step 2.

[ll. EXPERIMENTAL RESULTS

Allthe experiments are performed on a Pentium 111 733 MHz computer using C langua
The first experiment is tested on the synthetic images that are created by adding noise
original image at various increasing levels. The original 25856 synthetic image with
1348 edge pixels is shown in Fig. 5a. It consists of six circles with different radii and sor
of them overlap. In order to test the robustness of the proposed RCD, we randomly
different levels of noise to the original synthetic image. Here, the levels range from 10
i.e., adding 135 noises, to 200%, i.e., adding 2696 noises. The resulting two noisy ime
with levels 100 and 200% are shown in Fig. 5b and Fig. 5c, respectively.

O

FIG.5. The first experiment. (a) The original synthetic image. (b) The image with 1348 noises. (c) The ime
with 2696 noises. (d) The detected circles of the proposed RCD.
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For the purpose of comparison, we apply the CHT, the RHT, and our proposed RCL
each synthetic image individually. All three methods can correctly detect the six circle
The detected circles are shown in Fig. 5d. Here, the two randomized algorithms, the R
and our proposed RCD, are stopped when the six circles are detected.

The execution time required in each method is measured in terms of milliseconds ar
is obtained from the average of 1,000 simulations. Figure 6 illustrates the execution ti
required in the related three methods. It is observed that the execution time required ir
CHT is much larger than that in the proposed RCD and the RHT. Figures 6a and 6b
plotted to show their performance.

From Fig. 6b, except the images with high noise level, #470% , the proposed RCD
is faster than the RHT. In [20], the RHT randomly picks three edge pixels and maps th
into one point in the parameter space each time. The mapping is implemented by vo
on the accumulator. When finding a cell in the accumulator with a satisfactory score, e
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FIG. 7. The average and maximum number of failures by applying the RHT to the synthetic images frt
1,000 simulations.

equal to 2, the cell represents a possible circle. The possible circle is further checkec
counting the number of edge pixels lying on it to determine whether it is a true circle
not. Therefore, it takes some amount of time to maintain and access the accumulator ir
voting procedure. However, the proposed RCD does not need an accumulator, which |
to a considerable time-saving effect. This is why the proposed RCD is faster than the F
even for the images with a modest noise level.

In order to reduce the memory requirement, the RHT is implemented by usingPa se
which is a link-list data structure to represent the accumulator. At each time, if the thi
chosen edge pixels do not resultin finding a true circle, it denotes the occurrence of a fai
and the number of failured,, is incremented by one. Otherwise, when a true circle is foun
resetP = null and f = 0. Due to the satisfactory score being set to 2, most failures le
to a new added cell ifP. Therefore, the number of failures can be used to indicate tt
memory requirement in the RHT. Figure 7 shows the average and maximum numbe
failures obtained by applying the RHT to the synthetic images from the 1,000 simulatio
In Fig. 7, itis observed that the memory requirement in the RHT increases as the noise |
increases.

The second experiment is carried out on six 25856 real images, say the coimage,
the crackelimage, the stationerimage, the culvertimage, the astronomiynage, and the
toy_image, to justify the applicability of the proposed RCD. These six images are showr
Figs. 8a—8f, respectively. In Fig. 8a, the cdinage contains seven coins and two coins art
occluded. In Fig. 8b, the crackénage consists of some occluded crackers, three imperfe
circular crackers, and two sticks. In Fig. 8c, the statioriargige comprises three circular
objects, one pencil, and one clip. In Fig. 8d, the culierage includes one semicircular
culvert and the other parts can be viewed as noises. In Fig. 8e, the astrimaggy contains
three occluded planets with different radii. In Fig. 8f, the_tmage contains some circular
plastic toys, a plastic fish, and a circular magnet. Theitogge is more complicated than
the other five images. The sets of edge pixels for Fig. 8 are shown in Fig. 9, where sc
edges are spurious and some edges are missing. Here, the edge detection operator t
the Sobel operator [7]. Because the center of a circle must lie on the line passing thrc
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(e) (f)

FIG.8. The second experiment for six real-world images. (a) The_goimge. (b) The crackemage. (c) The
stationeryimage. (d) The culverimage. (e) The astronomynage. (f) The toyimage.
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(e) (f)

FIG.9. The sets of edge pixels for Fig. 8. The edge pixels of (a)dmiage, (b) crackeimage, (c) stationety
image, (d) culverimage, (e) astronomymage, and (f) toyimage.
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TABLE 1
Time Performance Comparison Among the CHT, the CHTG,
the RHT, and the Proposed RCD for Six Real Images

Image

Coin Cracker Stationery Culvert  Astronomy Toy

RCD 140 164 113 65 136 422
CHT 55584 56718 57185 30173 21160 63110
% 0.998 0.997 0.998 0.998 0.994 0.993
CHTG 747 755 754 607 551 794
% 0.813 0.783 0.850 0.893 0.753 0.469
RHT 2436 2424 1355 565 1087 5341
RHT-RCD 0.943 0.932 0.917 0.885 0.875 0.921

RHT

the edge pixel of the circle along the gradient direction, some methods [14, 22] use
property to help the task of circle detection. Here, we also implement the CHT using 1
gradient information [14] (denoted by CHTG) for comparison. That is, the CHT, the CHT(
the RHT, and the proposed RCD are all implemented to detect circles of the six real ima
separately.

