NH, —

i3 Pattern Recognition
;ﬁ Letters

ELSEVIER

Pattern Recognition Letters 22 (2001) 373-379
www.elsevier.nl/locate/patrec

An improved search algorithm for vector quantization using
mean pyramid structure

Su-Juan Lin, Kuo-Liang Chung wl Lung-Chun Chang

Department of Information Management, Institute of Computer Science and Information Engineering, National Taiwan University of
Science and Technology, No. 43, Section 4, Keelung Road, Taipei, Taiwan 10672, ROC

Received 14 January 2000; received in revised form 9 August 2000

Abstract

Vector quantization (VQ) is a well-known data compression technique. In the codebook design phase as well as the
encoding phase, given a block represented as a vector, searching the closest codeword in the codebook is a time-
consuming task. Based on the mean pyramid structure and the range search approach, an improved search algorithm
for VQ is presented in this paper. Conceptually, the proposed algorithm has the bandpass filter effect. Each time, using
the derived formula, the search range becomes narrower due to the elimination of some portion of the previous search
range. This reduces search times and improves the previous result by Lee and Chen (A fast search algorithm for vector
quantization using mean pyramids of codewords. IEEE Trans. Commun. 43(2/3/4), (1995) 1697-1702). Some experi-
mental results demonstrate the computational advantage of the proposed algorithm. © 2001 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Vector quantization (VQ) is an important
technique (Gersho and Gray, 1992; Gray and
Neuhoff, 1998) for low-bit-rate image compres-
sion. It can be defined as a mapping function Q
from a k-dimensional Euclidean space R to a finite
subset C of R*:

0:R - C,
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where C={¢|i=1,2,...,N} is the codebook
with size N and each possible mapped codeword
¢; = (ci,ciy- - ycq) in C C R¥ is of k-dimension.
The process of VQ can be divided into three
phases: (1) codebook generation, (2) encoding,
and (3) decoding. Given a large amount of vec-
tors, i.e., blocks, the goal of codebook design is to
build up a codebook C which contains the most
representative codewords, and then this con-
structed codebook will be used by both encoder
and decoder. Many algorithms for optimal
codebook design (Linde et al., 1980; Rose et al.,
1992; Zeger et al., 1992) have been proposed.
Among them, the most popular one was devel-
oped by Linde et al. (1980) and is referred to as
the LBG algorithm. This research focuses on the

0167-8655/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0167-8655(00)00136-7



374 S.-J. Lin et al. | Pattern Recognition Letters 22 (2001) 373-379

encoding phase and then is applied to speed up
the LBG algorithm.

In the encoding phase, the encoder first divides
the image into many square blocks (or vectors)
and each vector is with dimension k(= vk x Vk).
Next, the encoder wants to design a mapping
function @ such that given a vector
x = (x1,x2,...,x), the squared Euclidean distance
between x and the mapped vector Q(x) =c¢; is
smallest:

k
d*(x,c;) = min Z(x,, - c]-n)z.
J n=1

That is, the corresponding distortion is minimal.
Then, the vector x is replaced by the index 7 of ¢;.
Since the number of bits used for representing the
index is always smaller than that of the vector x,
the encoded image is thus compressed. In the de-
coding phase, the decoder has the same codebook
as the encoder. The decoder has index 7 as input
and merely performs a simple table lookup oper-
ation to obtain the decoded codeword c; and then
uses ¢; to reconstruct the input vector x approxi-
mately. This low complexity decompression in VQ
has good computational advantage in comparison
with the other compression techniques requiring
extra computation in the decoding phase. Fig. 1
shows the diagram of VQ.

From the above description, we can see that
there are two major problems in VQ. One is to

generate a representative codebook efficiently. The
other is to reduce the search-time complexity in the
encoding phase. We have mentioned that the LBG
algorithm is the most popular codebook design
algorithm. Basically, the LBG algorithm is an it-
erative process to minimize the overall distortion
for representing the training vectors by their rep-
resentative codewords. The LBG algorithm uses a
full codebook search to find the closest codeword
for each training vector in order to update the
current codeword. A full codebook search is also
used to the encoding phase. It is, however, time-
consuming. For each vector x, a full search
requires N distortion calculations, i.e., squared
Euclidean distance calculations, to find the code-
word in C that is closest to x. These distortion
calculations need Nk multiplications, N(2k — 1)
additions, and N — 1 comparisons. Here, we as-
sume that the time required for computing one
addition is equal to that of one subtraction. In
order to reduce the time bound requirement for
VQ, many efficient search algorithms (Bei and
Gray, 1985; Chang and Lin, 1997; Gray and Lin-
de, 1982; Jo and Kaimal, 1999; Lee and Chen,
1995; Lee and Chen, 1995; Ra and Kim, 1993;
Torres and Huguet, 1994) have been proposed.
Among them, an efficient VQ search algorithm
based on the mean pyramid structure was pre-
sented by Lee and Chen (1995).

