
ELSEVIER Theoretical Computer Science 201 (1998) 275-279

Theoretical
Computer Science

Note

An improved algorithm for solving the banded cyclic
string-to-string correction problem

Kuo-Liang Chung *

Department of Information Management, National Taiwan University of Science and Technology,

No. 43, Section 4, Keelung Road, Taipei, Taiwan 10672, China

Received July 1997; revised October 1997
Communicated by M. Crochemore

Abstract

The banded cyclic string-to-string correction (BCSSC) problem is a generalized version of the
cyclic string-to-string correction (CSSC) problem, and has some applications in stereo matching

and speech recognition. This note presents an improved algorithm for solving the BCSSC problem
and the time complexity required ranges from O(nm) to O(nmlogb), where n and m are the
lengths of the two strings and b is the allowable bandwidth. The result of this paper generalizes
the result of Gregor and Thomason (1996) for solving the CSSC problem since the special
version of the BCSSC problem can be transformed into the CSSC problem when setting b = m.
@ 1998-Elsevier Science B.V. All rights reserved

Keywords: Banded string-to-string correction, Cyclic patterns, Algorithms

1. Introduction

The cyclic string-to-string correction (CSSC) problem appears in many applications

such as approximate polygonal shape recognition and speech recognition. Let n and

m (dn) be the lengths of the two given strings, where each string may represent the

boundary of a two-dimensional (2-D) object, a sequence of some periodic data, or a

cyclic attribute string. Using the dynamic programming method of Wagner and Fischer

[14,5], Fu and Lu [6] presented an O(nm*)-time algorithm for solving this CSSC

problem. In [8,2], the CSSC problem can be solved in O(nm) time, but may not obtain

the optimal solution. Then, Maes [l l] presented an O(nm log m)-time algorithm for

solving the same problem. Gregor and Thomason [9] presented the first data-dependent

algorithm whose time complexity ranges from O(nm) to O(nm*). Recently, Gregor and

* Tel.: +886 2 7376771; fax: +886 2 7376777; e-mail: klchung@cs.ntust.edu.tw

0304-3975/98/$19.00 @ 1998-Elsevier Science B.V. All rights reserved
PII SO304-3975(97)00280-6

276 K.-L. Chungl Theoretical Computer Science 201 (1998) 275-279

Thomason [IO] improved their previous algorithm [9] and the time complexity ranges

from O(nm) to O(nm log m).

Let the two given strings be T = T, T, . . . T, and P = Pl P2 . . . P,,, . In some applications

such as stereo matching for obtaining 3-D depth information [12, 1, 131 and dynamic

time wrapping for speech recognition [7], for each i, G cannot be corrected to any

4 when j is too far away from i. That is, for each allowable correction,)i - jl

must be smaller than a bandwidth, say b; otherwise, the correction is not allowable.

In other words, Ti can be corrected to 4 only under the constraint that)i - jl <b.

This correction problem is called the banded CSSC (BCSSC) problem and the CSSC

problem is a special version of the BCSSC problem when setting b=m. Recently,

Chung [4] presented an O(nmlog b)-time algorithm for solving the BCSSC problem.

This note presents an improved algorithm for solving the BCSSC problem where

the time complexity ranges from O(nm) to O(nm log b). The result of this note not

only improves the best-case time complexity of [4], but it also generalizes the result

of Gregor and Thomason [lo].

The remainder of this note is organized as follows. Section 2 introduces a naive

algorithm for solving the BCSSC problem. Section 3 presents the proposed algorithm.

Some concluding remarks are given in Section 4.

2. The naive algorithm

In this section, a naive algorithm for solving the BCSSC problem is presented. Let

the length of the string T(P) be 12 = 10 (m = IO) and the allowable bandwidth be b = 3.

Let us consider P, as shown in Fig. 1. We have that T, can not be corrected to P4; T2

cannot be corrected to Ps; T4 cannot be corrected to PI ; Ts can neither be corrected to

PI PZ 6 p4 p5 6 p7 p8 p9 PI0

T,

T2

T3

7’4

7’5

T6

T7

T8

Ts

T 10

bandwidth

Fig. 1. The search space for BSSC problem.

K.-L. Chungl Theoretical Computer Science 201 (1998) 275-279 211

Pi, nor to P2. The BCSSC problem without considering all the cyclic strings of P, also

called the banded string-to-string correction (BSSC) problem, becomes a minimal-cost

path finding problem on the search space bounded by the two thick dotted lines shown

in the figure that can be solved using dynamic programming.