While implementing the proposed RCD on the first four images of Fig. 8, the five thres
olds Tt, Tmin, Tas Tq, and T, are set to be 30,000, 60, 20, 1, and 60%, respectively. Be
cause the astrononiynage contains planets with smaller radii and/or larger missing edge
the values of threshold, and T, are set to be 10 and 45%, respectively. Moreover, th
toy_image seems more complicated than the others, so the value of thr@shsldet to
be 60,000. Figure 10 shows the corresponding detected circles of each image. Note
in Fig. 10f, we detect the head and the body of the fish as the circular objects due to tl
partial circular contours. The performance comparison among the four methods is show
Table 1.

In Table 1, the first row denotes the used real images. The execution time require
the proposed RCD is listed in the second row. The execution time of the CHT, the CHT
and the RHT are displayed in the third, the fifth, and the seventh rows, respectively. F
thermore, each of these three rows is followed by a row which lists the correspond
improvement ratios. The improvement ratio is measuredl'b'gf{%w. The experi-
mental results reveal that the proposed RCD is faster than the other three methods fc
six real images. For example, Table 1 reveals that the proposed RCD has more than 9¢
and 0.87% execution time improvement when compared to the CHT, the CHTG, and
RHT, respectively.

IV. TWO REMARKS

In this section, two remarks are presented to demonstrate the other two advantages ¢
proposed RCD.

In the HT-based methods, e.g., the CHT, the CHTG, and the RHT, due to the fact t
the parameter space is quantized and the exact parameters of a circle are often not
to the quantized parameters, we seldom find the exact parameters of a circle in the in
[2, 19]. However, the proposed RCD does not employ the quantization of the parame
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FIG. 10. The detected circles for Fig. 8. Each detected circle is depicted by a white circle. The detec
circles of (a) coinimage, (b) crackeimage, (c) stationerymage, (d) culverimage, (e) astronomimage, and
(f) toy-image.
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FIG. 11. Quantization bias. (a) The support region of a circle while quantizing the raditth quantized
interval Ar. (b) A cell in the @, b) parameter space with quantized intervAls and Ab, respectively. (c) The
support region of a circle while quantizing thee b, r) parameter space with quantized intervals Ab, andAr,
respectively.

space. In the RCD, the detected circles are directly obtained from Egs. (4)—(6). Theref
the proposed RCD can detect the circle in a more accurate way. Furthermore, also dt
guantization of the parameter space, a cell in the accumulator array corresponds to are
called a support region [8], which is not an exact annulus in the image space. As show
Fig. 11, when we quantize(b, r) parameter space with quantized intervals, Ab, and
Ar, respectively, a cell in the accumulator array will correspond to a region in the ima
with the shape like Fig. 11c. This quantization effect leads to the fact that the region is
an exact annulus. The proposed RCD uses the distance between a pixel and the pos
circle to test whether the pixel belongs to the circle. Therefore, the support region of a cit
is an exact annulus in our method.

In the HT-based methods, the higher the resolution in parameter space is, the la
the computation—memory requirement is needed. Therefore, there is a trade-off betw
the resolution of the parameter space and computation—memory requirement. Howe
in the proposed RCD, we can dynamically adjust the threshpld fit any resolution of
the digital circle without increasing the computation—memory requirement.

V. DISCUSSION

In this section, we use a simple probabilistic model to discuss the computational cc
plexities of the proposed RCD and the RHT. Considering an image contaieihge pixels,
assume there exists a circle containmgdge pixels in the image; then the probability of
randomly choosing a pixel from the set of edge pixels that belongs to the circle is eq
to p = m/n. Let the event A be defined as a 3-tuple of randomly chosen pixels that col
from the circle and the event B be defined as a 4-tuple of randomly chosen pixels that c
from the circle; then the probabilities of A and B are given by

m(m — 1)(m — 2)

PIAl = n(n—1)(n —2)
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and

m(m — 1)(m — 2)(m — 3)

PIBI = n(n—1)(n-2)(n—3)

In practice, bothm andn are some what large. For example, in the culwerage in Fig. 9d,
we havem = 413,n = 1255, andp ~ 0.33. Thus,P[A] and P[B] approximate tgp® and

p*, respectively. In the RHT, according to the satisfactory score of the possible circle be
set to 2, the circle is detected when the event A occurs twice and a failure occurs wher
event A does not happen. In the proposed RCD, the circle is detected when the eve
occurs once and a failure occurs when the event B does not happen.