Following the same pyramid structure as
in (Lee and Chen, 1995) and the range search
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Fig. 1. VQ diagram.
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approach, an improved search algorithm for VQ is
presented in this paper. Each time, using the de-
rived formula, the search range in the current it-
eration becomes narrower due to the elimination
of some portion of the search range in the previous
iteration. This reduces search times and improves
the previous result by Lee and Chen (1995). The
extra cost in the proposed search algorithm is only
a simple auxiliary data structure. Some real images
are used to carry out the experiments. Experi-
mental results demonstrate the computational
advantage of the proposed algorithm.

The rest of this paper is organized as follows. In
Section 2, we introduce the mean pyramids struc-
ture and the search method by Lee and Chen
(1995). Our proposed search algorithm is pre-
sented in Section 3. In Section 4, some experi-
mental results are presented to show the advantage
of the proposed algorithm. Finally, some conclu-
sions are presented in Section 5.

2. The work of Lee and Chen

Pyramid data structure was originally devel-
oped for image coding by Burt and Adelson
(1983). That structure is also suited for progressive
image transmission. The mean pyramid structure
is shown in Fig. 2. Let the root of the mean pyr-
amid be at level 0. Since each codeword is of size
k = vk x Vk, the depth of one mean pyramid is
[(=log, k). The size of the image I; at level i is

Fig. 2. Mean pyramid structure.

2 x 2 for 0<i< /. In I,_;, the pixel at position

([££Y, [21]) is the mean of the related four pixels in

I; by computing

w5

= [(Li(x,y) + Li(x,y + 1)
+Lhx+1Ly) +Lix+1,y+1))/4]

for x,y=1,3,...,2" — 1, where [f] denotes the
truncation of ¢+ 0.5.

Suppose we have constructed the two mean
pyramids for the vector x and the vector ¢;, re-
spectively. Based on the two mean pyramids, (Lee
and Chen, 1995) proposed an efficient search al-
gorithm for finding the closest codeword in the
codebook. They first derived the following in-
equalities:

a’l2 (x,ci) = 4a’,271 (x,ci) = 42d1272 (x,c)) == 41d§ (x,¢:),
(1)

where d;(x,¢;) denotes the squared Euclidean dis-
tance between the reduced vector x and the re-
duced vector ¢; at level j in the two mean pyramids.
For example, at root level, the reduced vector x (¢;)
denotes the mean value of the original vector x
(c;). That is,

At bottom level, we have d?(x, ¢;) = d*(x,c;).

7_, 7 L2kl k
/mdex 1

codeword

Fig. 3. Mean pyramids of codewords.
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Their algorithm consists of the following the
three steps:

Step 1. Construct the mean pyramids of code-

words. If the codebook size is N, N mean pyra-

mids (see Fig. 3) are constructed. That is, each
codeword in the codebook is associated with
one mean pyramid.

Step 2. Select a codeword ¢, in the codebook to

be the current closest codeword to the input

vector Xx.

2.1 For each input vector x, the mean pyra-
mid of x is constructed and the codeword
¢, with the minimum mean difference from
x is found.

2.2 The distortion d*(x,c,) is calculated and
the current minimum distortion d, is set
to be d*(x,c,).

Step 3. For any other codeword ¢; in the code-

book, it starts from the top level, i.e., level 0, of

the mean pyramid and goes downward to the
bottom level, i.e., level /, if necessary.

3.1 Calculate d; (x, ¢;). Owing to the inequal-
ities (see Eq. (1)), if 4'd2(x,c;) = d2,,, then
479d3 (x,¢;) = dpy, will hold for 1</</.
Thus, codeword ¢; will not be the closest
one and can be rejected. Otherwise, the
squared Euclidean distance at level 1 is calcu-
lated and  checked. Similarly, if
4-1d2 (x,¢;) = d2,, then codeword ¢; can be
rejected; otherwise, the squared Euclidean
distance at level 2 is tested. This comparison
process is repeated until ¢; is rejected or the
bottom level of the mean pyramid for ¢; is

reached.
3.2 If the bottom level is reached, d*(x,c;) is
calculated. Then we check whether @2
should be replaced or not. If d2, is replaced,
then the current closest codeword to x is set

to be c;.

