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Demosaicing of Color Filter Array Captured Images
Using Gradient Edge Detection Masks and

Adaptive Heterogeneity-Projection
Kuo-Liang Chung, Senior Member, IEEE, Wei-Jen Yang, Wen-Ming Yan, and Chung-Chou Wang

Abstract—Without demosaicing processing, this paper first pro-
poses a new approach to extract more accurate gradient/edge infor-
mation on mosaic images directly. Next, based on spectral-spatial
correlation, a novel adaptive heterogeneity-projection with proper
mask size for each pixel is presented. Combining the extracted gra-
dient/edge information and the adaptive heterogeneity-projection
values, a new edge-sensing demosaicing algorithm is presented.
Based on 24 popular testing images, experimental results demon-
strated that our proposed high-quality demosaicing algorithm has
the best image quality performance when compared with several
recently published algorithms.

Index Terms—Adaptive heterogeneity projection, color filter
array (CFA), color peak signal-to-noise ratio (CPSNR), demo-
saicing algorithm, digital cameras, luminance estimation, mosaic
images, sobel operator.

I. INTRODUCTION

R ECENTLY, digital cameras have become more and more
popular in consumer electronics market. In order to

economize the hardware cost, instead of using three sensors,
most digital cameras capture a color image with a signal sensor
imaging pipeline [32] based on the well-known Bayer CFA [3],
where each pixel in the captured image has only one measured
color and this kind of images is called mosaic images. Fig. 1
depicts the Bayer CFA structure. Because (green) color
channel is the most important factor to determine the luminance
of the color image, half of the pixels in Bayer CFA structure
are assigned to channel. (red) and (blue) color channels,
which share the other half pixels in the Bayer CFA structure,
are considered as the chrominance signals.

In order to recover the full color image from the input mosaic
image, the demosaicing process is used to estimate the other two
color channels for each pixel [15], [20]. Bilinear interpolation
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Fig. 1. Bayer CFA structure.

(BI) [38] is the simplest demosaicing algorithm in which the
unknown two color channels of each pixel are obtained by aver-
aging its proper adjacent pixels. In [8], Cok presented a smooth
hue transition-based demosaicing algorithm. In [12], Freeman
presented a median filter-based demosaicing algorithm. Based
on the single color gradient, Laroche and Prescott [23] presented
an edge preservation-based demosaicing algorithm. Based on
the gradient evaluation and a specific threshold, Hibbard [17]
presented a threshold-based demosaicing algorithm. Based on
the adaptive color plane, Adams and Hamilton [1] presented
an efficient demosaicing algorithm to modify the previous algo-
rithms [17], [23]. In [21], Kimmel presented a color difference-
based demosaicing algorithm by using the template matching
technique. In [14], Gunturk et al. presented an efficient demo-
saicing algorithm by using alternating projections. Based on
steerable wavelet decomposition, Hel-Or and Keren [16] pre-
sented an efficient demosaicing algorithm by using the direc-
tional smoothing technique. Based on color correlation con-
cept, Pei and Tam [37] presented an efficient demosaicing al-
gorithm. In [26], Lu and Tan presented an efficient demosaicing
algorithm based on exploiting spatial and spectral correlations
among adjacent pixels and they also presented a quality mea-
sure. Based on primary-consistent soft-decision framework, Wu
and Zhang [45] presented a multiple estimation to estimate un-
known color values according to different edge directions. In
[29], Lukac and Plataniotis presented an efficient demosaicing
algorithm by using normalized color-ratios. Based on optimal
recovery interpolation of grayscale images, Muresan and Parks
[36] presented an improved edge-directed demosaicing algo-
rithm. In [18], Hirakawa and Parks presented an adaptive ho-
mogeneity-directed demosaicing algorithm. Based on projec-
tion-onto-convex-set approach, Li [25] presented the first iter-
ative demosaicing algorithm. In [9], Dubois presented a novel
demosaicing algorithm based on frequency-domain representa-
tion. In [22], Lai and Liaw presented an modified mean-removed
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vector quantization algorithm to improve the image quality per-
formance of the previous algorithm by Pei and Tam [37]. Based
on the linear minimum mean square-error estimation technique,
Zhang and Wu [46] presented a new color demosaicing algo-
rithm. Based on concepts of edge-sensing and correlation-cor-
rection, Lukac et al. [34] presented a new efficient CFA inter-
polation framework. Su [40] presented an improved iterative
demosaicing algorithm using weighted-edge and color-differ-
ence interpolations. Based on the spatial correlation and the
edge-directional information of the neighboring pixels, Lee et
al. [24] presented a weighted edge-sensing demosaicing algo-
rithm. In [5], Chung and Chan presented an adaptive demo-
saicing algorithm by using the variances of color differences
along horizontal and vertical edge directions. Currently, based
on the th-order directional finite derivative of spectral-special
correlation, empirically , Tsai and Song [44] presented
a lined-based demosaicing algorithm and their algorithm has
the best image quality performance in average when compared
with all other existing demosaicing algorithms. In addition, the
edge-sensing concept used and the obtained edge-directional in-
formation in these developed demosaicing algorithms are very
helpful to handle the digital zooming issue on CFA model [6],
[28], [30], [31], [47].