Let the random variable (r.vXryt be the number of failures until the event A occurs
exactly twice and let the r. Xrcp be the number of failures until the event B occurs exactly
once. Then the r.\Xgyt has anegative binomial distributiofiL8] with probability density
function (p.d.f.)

frur(X) = (x+ (1 — p)*(p®*,  x=0,1,...,

wherex denotes the possible number of failures until the eventcurs exactly twice. In
addition, the r.vXrcp has ageometric distributiof18] with p.d.f.

freo(X) = (1 — pH*(p*), x=0,1...,

wherex denotes the possible number of failures until the event B occurs exactly on
Figures 12a and 12b show the p.d.f. comparison between thégiy and the r.v.Xrcp
for two differentp’s. From Fig. 12, it is observed that far= 0.5 (0.25), frcp(X) is larger
than fry(X) whenx < 4 andx > 30 (x < 19 andx > 223); frep(X) is less thanfry(X)
when 5< x <29 (20< x < 222).

The cumulative distribution functioRrcp(X) (FrrT(X)) can be defined aBrcp(X) =
> iex Trep(i) (Frut(X) = > o« frut(i)). Here, Frep(X) is the accumulated probability
that the number of failures until the event B occurs exactly once is less than or equa
X; Frut(X) is the accumulated probability that the number of failures until the event
occurs exactly twice is less than or equaktd-igures 13a and 13b show the comparisor
betweenFrcp(x) and Fryt(x) for two different p's. From Fig. 13, it is observed that for
p = 0.5 (0.25), Frep(X) is slightly larger tharFryr(X) whenx < 14 (X < 43); Frep(X) is
less thanFryt(X) whenx > 15(x > 44).

Return to the noise levels discussed in the first experiment. It is known that the heavier
noise level is, the lesp is. Figure 13a reveals that for a noise level between the light lev
and the modest level, say3 < p < 1, Frep(X) is only slightly less tharFryr(X) when
the number of failures is somewhat large. For this noise level, it seems that the propc
RCD will be slightly slower than the RHT. However, as mentioned before, when a failu
occurs in the RHT, it needs some amount of time to maintain and access the accumul
Therefore, even when the proposed RCD has larger number of failures before detecting
circle, the proposed RCD could be still faster than the RHT. This is why the proposed R
is faster than the RHT on the noise level between the light level and the modest level. It
been confirmed in the first and second experiments.

On the contrary, for a heavy noise level, the number of failures before detecting the cil
forthe proposed RCD is some what larger than that for the RHT. Therefore, even conside
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In summary, the proposed RCD is faster and needs less memory space than the |
when the noise level is between the light level and the modest level. When the noise ¢

is heavy, the RHT is faster than the proposed RCD, but at the expense of massive mer

requirement.

FIG. 12. The comparison between thgcp(x) and frur(x) for two different p’
0.25.

the overhead required for the accumulator in the RHT method, the proposed RCD still ta

more time to detect a circle. Figure 6b partially illustrates this phenomenon. For this no
level, the number of failures before detecting the circle for the RHT is rather large. Itimpli
that the RHT needs a huge amount of memory requirement for the accumulator. Howe

our proposed RCD does not need any extra memory space for the accumulator.

p
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FIG. 13. The comparison between th&cp(x) and Fryr(x) for two different p

p = 0.25.

CONCLUSIONS

VL.

In this paper, we have presented an efficient non-HT-based randomized algorithm,
RCD, for detecting circles. The proposed RCD is based on randomly picking fo

edge pixels in the image. Then using a distance criterion, we find a possible circle. Whe

the possible circle is a true circle is further checked by an evidence-collecting proce

T-based methods, the proposed RCD does not need to vote in the paran
space. Hence, it indeed does not need any extra storage for representing the accum

which is needed in the previous HT-based methods. Experimental results demonstrate
the proposed RCD is faster than other HT-based methods, such as the conventional H’

Unlike the H
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the conventional HT making use of the gradient the information [14], and the randomiz
Hough transform (RHT) [20], for the noise level between the light level and the mode
level. For a heavy noise level, the RHT could be faster than the proposed RCD. Howe
the RHT needs a huge amount of memory requirement.

How to plug the multiple window parameter transform technique [3] into the propos
RCD to balance the trade-off between accuracy and computational complexity as wel
to enhance the robustness [12] and accuracy [17] of the proposed RCD are future rese
issues.
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