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Abstract

Given a polygonal curve P in three-dimensional (3-D) space, the polygonal approximation (PA) problem in this research is
to 7nd a polygon P′ to approximate P either with the minimal polygonal segments under a given error or, conversely, with the
minimal error under a speci7ed number of segments allowable. The former PA problem is called the PA-# problem; the latter
PA problem is called the PA-� problem. Given a 3-D P with n nodes, under the local integral square error criterion, this paper
7rst presents an O(n2)-time algorithm for solving the PA-# problem using O(n) space. Then we present an O(n2 log n)-time
algorithm for solving the PA-� usingO(n2) space. Finally, a sampling technique is employed to reduce the memory requirement
from O(n2) to O(n). Some experiments are carried out to con7rm the theoretical analysis.? 2002 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Given a polygonal curve P in two-dimensional (2-D) or
3-D space, the polygonal approximation (PA) problem is to
7nd a polygon P′ to approximate P with n points either with
the fewest polygonal segments, say #, under an error toler-
ance criterion or with the least error, say �, under a speci7ed
number of segments allowable. The former PA problem is
called the PA-# problem; the latter PA problem is called
the PA-� problem. Solving PA-# and PA-� problems is very
important in the 7eld of shape representation [1]. In some
sense, P′ can be viewed as an compressed representation
of P. For di>erent levels of errors, the corresponding P′s
can be used in binary image progressive transmission (IPT)
[2]. Thus, the results of this research can be used in IPT.

∗ Corresponding author. Fax: +886-2-273-76777.
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There are many sub-optimal algorithms developed, for
solving the PA problem in O(n) time. In Ref. [3], Rosin pre-
sented various techniques for evaluating di>erent heuristic
algorithm. However, this research focuses on the case of the
optimal solution mentioned in the above paragraph.

Under di>erent error metrics, many e�cient algorithms
for solving the PA problems have been developed. In what
follows, we survey some previous published results under
di>erent error criteria. Most of them focus on 2-D domain.
Throughout the paper, we assume that the starting point
is given. For the case of closed curve where no starting
point is given all the time complexity mentioned below
must be multiplied by n. We only discuss on the case
of open curve. Let the error be de7ned as the di>erence
between the perimeters of P and P′. Sato [4] presented an
O(n3)-time algorithm for solving the PA-� problem. Using
the city block, i.e. L1, as the error metric, an O(n2)-time
algorithm was presented by Pikaz and Dinstein [5]. Sharaiha
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and Cristo7des [6] presented an O(n2)-time algorithm for
solving the PA-# problem. But in Ref. [6], the PA edges are
restricted to approximate only digital arcs that contain one
rectangular direction only. Using the tolerance zone crite-
rion, Dunham [7] presented the cone intersection method
and an O(n3)-time algorithm was presented for solving the
PA-# problem. Imai and Iri [8] improved Dunham’s result
and presented an O(n2 log n)-time (O(n2 log2 n)-time) al-
gorithm for solving the PA-# (PA-�) problem using O(n2)
space. Independently, Melkman and O’Rourke [9] presented
the same results. Further, Chan and Chin [10] presented
an O(n2)-time (O(n2 log n)-time) algorithm for solving
the PA-# (PA-�) problem while using O(n2) space. Re-
cently, Chen and Daescu [11] reduced the space complexity
to O(n).
For 3-D domain, using the L1 and L∞ metrics, Bare-

quet et al. [12] presented an O(n2)-time (O(n2 log n)-time)
algorithm for solving the PA-# (PA-�) problem. Using
the L2 metric, the PA-# (PA-�) problem can be solved in
O(n2 log n)-time (O(n2 log3 n)-time). Using the Chebyshev
error, Hakimi and Echmeichel [13] presented an O(n2)-time
(O(n2 log n)-time) algorithm for solving the PA-# (PA-�)
problem. Using the parallel-strip error criterion, Eu and
Toussaint [14] improved the results of Imai and Iri [15] and
presented an O(n2)-time (O(n2 log n)-time) algorithm using
O(n2) space for solving the 2-D PA-# (PA-�) problem. For
3-D case, using the L1 and Linf error metrics, they presented
an O(n2)-time (O(n3)-time) algorithm for solving the PA-#
(PA-�) problem. Using the L2 metric, the PA-# (PA-�)
problem can be solved in O(n3)-time (O(n3 log n)-time).
All the algorithms in Ref. [14] need O(n2) space.