After examining most of all these previously published
demosaicing algorithms and registered patents, we find that
the quality of demosaiced images is heavily dependent on
the extracted gradient/edge information from input mosaic
images, but usually the extracted gradient/edge information
on mosaic images is not so accurate. Since each pixel in the
mosaic image only has one color channel, the previous color
edge detectors [4], [10], [11], [41]–[43], [48] cannot work well
on mosaic images directly. The motivations of this research are
threefold: 1) developing a new approach to extract more accu-
rate gradient/edge information on mosaic images directly; 2)
developing a new approach to determine the adaptive mask size
for each pixel in the heterogeneity-projection; 3) developing a
new high-quality edge-sensing demosaicing algorithm based on
the more accurate gradient/edge information and the adaptive
heterogeneity-projection values. The above three motivations
lead to the three main contributions of this paper.

In this paper, without demosaicing processing, a new ap-
proach to extract more accurate gradient/edge information
on mosaic images directly is first proposed. Next, based on
spectral-spatial correlation [44], a novel adaptive hetero-
geneity-projection with proper mask size for each pixel is
presented. Combining the extracted gradient/edge information
and the adaptive heterogeneity-projection values, we present a
new high-quality edge-sensing demosaicing algorithm. Based
on 24 popular testing images, experimental results demon-
strated that our proposed new demosaicing algorithm has the
best quality performance when compared with current pub-
lished seven demosaicing algorithms by Pei and Tam [37], Lu
and Tan [26], Lukac and Plataniotis [29], Dubois [9], Lukac
et al. [34], Chung and Chan [5], and Tsai and Song [44].

The remainder of this paper is organized as follows. In Sec-
tion II, a new approach to extract more accurate gradient/edge
information on mosaic images is presented. In Section III, a
novel adaptive heterogeneity-projection with proper mask size

Fig. 2. The 3� 3 single symmetric convolution mask.

for each pixel is first presented and then combining the extracted
gradient/edge information and the adaptive heterogeneity-pro-
jection values, our proposed new edge-sensing demosaicing al-
gorithm is presented. In Section IV, some experimental results
are carried out to illustrate the quality advantage of our proposed
demosaicing algorithm when compared with several recently
published algorithms. Finally, some conclusions are addressed
in Section V.

II. NEW APPROACH TO EXTRACT MORE ACCURATE GRADIENT

INFORMATION ON MOSAIC IMAGES

This section presents a new approach to extract more accu-
rate gradient information on mosaic images directly. In what
follows, the luminance estimation technique [2] for mosaic im-
ages is first introduced. Then, combining the luminance estima-
tion technique and Sobel operator [13], our proposed new ap-
proach to extract more gradient information on mosaic images
is presented. The extracted gradient information will be used in
our proposed edge-sensing demosaicing algorithm described in
Section III and it could lead to a high-quality advantage.