The efficiency of their algorithm (Lee and Chen,
1995) results from rejecting many codewords in the
codebook before the actual squared Euclidean
distances between them and the given vector x are
calculated.

In next section, based on the derived formula,
an improved search algorithm is presented to im-
prove the search algorithm by Lee and Chen
(19995).

3. The proposed improved search algorithm

In our improved algorithm, an auxiliary data
structure (ADS) associated with double links is
build up to point to the mean pyramids of code-
words. The ADS mainly stores the sorted means of
all ¢;’s for 1 <i<<N. It will be used to support the
search process.

With the ADS, we can efficiently find codeword
¢, that has the minimum mean difference from x,
using the well-known binary search method
(Cormen et al., 1990). We can also narrow the
search range for checking whether the squared
Euclidean distance calculations are necessary for
other codewords.

We choose such a codeword ¢, to be the current
closest codeword, and the squared Euclidean dis-
tance between x and ¢, is calculated. Let d*(x,c,)
be the squared Euclidean distance between x and
¢,. Bach codeword in the codebook whose squared
Euclidean distance from x is greater than d*(x,¢,),
will not be a candidate for the closest codeword of
x. As a result, we want to design an efficient search
algorithm to reject these infeasible codewords in
the early stages.

In what follows, the value d*(x,c,) and Eq. (1)
are used to calculate two bounds to narrow the
search space of the remaining feasible candidates
in the codebook for the closest codeword of x.
Suppose the codeword ¢; is a candidate for the
closest codeword of x, then from Eq. (1), it satisfies
the following inequalities:

d*(x, cp) = 4d12_1(x, ¢) = 42d,2_2(x, i)
> > 4d(x, ).

Consider level 0 of the two mean pyramids of x
and ¢;. The mean values of x and ¢;, denoted by
mean, and mean,,, respectively, are stored at level
0. From the above inequalities, taking the leftmost
term and the rightmost term, we have

d*(x,c,) = 4" (mean,, — mean.)’.

The both sides of the above inequality are first
divided by 4/, then we perform the square root
operations on both sides. We thus obtain the fol-
lowing lower bound and the upper bound of the
range if the codeword ¢; is a candidate for the
closest codeword of x (Lin et al., 1999):
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d’ (x, Cp)
4/

dz(xvcp)
4

mean, — <mean,, < meany +

lower bound upper bound

(2)

The result of the two bounds of the range in
Eq. (2) is similar to the method in (Jo and Kaimal,
1999), but the derivation is different.

In general, as the candidates for the closest
codeword of x, the mean values of these candi-
dates must lie between the lower bound and the
upper bound (see Eq. (2)). On the contrary, if
the mean values of those codewords are out of
the range bounded by the lower bound and the
upper bound, they will not be possible candidates
for the closest codeword of x. Eq. (2) works like a
bandpass filter. Before calculating actual squared
Euclidean distances between all the remaining
codewords and the vector x, this filter can quickly
filter out impossible candidates. According to the
experimental results mentioned in Section 4, it is
observed that applying Eq. (2) to the top level
once, the rejection percentage is 72.61-84.16%.
Further, if Eq. (2) is used again at the lower levels
for the candidate codewords, the rejection per-
centage improves by only 1-3%. Therefore,
throughout the paper, we only apply Eq. (2) to the
top level once.

Since each codeword is associated with a mean
pyramid, totally we have N mean pyramids for the
N codewords. We then take the N means at the top
levels of these N mean pyramids. Further, these N
means are sorted and the sorted N mean values are
stored in ADS as shown in Fig. 4. In the ADS,
each entry in the array has a double-link mecha-

lower bound

codebook sorted means
y L 2 klk T
index [ | . —— index | |
7
: - AmmZ

ci

j. ‘ . i. e
R - : i ///
N » — N 77
% rejected area

Fig. 4. The codebook and the ADS.

upper bound

codeword

nism (Cormen et al., 1990) to access from the
codebook to ADS, or vice verse.

When compared to the memory required to
store those N mean pyramids, the memory re-
quired for ADS is infinitesimal since it needs only
O(N) memory. Based on the proposed ADS and
Eq. (2), our formal search algorithm is listed be-
low:

Step 1. Construct the mean pyramids of code-

words.