Using the global integral square error (ISE) criterion,
Perez and Vidal [16] presented an O(sn2)-time algorithm
for solving the PA-� problem, where s denotes the num-
ber of speci7ed polygonal segments. Using the local ISE
(LISE) criterion, Ray and Ray [17] presented a heuristic
O(n)-time algorithm for 7nding a PA, but their solution is
only sub-optimal for solving the PA-# problem. Basically,
the LISE metric can avoid the loss of peak information when
compared to the global ISE. Among these error metrics used
previously, the LISE metric [3] is a useful metric in PA. Fol-
lowing the LISE criterion, the motivation of this research is
to develop e�cient algorithms for solving the PA-# problem
and the PA-� problem with optimal solutions.
Using the LISE criterion, this paper 7rst presents an

O(n2)-time algorithm to solve the 3-D PA-# problem using
O(n) space. Then an O(n2 log n)-time algorithm is pre-
sented to solve the 3-D PA-� using O(n2) space. Further,
a sampling technique is employed to reduce the mem-
ory requirement from O(n2) to O(n). To the best of our
knowledge, this is the 7rst time that such 3-D PA-# and
PA-� algorithms are presented. Speci7cally, following our
results, the PA-# (PA-�) problems in 2-D domain under
the same error criterion can be solved using O(n2)-time
(O(n2 log n)-time) and O(n) space. The techniques used in
our proposed algorithms are some di>erent from the pre-

vious algorithms since di>erent error criteria often lead to
di>erent methods for solving the PA problems.

The rest of this paper is organized as follows. Section 2
presents the proposed algorithm for solving the 3-D PA-#
problem. Section 3 presents the proposed algorithm for
solving the 3-D PA-� problem. Some experimental results
are illustrated in Section 4. Some concluding remarks are
addressed in Section 5.

2. The proposed 3-D PA-# algorithm

Suppose the given 3-D curve with n points is represented
by the set {Pk = (xk ; yk ; zk) for k = 1; 2; 3; : : : ; n} . We 7rst
derive some nontrivial formulas to compute the LISE be-
tween a segment and a set of points apart from it in an in-
cremental way.

Let

dij =
j−1∑
k=i+1

d2(Pk ; line(PiPj))

be the LISE between the line passing through two arbi-
trary points, Pi and Pj , say line(PiPj), and the set of points
Pi+1; Pi+2; : : : ; Pj−1, where

d(Pk ; line(PiPj))

is the Euclidean distance from the point Pk to the line
line(PiPj).

Since line(PiPj) can be represented by the following para-
metric form:

x = xi + �ijt;

y = yi + �ijt;

z = zi + �ijt;

where �ij = xj − xi; �ij = yj − yi, and �ij = zj − zi. The
square error (SE) between the point Pk to the line(PiPj) is
the minimal value of

f(t) = (xk − xi − �ijt)2 + (yk − yi − �ijt)2

+ (zk − zi − �ijt)2

= (�2ij + �
2
ij + �

2
ij)t

2 − 2[(xk − xi)�ij
+(yk − yi)�ij + (zk − zi)�ij]t
+[(xk − xi)2 + (yk − yi)2 + (zk − zi)2]:

Let a= (�2ij + �
2
ij + �

2
ij); b= [(xk − xi)�ij + (yk − yi)�ij+

(zk − zi)�ij], and c = (xk − xi)2 + (yk − yi)2 + (zk − zi)2.
Plugging the three parameters, a; b, and c, into f(t), we
have

f(t) = at2 − 2bt + c

= a

[(
t − b

a

)2

+
ac − b2
a2

]
:
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When t = b=a, we have the minimal value of f(t) and the
corresponding SE is equal to

ac − b2
a

= [(xk − xi)2 + (yk − yi)2 + (zk − zi)2]

− 1
�2ij + �

2
ij + �

2
ij
[�ij(xk − xi) + �ij(yk − yi)

+ �ij(zk − zi)]2

= Aijx
2
k + Bijy

2
k + Cijz

2
k + Dijxkyk + Eijykzk

+Fijxkzk + Gijxk + Hijyk + Iijzk + Jij ;

where

Aij = 1− �2ij
�2ij + �

2
ij + �

2
ij
;

Bij = 1− �2ij
�2ij + �

2
ij + �

2
ij
;

Cij = 1− �2ij
�2ij + �

2
ij + �

2
ij
;

Dij =− 2�ij�ij
�2ij + �

2
ij + �

2
ij
;