A. Luminance Estimation Technique for Mosaic Images

In this subsection, the luminance estimation technique for
mosaic images is introduced. In the discussions hereafter, the
luminance is defined as and the lumi-
nance of the pixel located at position is denoted by ;
the , and color pixels located at position of the mo-
saic image are denoted by , and , re-
spectively; for a demosaiced full color image, suppose the ,
and color values of the pixel at position are denoted by

, and , respectively, where denotes
the vertical axis and denotes the horizontal axis (see Fig. 1).

In the luminance estimation technique, a 3 3 single sym-
metric convolution mask as shown in Fig. 2 is used to estimate
the luminance of the pixel at in the mosaic image. Within
a small smooth region of the mosaic image, the color values of

, and components approach three different constants,
i.e., , and . The
four possible cases of the 3 3 mosaic subimage are illustrated
in Fig. 3(a)–(d), respectively. Because of the symmetry of the
3 3 mask in Fig. 2, only Case 1 and Case 2 need to be con-
sidered. First, each channel of Case 1 and Case 2 is consid-
ered. After running the mask of Fig. 2 on the two 3 3 mosaic
subimages of Fig. 3(a) and (b), we have . By the
same argument, for the channel, we have . For
normalizing the sum of the nine coefficients in the mask, we let

. From , and ,
we have the following three equations:

(1)
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Fig. 3. Four possible cases of 3� 3 mosaic subimages. (a) Case 1. (b) Case 2.
(c) Case 3. (d) Case 4.

Fig. 4. The 3� 3 luminance estimation mask.

After solving (1), it yields , and
. Thus, the luminance estimation mask can be determined

and it is shown in Fig. 4. After running the luminance estima-
tion mask of Fig. 4 on the 3 3 mosaic subimage centered at
position , the luminance can be obtained by

(2)

where

In the next subsection, the proposed approach to extract more
accurate gradient information on mosaic images by combining
the Sobel operator and the luminance estimation technique will
be presented.

B. Proposed Approach to Extract More Accurate Gradient
Information on Mosaic Images

In this subsection, combining the Sobel operator [13] and the
luminance estimation technique mentioned above, our proposed

Fig. 5. The 3� 3 Sobel operator. (a) The horizontal mask. (b) The vertical
mask. (c) The �����-diagonal mask. (d) The ������-diagonal mask.

new approach to extract more accurate gradient information on
mosaic images is presented.

Before presenting the proposed new approach, for complete-
ness, how to use the Sobel operator to extract the gradient in-
formation on the luminance map is first introduced. Fig. 5 illus-
trates the four masks used in the 3 3 Sobel operator for the
luminance map.

Given a luminance map, it is known that the luminance
of the pixel located at position is denoted by .
After running Sobel horizontal, vertical, -diagonal, and

-diagonal masks as shown in Fig. 5 on the 3 3 lu-
minance submap centered at position , the horizontal
response , the vertical response , the

-diagonal response , and the -diag-
onal response can be calculated by (3), shown
at the bottom of the page.

In order to make Sobel operator workable on mosaic im-
ages to extract more accurate gradient information, the lumi-
nance estimation technique could be embedded into the Sobel
operator. Combining (2) and (3), our proposed new approach
to extract more accurate gradient information on mosaic im-
ages directly can be followed (detailed derivations are shown in
Appendix I). According to Appendix I, the derived Sobel-and
luminance estimation-based (SL-based) quad-mask can be ob-
tained. For saving computational effort, the coefficients in the
derived quad-mask can be normalized to integers, and the four
normalized SL-based quad-masks are shown in Fig. 6.

After running the above four SL-based mask on the 5 5
mosaic subimage centered at position , the horizontal
response , the vertical response , the

-diagonal response , and the -di-
agonal response can be obtained. In addition,
experimental results show that the proposed approach to ex-
tract gradient information on mosaic images directly has better

(3)
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Fig. 6. Four SL-based masks. (a) The horizontal SL-based mask. (b) The
vertical SL-based mask. (c) The �����-diagonal SL-based mask. (d) The
������-diagonal SL-based mask.

performance and the average execution-time improvement ratio
is 17.8% % when com-
pared with the indirect approach: first apply the bilinear demo-
saicing process to the input mosaic image; next convert the de-
mosaiced full color image to the luminance map, and then the
Sobel edge detector is run on the obtained luminance map [35].