1.1 Sort the N means at the top levels of
those N mean pyramids and store the sorted
N means in the ADS.

Step 2. For each input vector x, the mean pyra-

mid of x is constructed.

2.1 Perform binary search on array to find
the codeword ¢, in the ADS with the mini-
mum mean difference from x. The distortion
d*(x,c,) is evaluated and the current mini-
mum distortion d?2,, is set to be d*(x,c,).

2.2 Calculate the lower bound /low, =

mean, — +/d?*(x,c,)/4' and the upper bound
up, = mean, + +/d*(x,c,)/4'. With the help
of performing binary search twice, we can
locate low, and up,. Using the double-link
mechanism in the ADS, all the feasible
candidates in the codebook for the closest
codeword of x can be determined.
Step 3. For any other codeword ¢; whose mean,
i.e., mean,,, is within the range low, and up,, we
start from level 1 of the mean pyramid and go
downward to the bottom level if necessary.
The rest of this step is the same as Step 3 of
the previous algorithm described in Section 2.

4. Experimental results

Some real 512 x 512 gray-level images were
used to evaluate the performance of the full search
(FS) method, Lee and Chen’s search method in
(Lee and Chen, 1995), and our proposed method.
The three methods were implemented using a
Pentium PC with 300 MHz. Two types of experi-
ments are carried out to compare the three meth-
ods thoroughly.

In the first type of experiment, we used Lena
image as the training set for codebook design. The
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algorithm of codebook design used is the LBG
algorithm (Linde et al., 1980), but the search
methods within the LBG algorithm are the FS
method, Lee and Chen’s method, and our pro-
posed method, respectively. The improvement ra-
tio of the execution time required in the proposed
method over the FS method and Lee and Chen’s
method are denoted by

respectively. Table 1 illustrates the related perfor-
mance comparison among the three methods,
where the time unit is second denoted by ‘sec’.
Here Tgs, Tjg, and T,y denote the execution time
required in the FS method, Lee and Chen’s
method, and our proposed method, respectively.
In the second type of experiments, after gener-
ating a codebook from Lena image, four images,

Trs — Tours Lena, F-16, Pepper, and Baboon, were used to
J— 0 . . .
Ry = T T x 100% calculate the average execution time for encoding
and each image. The improvement ratio of the average
T T execution time required in the proposed method
Ry = L Tous o 100%, over the FS method and Lee and Chen’s method
Ty are denoted by
Table 1
Comparison of execution time for codebook design
Block size Codebook size Trs (s) Tig) (8) Tours (8) Ry (%) R,y (%)
2 x 2 128 645 223 95 85.27 57.40
256 1301 502 191 85.32 61.95
512 2517 837 270 89.27 67.74
1024 5340 1805 524 90.19 70.97
4 x4 128 674 178 93 86.20 47.75
256 1344 330 160 88.09 51.51
512 2675 674 284 89.38 57.86
1024 5479 1225 509 90.70 58.44
8 x 8 128 700 111 92 86.85 17.11
256 1382 156 133 90.37 14.74
512 3669 361 303 91.74 16.06
1024 5443 492 379 93.03 22.96
Table 2
Comparison of average execution time for encoding each image
Block size Codebook size Trs (s) Tig) (s) Tours (8) Ry (%) Ry (%)
2 x2 128 210 91 45 78.57 50.55
256 425 205 88 79.29 57.07
512 860 326 137 84.41 57.98
1024 1747 731 259 85.17 64.57
4 x4 128 221 72 41 81.44 43.05
256 441 136 74 83.21 45.58
512 879 260 133 84.86 48.84
1024 1768 506 251 85.80 50.39
8§ x 8 128 219 41 37 83.15 9.76
256 444 76 67 84.90 11.84
512 870 140 128 85.28 8.57
1024 1776 274 241 86.43 12.04
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Trs — Tur
Ry =50 L 100%
Trs
and
T - Tours
Ry = 20 5 100%,
Ty

respectively. Table 2 illustrates the related perfor-
mance comparison among the three methods. It is
observed that our proposed method outperforms
the FS method and the method by Lee and Chen.
Finally, as can be seen from Tables 1 and 2, the
larger the codebook size is, the better the im-
provement ratio is.

5. Conclusion

The improved search algorithm for VQ has
been presented and some experiments have been
carried out to confirm the computational advan-
tage of the proposed method when compared to
the previous method (Lee and Chen, 1995). In fact,
the results of this paper can be applied to motion
estimation in video coding (Lee and Chen, 1997).
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