Eij =− 2�ij�ij
�2ij + �

2
ij + �

2
ij
;

Fij =− 2�ij�ij
�2ij + �

2
ij + �

2
ij
;

Gij =−2xi + 2
�ij(�ijxi + �ijyi + �ijzi)

�2ij + �
2
ij + �

2
ij

;

Hij =−2yi + 2
�ij(�ijxi + �ijyi + �ijzi)

�2ij + �
2
ij + �

2
ij

;

Iij =−2zi + 2
�ij(�ijxi + �ijyi + �ijzi)

�2ij + �
2
ij + �

2
ij

;

Jij = (x2i + y
2
i + z

2
i )− (�ijxi + �ijyi + �ijzi)2

�2ij + �
2
ij + �

2
ij

:

Return to the calculation of LISE. As a result, we have

dij =
j−1∑
k=i+1

d2(Pk ; line PiPj)

= AijS1(i; j) + BijS2(i; j) + CijS3(i; j) + DijS4(i; j)

+EijS5(i; j) + FijS6(i; j) + GijS7(i; j) + HijS8(i; j)

+ IijS9(i; j) + (j − i − 1)Jij ;

where

S1(i; j) =
j−1∑
k=i+1

x2k ; S2(i; j) =
j−1∑
k=i+1

y2k ;

S3(i; j) =
j−1∑
k=i+1

z2k ; S4(i; j) =
j−1∑
k=i+1

xkyk ;

S5(i; j) =
j−1∑
k=i+1

ykzk ; S6(i; j) =
j−1∑
k=i+1

xkzk ;

S7(i; j) =
j−1∑
k=i+1

xk ; S8(i; j) =
j−1∑
k=i+1

yk ;

S9(i; j) =
j−1∑
k=i+1

zk ;

with the boundary equation Sl(i; i+1)=0 for l=1; 2; : : : ; 9.
The calculation of Sl(i + 1; j); Sl(i − 1; j); Sl(i; j − 1),

and Sl(i; j+1) can be done using operations from Sl(i; j) for
l = 1; 2; : : : ; 9. The related incremental formulas are shown
below:

S1(i; j + 1) = S1(i; j) + x
2
j ; S2(i; j + 1) = S2(i; j) + y

2
j ;

S3(i; j + 1) = S3(i; j) + z
2
j ; S4(i; j + 1) = S4(i; j) + xjyj;

S5(i; j + 1) = S5(i; j) + yjzj; S6(i; j + 1) = S6(i; j) + zjxj;

S7(i; j + 1) = S7(i; j) + xj; S8(i; j + 1) = S8(i; j) + yj;

S9(i; j + 1) = S9(i; j) + zj;

for j¡n;

S1(i; j − 1) = S1(i; j)− x2j−1;

S2(i; j − 1) = S2(i; j)− y2j−1;

S3(i; j − 1) = S3(i; j)− z2j−1;

S4(i; j − 1) = S4(i; j)− xjyj−1;

S5(i; j − 1) = S5(i; j)− yjzj−1;

S6(i; j − 1) = S6(i; j)− zjxj−1;

S7(i; j − 1) = S7(i; j)− xj−1;

S8(i; j − 1) = S8(i; j)− yj−1;

S9(i; j − 1) = S9(i; j)− zj−1;
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for j − 1¿i;

S1(i − 1; j) = S1(i; j) + x
2
i ; S2(i − 1; j) = S2(i; j) + y

2
i ;

S3(i − 1; j) = S3(i; j) + z
2
i ; S4(i − 1; j) = S4(i; j) + xiyi;

S5(i − 1; j) = S5(i; j) + yizi; S6(i − 1; j) = S6(i; j) + zixi;

S7(i − 1; j) = S7(i; j) + xi; S8(i − 1; j) = S8(i; j) + yi;

S9(i − 1; j) = S9(i; j) + zi;

for i ¿ 1;

S1(i + 1; j) = S1(i; j)− x2i+1;

S2(i + 1; j) = S2(i; j)− y2i+1;

S3(i + 1; j) = S3(i; j)− z2i+1;

S4(i + 1; j) = S4(i; j)− xjyi+1;

S5(i + 1; j) = S5(i; j)− yjzi+1;

S6(i + 1; j) = S6(i; j)− zjxi+1;

S7(i + 1; j) = S7(i; j)− xi+1;

S8(i + 1; j) = S8(i; j)− yi+1;