Note that besides our proposed approach and the indirect
approach mentioned above, we now briefly introduce the third
approach in [7]: first, plug the bilinear interpolation technique
[38] into the Sobel operator to derive two quad-mask for
the channel, four quad-mask for channel, and the same
four mask-pairs for channel. Next, run the above proper
mask-pairs on the 5 5 mosaic subimage to compute the gra-
dient response of the corresponding color channel. Further, let
the four gradient responses of , and channels are denoted
by , and for ,
respectively. Finally, combine , and gradient responses
to obtain the integrated gradient responses by using the
equation: for

. For convenience, the demosaicing
algorithm based on the third approach is called the Sobel-
and interpolation-based (SI-based) demosaicing algorithm.
Experimental results show that the average image quality per-
formance, color peak signal-to-noise ratio (CPSNR) and ,
of the SI-based demosaicing algorithm could be improved by

% dB dB dB %
and % % , re-
spectively, when compared with the proposed demosaicing
algorithm in this paper. However, the average time performance
of the SI-based demosaicing algorithm would be degraded

% % . Since the av-
erage image quality performance improvement of the SI-based
demosaicing algorithm over our proposed algorithm is neg-
ligible but the degraded time performance is moderate, thus,
our proposed SL-based operator described in this section is the
better choice for handling the edge-sensing process which will
be used in our proposed demosaicing algorithm described in
next section.

III. PROPOSED NEW EDGE-SENSING

DEMOSAICING ALGORITHM

Based on the accurate gradient information obtained in last
section, this section presents our proposed new high-quality
edge-sensing demosaicing algorithm. Our proposed novel
adaptive heterogeneity-projection with proper mask size for
each pixel is first presented in Section III-A to extract more
accurate horizontal and vertical heterogeneity-projection value.

Based on the two obtained heterogeneity-projection values and
those obtained gradient information mentioned in Section II,
the proposed new edge-sensing interpolation estimation is
presented. The proposed interpolation estimation consists of
two steps, the first step for channel and the second step for
and channels.

A. Novel Adaptive Heterogeneity-Projection for Mosaic
Images

In this subsection, a novel adaptive heterogeneity-projection
with proper mask size for each pixel is presented. Given an
original mosaic image , its horizontal heterogeneity-projec-
tion map and vertical heterogeneity-projection map

can be obtained by running the following two 1-D
Laplacian operations [44]

(4)

where ( empirically [44]) denotes the vector length (or
the 1-D mask size);
denotes a coefficient matrix;

denotes a
coefficient vector; denotes an identity ma-
trix; the symbol “ ” denotes the 2-D convolution operator;

denotes the absolute value operator and the operator “ ”
denotes the transpose operator. In what follows, our approach
can determine the suitable value of adaptively.

Let us examine some cases of the current pixel on the mosaic
image. If the surrounding region of the current pixel is homoge-
nous, the two responses by (4) are almost the same whether a
large mask size or small mask size is adopted. If there is one tiny
horizontal edge passing through the current pixel, a small mask
size for is enough rather than a large mask size. It
still holds for the tiny vertical edge corresponding to .
In [44], the adopted mask size is fixed and is set to .
According to the above discussion, we now present our pro-
posed adaptive heterogeneity-projection with proper mask size
for each pixel such that the used mask size is as small as pos-
sible and the computed responses are more accurate than those
computed by the mask with size 11. Experimental results reveal
that our proposed adaptive heterogeneity-projection approach
under proper horizontal and vertical mask sizes has the compu-
tation-saving and more accurate advantages.