Following some notations used in [4], three types of edit operations are defined to

change one symbol in T into another symbol in P. Let Re(a) = b be the replacement

operation to change one nonempty symbol a E C, where C is the set of symbols,

into another nonempty symbol b E C; De(a) = /\ be the deletion operation to change

one nonempty symbol a into the empty symbol A in C; Zn(l\) be the insertion op-

eration to change the empty symbol A into one nonempty symbol a. The cost of

Z&(u) = b is defined to be edit(u, b) = 1 when a # b or edit(u, b) = 0 when a = b. The

cost of De(u) = A is defined to be edit(a, /\) = 1. The cost of In(A) = a is defined

to be edit(A, b) = 1. The task of finding the minimal-cost path in the banded search

space is equal to finding an edit sequence such that the total cost of the search path is

minimal.

The edit sequence in Fig. 1 consists of the following 14 edit operations: (1) Zn(l\) =

Pi (2) Re(Tl)=Pz (3) Re(T2)=P3 (4) De(T3)=A (5) De(TJ)=A (6) Zn(A)=Pd

(7) Z?e(Ts)=PS (8) Re(Te)=Pe (9) De(TT)=A (10) De(Ts)=A (11) Zrz(l\)=P~

(12) In(A) = Ps (13) Re(T9) = Ps (14) Re(Trs) = PIO. Let the left-upper (right-bottom)

comer of the above search space be at coordinate (0,O) ((10,lO)). The set of vertex

nodes along the minimal-cost path P(0) is denoted by the left-upper node and the set

of black circles within the banded zone. In Fig. 1, the vertex nodes along the path are

represented by {u(O,O), ~(0, l), u(1,2), u(2,3), . . . , u(10,lO)).

Let T[l..i]=TlT2...Ti and P[l..j]=P,P2 . ..c for l<i<n and l<j<m. Let the

cost table of the edit sequence for changing T[l..i] into P[l..j] be denoted by EDZT[i, j]

= edit(T[1 ..i], P[1 ..j]) with the initial conditions EDZT[O, k] = k and EDZT[k, 0] = k for

1 dk < b. The cost table EDZT[i, j] is defined by EDZT[i,j] = min(EDZT[i - 1, j] +

edit(Ti, A), EDZT[i, j - l] + edit(l\,Pj),EDZT[i - 1, j - l] + edit(Ti,Pj)). Since the

concerned search space is O(nd), the BSSC problem can be solved in O(nd) time.

Suppose the string P(l) = P = PlP2 . . . P, represents the boundary of one object. Two

strings, P(l) and the cyclic string Pci) = PiPi+ . . . P,,,Pl . . . Pi-l, 2 <i <m, are said to be

equivalent since the two strings represent the same boundary. This cyclic consideration

extends the BSSC problem to the BCSSC problem. Since the length of P(l) is m,

there are m cyclic right strings to be considered in the BCSSC problem. In the BCSSC

problem, since we have m BSSC problems to be solved, the time complexity for solving

the BCSSC problem is O(mnd).

3. The proposed algorithm

Let us go back to Fig. 1 where T is changed into P(l), and let us denote P(0) the

minimal-cost path. Suppose the minimal-cost path for changing T into Pc2) is P(1).

From Maes’s results [111, we have the following properties.

278 K.-L. Chungl Theoretical Computer Science 201 (1998) 275-279

Property 1. If the vertex node u(i,j) E P(O), there exists a k 3j such that the vertex

node v(i,k)EP(l).

Property 2. If the vertex node o(i,j) E P(I), there exists a k <j such that the vertex

node u(i, k) E P(0).

From Properties I and 2, we have the following property.

Property 3. Let i, j, k be three nonnegative integers with 0 <i <j <k d m - 1 and let

the minimal-cost paths P(i) and P(k) be noncrossing. Then the minimal-cost path P(j)

lies between P(i) and P(k). That is the path P(i) and P(j) are noncrossing; the path

P(j) and P(k) are also noncrossing.

Property 3 can narrow the search space further and leads to an O(nm logm)-time

algorithm [l I] for solving the CSSC problem.

From Proposition 2.3 in [lo], let the cost of one deletion or one insertion be 1, then

we have the following property.

Property 4. Let the cost of the path P(i) be CUST(P(i)) for Odi <m - 1. If

COST(P(i)) < COST(P(j)), then COST(P(i)) < COST(P(j * 8)) for 0 de <

[(COST(P(j)) - COST(P(i)))/21 - 1.

Property 4 implies that maybe a sub-search space with bandwidth 2 *

[(COST(P(j)) - COST(P(i)))/21 - 1 can be omitted at a time. This leads to an

algorithm for solving the CSSC problem using between O(nm) and O(nm log m) time.