We utilize the horizontal spectral-spatial correlation (SSC)
[44] between the current pixel at location and its neigh-
boring pixel at location to determine the proper hor-
izontal mask size , and the proper vertical mask size

is determined by the vertical SSC between the cur-
rent pixel and its neighboring pixel at location . For a
horizontal SSC map, the horizontal SSC value at location
can be obtained by using the following rule, shown in the first
equation at the bottom of the next page. Similarly, the vertical
SSC value at location can be obtained by using the fol-
lowing rule, shown in the second equation at the bottom of the
next page. The horizontal SSC map and the vertical SSC map of
the mosaic Lighthouse image are illustrated in Fig. 7(a) and (b),
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Fig. 7. Two SSC maps of the mosaic Lighthouse image. (a) The horizontal SSC
map. (b) The vertical SSC map (in order to show the images more clear, the gray
value 80 is used to represent the value 0).

Fig. 8. Depiction of our proposed approach to determine the proper horizontal
mask size � ��� ��.

respectively, and it is observed that the SSC values are locally
constant in homogeneous regions.

Because the determination of the proper horizontal mask size
is the same as that for the vertical mask size ,

we thus only focus on the determination of horizontal mask size.
Fig. 8 depicts our proposed approach to determine the proper
horizontal mask size . Centered at location , Fig. 8
illustrates a 1 11 row data extracted from the horizontal SSC
map. The procedure to determine the proper horizontal mask
size consists of the following three steps.

Step 1) Initially, we compute the two SSC values
and , and temporarily set

, and .
Step 2) If the condition holds, output

and stop. Here, the maximal horizontal
mask size is bounded by eleven. Otherwise, go to
Step 3.

Step 3) Examine whether the neighboring horizontal SSC
values are locally chosen by using the following
testing condition:

where

, and determination of the
threshold is discussed in Appendix II. If
the above testing condition holds, output the
value of as the proper horizontal mask
size and stop. Otherwise, perform the operation

, and
, and then go to Step 2.

The above three-step procedure can be easily applied
to determine the proper horizontal mask size. In order to
normalize the masks for different sizes, the normal factor

is used to normalize the coefficients of the mask.
In other words, instead of using , we
use to obtain the normalized
heterogeneity-projection map. The value of is defined as
the sum of the positive coefficients in the mask. For example, if

, the mask , can
be normalized to .

Finally, in order to reduce the estimation error, we use
the local mean to tune the heterogeneity-projection maps.
For , the horizontal heterogeneity-projection
value at location is denoted by and for

denotes the vertical heterogeneity-pro-
jection value at location . The tuned horizontal hetero-
geneity-projection value and the tuned vertical
heterogeneity-projection value can be computed by
the following operations:

where if , otherwise.
After performing the above adaptive hetero-

geneity-projection for mosaic images, the values
and can be obtained for each

mosaic pixel. In next two subsections, the six responses
,

and will be used in our proposed new
edge-sensing interpolation estimation for demosaicing mosaic
images.
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Fig. 9. Data dependence of our proposed interpolation estimation for �
channel. (a) Horizontal variation (vertical edge). (b) Vertical variation (hori-
zontal edge). (c) The other variations.

B. Edge-Sensing Interpolation Estimation for G Channel

In this subsection, we present the proposed high-quality
edge-sensing interpolation estimation for G channel. For ex-
position, let us take Fig. 1 to explain how to estimate the G
channel value located at the center position of Fig. 1. Before
performing the interpolation estimation for G channel, as-
sume the gradient information of the current mosaic pixel at
position and the eight neighboring pixels at positions

have been extracted by using our proposed method described
in last section, and the extracted nine horizontal gradient mag-
nitudes and nine vertical gradient magnitudes are denoted by

and , respectively.
According to the tuned horizontal heterogeneity-projection

value and the tuned vertical heterogeneity-projection
value of the current mosaic pixel at position , the
interpolation estimation scheme in our proposed edge-sensing
demosaicing algorithm considers three cases, namely 1) hori-
zontal variation as shown in Fig. 9(a), 2) vertical variation as
shown in Fig. 9(b), and 3) the other variations as shown in
Fig. 9(c). The arrows in Fig. 9 denote the data dependence.

In addition, in order to estimate more accurately
from its four neighbors, four proper weights in terms of
gradient information are assigned to corresponding four
spectral-correlation terms in the interpolation estimation.
Considering the neighboring pixel located at location

, if there is a horizontal edge passing through it, i.e.,
the vertical gradient magnitude of the pixel at location

is large, the color difference assumption [26], [37]
reveals that the green component of this pixel makes less
contribution to the estimation of green component for the
current pixel at location ; otherwise, the green component
of this pixel makes more contribution to the estimation of
green component for the current pixel. On the other hand, if
the gradient magnitudes of the pixels at location and

are large, the pixel at location is located in a
nonhomogeneous region and we claim that the pixel at location

makes less green contribution to the estimation of

green component for the current mosaic pixel at location ;
otherwise, the pixel at location is located in a
homogeneous region and we claim that the pixel at location

makes more green contribution to the estimation of
green component for the current mosaic pixel. Combining the
above analysis of gradient and direction effects, the weight of
pixel at location can be given by

.
Following the similar discussion, the weights of the four
neighbors of the current pixel are expressed by

, and
where if

, otherwise. The determination of the parameter is
discussed in Appendix II.

According to the above description, the value of
of the current pixel at location can be estimated by
the rules, shown in the equation at the bottom of the
page, where for

; for

; the determination
of the parameter is discussed in Appendix II.

After performing the above edge-sensing interpolation esti-
mation for G channel, the G channel of the demosaiced image
is fully populated. In next subsection, the fully populated G
channel of the image will be used to assist the interpolation of
R and B channels.

C. Edge-Sensing Interpolation Estimation for and
Channels

Because the number of pixels or pixels is less than
in the mosaic image, the interpolation estimation for and
channels should be partitioned into two steps: 1) estimating the
red values at blue pixels, and vice versa; 2) then, recovering
missing red and blue values at green pixels. Because the interpo-
lation estimation for channel is the same as it for channel,
we thus only present it for channel. In our proposed interpo-
lation estimation for and channels, the fully populated
channel is used to assist the interpolation of and channels.
For convenience, we still use Fig. 1 to explain how to estimate
the channel value for the current pixel at position .

Similar to the interpolation estimation for channel, assume
the gradient information of the current mosaic pixel at position

and the eight pixels at positions
, respectively, have been extracted

by using our proposed method. By the same argument, in order
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to estimate more accurately from its four red neigh-
bors, four proper weights in terms of gradient/direction informa-
tion are assigned to the corresponding four spectral-correlation
terms in the interpolation estimation. For estimating ,
we consider four diagonal variations of the mosaic pixel at po-
sition to determine the four weights which will be used
in the proposed edge-sensing estimation of . Consid-
ering the neighboring pixel at location , if there
is a -diagonal edge passing through it, i.e., the -diag-
onal gradient magnitude of the pixel at location
is large, and then it claims that the red component of this pixel
makes less contribution to the estimation of red component for
the current pixel at location ; otherwise, it claims that the
red component of this pixel makes more contribution to the esti-
mation of red component for the current pixel. On the contrary,
if the gradient magnitudes of the pixel at location
and are large, i.e., the pixel at location is
inside nonhomogeneous region, the color difference assumption
indicates that the red component of this pixel makes less contri-
bution to the estimation of red component for the current pixel at
location ; otherwise, the red component of this pixel makes
more contribution to the estimation of red component for the
current pixel. Following the above analysis, the weights of the
four diagonal red neighbors of the current pixel can be expressed
by

, and
where if , otherwise. Based on

the four weights obtained above and the color difference con-
cept, the demosaiced full red color for the blue pixel in the mo-
saic image, , can be estimated by

where ; for
.

After describing how to estimate demosaiced full red
colors for those blue pixels in the mosaic image, we now
introduce how to estimate full red colors for those green
pixels. Fig. 10 illustrates the pattern of channel. Referring
to Fig. 10, the full red color for the green pixel, ,
can be estimated by the rules, shown at the bottom of the
page, where for , we perform

. If , we set ;
otherwise, we set . We further perform

Fig. 10. Patterns of the � channel.

Fig. 11. Twenty-four testing images from Kodak PhotoCD [49].

, and
.

After presenting our proposed new edge-sensing demosaicing
algorithm, experimental results in next section will illustrate
the quality advantage of our proposed new edge-sensing demo-
saicing algorithm.