Without loss of generality, we assume that m is a multiple of b, i.e., m = rb, and b

is a power of 2, i.e., b=2’. The proposed algorithm for solving the BCSSC problem

consists of the following three steps.

Step 1: We compute the minimal-cost path P(ib) for changing T into Pcib+‘) for

0 <i <r - 1. It takes O(nb) time to obtain the cost EDIT[n, m + ib] = edit(T, P@+‘)).

Each P(i) can be obtained in O(nd) time. By Property 3, we know that the search

space for finding P(i) and the search space for finding P(j), i # j, are disjoint from

each other, so there are Y paths, P(O), P(b), P(2b), . . . , and P(m - b), to be determined.

The total time required in this stage is O(nm) = O(nbr).

Step 2: Now, the paths P(ib+ l), P(ib+2), . . . , and P(ib+b-1) for O<i,<b-1 are to

be determined. By Property 4 and the result in [lo], for each i, P(ib+ l), P(ib+2), . . . ,

and P(ib + b - 1) can be determined using between O(nb) and O(nbs) time. All the

related paths P(ib + I), P(ib + 2), . . . , and P(ib + b - 1) for 0 < i < r - 1 can therefore

be found using between O(mn) and O(nm log b) = O(nbrs) time.

Step 3: The minimum among these m paths P(O), P(1), P(2), . . . , and P(m - 1) can

be found from EDZT[n,m + j] for 06 j<m - 1 using O(m) time.

In summary, Step 1 takes O(nm) time. The time bound required in Step 2 ranges

from O(mn) to O(nm log b) time. Step 3 takes O(m) time. Combining the three time

bounds, we have the main result.

K.-L. Chungl Theoretical Computer Science 201 (1998) 275-279 219

Theorem 1. The BCSSCproblem can be solved using between O(mn) and O(mn log b)
time.

4. Conclusions

We have presented an algorithm for solving the BCSSC problem. Our result improves

the best-case time complexity of [4] and generalizes the result of Gregor and Thomason

[lo] when setting b = m. Applying the proposed algorithm to generalize the result of

Bunke and Csirik [3] in the care of run length coded strings is our next research issue.

Acknowledgements

The author would like to thank the valuable comments of the anonymous referees.

This research was supported in part by the National Science Council of R.O.C. under

grants NSC87-2213-EOl l-001 and NSC87-2213-EOl l-003.

References

[l] D.H. Ballard, C.M. Brown, Computer Vision, Prentice-Hall, Englewood Cliffs, NJ, 1982, Section 3.4.

[2] H. Bunke, U. Bltihler, Application of approximate string matching to 2D shape recognition, Pattern

Recognition 26 (1993) 1797-1812.

[3] H. Bunke, J. Csirik, An algorithm for matching run-length coded strings, Computing 50 (1993) 297-314.

[4] K.L. Chung, A fast algorithm for stereo matching, Inform. Process. Lett. 61 (1997) 97-99.

[5] M. Crochemore, W. Rytter, Text Algorithms, Ch. 11, Oxford University Press, Oxford, 1994.

[6] K.S. Fu, S.Y. Lu, Size normalization and pattern orientation problems in syntactic clustering, IEEE

Trans. Systems Man Cybemet. 9 (1979) 55-58.

[7] S. Furui, Digital Speech Processing, Synthesis, and Recognition, Section 8.5 Marcel-Dekker, New York,

1989.

[8] J.W. Gorman, O.R. Mitchell, F.P. Kuhl, Partial shape recognition using dynamic programming, IEEE

Trans. on Pattern Anal. Mach. Intell. PAMI- (1988) 257-266.

[9] J. Gregor, M.G. Thomason, Dynamic programming alignment of sequences representing cyclic patterns,

IEEE Trans. Pattern Anal. Mach. Intell. PAMI- (1993) 129-135.

[lo] J. Gregor, M.G. Thomason, Efficient dynamic programming alignment of cyclic strings by shift

elimination, Pattern Recognition 29 (7) (1996) 1179-1185.

[l I] M. Maes, On a cyclic string-to-string correction problem, Inform. Process. Lett. 35 (1990) 73-78.

[12] D. Marr, T. Poggio, Cooperative computation of stereo disparity, Science 194 (1976) 283-287.

[131 Y. Ohta, T. Kanade, Stereo by intra-and inter-scanline search using dynamic programming, IEEE Trans.

Pattern Anal. Mach. Intell. PAMI- (2) (1985) 1399154.

[14] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, J. Assoc. Comput. Mach. 21 (1)

(1974) 168-173.