IV. EXPERIMENTAL RESULTS

In this section, based on 24 popular testing mosaic images,
some experimental results are demonstrated to show that
our proposed new demosaicing algorithm has better image
quality performance when compared with the previous seven
algorithms by Pei and Tam [37], Lu and Tan [26], Lukac and
Plataniotis [29], Dubois [9], Lukac et al. [34], Chung and Chan
[5], and Tsai and Song [44], respectively. The concerned algo-
rithms are implemented on the IBM compatible computer with
Intel Core 2 Duo CPU 1.6 GHz and 1-GB RAM. The operating
system used is MS-Windows XP and the program developing
environment is Borland C++ Builder 6.0. Our program has
been uploaded in [50].

Fig. 11 illustrates the 24 testing images from Kodak PhotoCD
[49]. In our experiments, the 24 testing images shown in Fig. 11
are first down-sampled to obtain the mosaic images. Further-
more, the boundaries of the image are dealt with using the mir-
roring method. Here, we adopt two objective image quality mea-
sures, CPSNR and S-CIELAB metric [19], [26], and one
subjective image quality measure, color artifacts, to justify the
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TABLE I
CPSNR QUALITY COMPARISON FOR 24 TESTING IMAGES

better quality performance of our proposed novel demosaicing
algorithm. The CPSNR of a color image with size X Y is de-
fined by

where , and denote
the three color components of the pixel at location in the
original full color image; , and de-
note the three color components of the pixel at location in
the demosaiced image. The S-CIELAB of a color image
with size X Y is defined by

where , and
denote the three CIELAB color components

of the pixel at location in the original full color image;
, and denote the three

CIELAB color components of the pixel at location in the
demosaiced image.

For fairness, among the eight concerned demosaicing algo-
rithms, the three existing algorithms [5], [9], [34] still apply
their own refinement schemes; the other four existing algo-
rithms [26], [29], [37], [44] and our proposed algorithm utilize
the postprocessing approach by Lukac et al. [27] to enhance
the demosaiced image quality. Based on 24 testing mosaic
images, Tables I and II demonstrate the demosaiced image
quality comparison in terms of CPSNR and S-CIELAB

among our proposed algorithm and the other seven demosaicing
algorithms, respectively. In Tables I and II, the entries with
the best CPSNR or the least are highlighted by bold
black. It is observed that in average, our proposed demosaicing
algorithm has the best demosaiced image quality in terms of
CPSNR and .

Next, we adopt the subjective image visual measure, color
artifacts, to demonstrate the quality advantage of our proposed
demosaicing algorithm. After performing the demosaicing pro-
cessing, some degree of color artifacts may happen on edges
or textures of the demosaiced image. We first take the mag-
nified subimages cut from the testing image No. 19 as shown
in Fig. 12 to compare the visual effect among the concerned
eight algorithms. Fig. 12(a)–(i) illustrates the nine magnified
subimages cut from the original testing image No. 19, the de-
mosaiced image obtained by Pei and Tam’s demosaicing algo-
rithm, the one obtained by Lu and Tan’s demosaicing algorithm,
the one obtained by Lukac and Plataniotis’ algorithm, the one
obtained by Dubois’ demosaicing algorithm, the one obtained
by Lukac et al.’s algorithm, the one obtained by Chung and
Chan’s algorithm, the one obtained by Tsai and Song’s demo-
saicing algorithm, and the one obtained by our proposed demo-
saicing algorithm, respectively. Comparing the visual effect be-
tween the original full color image and the one in Fig. 12(b)–(i),
it is observed that our proposed demosaicing algorithm creates
less color artifacts when compared with the other seven demo-
saicing algorithms. Then, we take the magnified subimages cut
from the testing image No. 8 to depict the visual comparison.
Fig. 13(a)–(i) illustrates the magnified subimages cut from the
original full color testing image No. 8 and the eight demosaiced
images. From visual comparison, it is observed that our pro-
posed demosaicing algorithm produces less color artifacts when
compared with the other seven demosaicing algorithms.

Furthermore, the average execution-time of the eight con-
cerned demosaicing algorithms for the 24 testing mosaic images
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TABLE II
S-CIELAB �� QUALITY COMPARISON FOR 24 TESTING IMAGES

Fig. 12. Magnified subimages cut from the testing image No. 19. (a) Original
full color image and the demosaiced images obtained from (b) Pei and Tam’s
algorithm. (c) Lu and Tan’s algorithm. (d) Lukac and Plataniotis’ algorithm.
(e) Dubois’ algorithm. (f) Lukac et al.’s algorithm. (g) Chung and Chan’s algo-
rithm. (h) Tsai and Song’s algorithm. (i) Our proposed algorithm.

are shown in Table III. It is observed that the average execu-
tion-time of our proposed demosaicing algorithm is moderate
when compared with the other seven algorithms. However, our
proposed algorithm has the best demosaiced image quality per-
formance among the eight algorithms.

Finally, in order to demonstrate the advantage of our pro-
posed adaptive heterogeneity-projection, the mask-use ratio

Fig. 13. Magnified subimages cut from the testing image No. 8. (a) Original
full color image and the demosaiced images obtained from (b) Pei and Tam’s
algorithm. (c) Lu and Tan’s algorithm. (d) Lukac and Plataniotis’ algorithm.
(e) Dubois’ algorithm. (f) Lukac et al.’s algorithm. (g) Chung and Chan’s algo-
rithm. (h) Tsai and Song’s algorithm. (i) Our proposed algorithm.

for demosaicing a mosaic image with size X Y is
defined as % where denotes the
number of times which the mask with size is adopted during
the demosaicing processing. Based on 24 testing mosaic im-
ages, in average, the four mask-use ratios for in
are % % %, and
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TABLE III
AVERAGE EXECUTION-TIME OF EIGHT DEMOSAICING ALGORITHMS FOR 24 TESTING MOSAIC IMAGES

%, respectively. According to the above statis-
tical data, could be set for about % cases, but for the
other % cases, smaller mask sizes could be more suitable for
obtaining the heterogeneity-projection values.

V. CONCLUSION

Without demosaicing processing, this paper first proposes a
new approach to extract more accurate gradient/edge informa-
tion on mosaic images directly. Next, based on spectral-spatial
correlation [44], a novel adaptive heterogeneity-projection with
proper mask size for each pixel is presented. Combining the
extracted gradient/edge information and the adaptive hetero-
geneity-projection values, a new edge-sensing demosaicing
algorithm is presented. Some experimental results have been
carried out to demonstrate the quality advantage in terms
of CPSNR and S-CIELAB of our proposed new de-
mosaicing algorithm when compared with several recently
published algorithms.

Besides combining the bilinear interpolation and the edge de-
tection, it is an interesting research issue to replace the bilinear
solution with another more accurate method, e.g., nonlinear so-
lution, to have better gain of both edge-detection and demo-
saicing performance.

APPENDIX

DERIVATION OF THE SL-BASED QUAD-MASK

Combining (2) and (3), the four masks used to extract more
accurate color gradient information on mosaic images directly
can be obtained by the following derivation:

APPENDIX

DETERMINATION OF THRESHOLD AND PARAMETERS AND

Since the image quality performance of our proposed demo-
saicing algorithm is influenced by the threshold and parame-
ters and , how to select the best choices of , and should
be discussed. When , our experiments reveal that the
CPSNR surfaces and the S-CIELAB surfaces are quite
similar to Fig. 14(a) and (b), respectively. Based on the peak of
Fig. 14(a) and the valley of Fig. 14(b), the best choices of and

are selected as and . After determining the
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Fig. 14. Two demosaiced image quality surfaces in terms of � and � for � �
�. (a) The CPSNR surface. (b) The S-CIELAB �� surface.

Fig. 15. Two demosaiced image quality curves in terms of � for � � � and
� � ���. (a) The CPSNR curve. (b) The S-CIELAB �� curve.

threshold and the parameter , by the same ar-
gument, the best choice of the parameter is selected as
based on the peak of Fig. 15(a) and the valley of Fig. 15(b).
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