S9(i + 1; j) = S9(i; j)− zi+1;

for i + 1¡j.
Given the values of Sl(i; j) for l = 1; 2; : : : ; 9; xi; yi; zi;

xj; yj , and zj , the LISE dij =
∑j−1

k=i+1 d
2(Pk ; line(PiPj)) can

be obtained in O(1) time using the following procedure:

�← xj − xi;

�← yj − yi;

�← zj − zi;

A← 1− �2

�2 + �2 + �2
;

B← 1− �2

�2 + �2 + �2
;

C ← 1− �2

�2 + �2 + �2
;

D← − 2��
�2 + �2 + �2

;

E ← − 2��
�2 + �2 + �2

;

F ← − 2��
�2 + �2 + �2

;

G ← −2xi + 2
�(�xi + �yi + �zi)
�2 + �2 + �2

;

H ← −2yi + 2
�(�xi + �yi + �zi)
�2 + �2 + �2

;

I ← −2zi + 2
�(�xi + �yi + �zi)
�2 + �2 + �2

;

J ← (x2i + y
2
i + z

2
i )− (�xi + �yi + �zi)2

�2 + �2 + �2
;

dij← AS1(i; j) + BS2(i; j) + CS3(i; j) + DS4(i; j)

+ES5(i; j) + FS6(i; j) + GS7(i; j) + HS8(i; j)

+ IS9(i; j) + (j − i − 1)J:

Before presenting the proposed algorithm for solving the
PA-# problem, we 7rst describe how to construct a directed,
weighted graphG=(V; E), where the set of nodes is denoted
by V ={P1; P2; : : : ; Pn}, i.e. |V |=n, such that for each edge
(Pi; Pj)∈E; 16 i ¡ j6 n, the LISE dij is equal to or less
than the prespeci7ed error tolerance �.

Considering the 7rst point P1, we connect all pairs P1

and Pi, for 26 i6 n, if the LISE dij6 �. We also assign
the weight value 1 on the edge. From the above incremental
formulas, it takesO(n) time to compute dij for these feasible
edges. By the same arguments, for 26 i6 n−1, we connect
all the related feasible edges. The edges set E is the union
of these connected edges. As a result, the directed graph G
can be constructed in O(n2) time using O(n2) space.

We then apply Dijkstra’s algorithm [18] to solve the
single-source shortest-path problem on this directed,
weighted graph G, where the source node in G is the start-
ing point P1 in P and the target node in G is the 7nal point
Pn in P. The shortest-path 7nding algorithm takes O(n2)
time. We thus have a shortest path from point P1 to point
Pn. Because the path length of the obtained shortest path
is minimal among all possible paths from P1 to Pn, this
shortest path is indeed the desired approximate polygon P′

with the minimal number of segments, i.e. edges, under the
speci7ed LISE. Since it takes O(n2) time for 7nding the
shortest-path, so given an �, the 3D PA-# problem can be
solved in O(n2) time and using O(n2) space.

We now combine the above two phases, (1) construct-
ing the directed, weighted graph G and (2) applying the
shortest-path algorithm for 7nding the path from point P1 to
point Pn, into one phase. This leads to a reduction in space
from O(n2) to O(n).
Before presenting the formal algorithm, we outline the

key concept. Suppose currently the weight of the shortest
path from P1 to Pi for 26 i ¡ j is known and is saved in
W [i]. We also maintain an array L for linking the points in
the shortest path. The contents L[2]; L[3]; : : : ; L[j − 1] are
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such that if

L1[i] = L[i];

Lk+1[i] = L[Lk [i]] for k¿ 1; (1)

then PLW [i][i] · · ·PL2[i]PL[i]Pi is a shortest path from P1 to Pi
for all 26 i ¡ j. For example, suppose we have a P1–P5–
P7–P9 shortest path. Then we have L[9]=7; L[7]=L[L[9]]=
L2[9] = 5; L[5] = L[L[L[9]]] = L3[9] = 1.

Initially, for j = 3, let W [1] = 0; W [2] = 1, and L[2] =
1. When j¿ 3, suppose we have obtained the values of
W [1]; W [2]; : : : ; W [j−1]; L[2]; L[3]; : : :, and L[j−1] which
satisfy the conditions in Eq. (1). For 16 i ¡ j, if di; j ¡ �,
we set the weight 1 on the edge connecting Pi and Pj;
otherwise, do nothing. For any speci7c t; 16 t ¡ j, if the
following two conditions hold:

1. dt; j ¡ �,
2. if di; j ¡ � and 16 i ¡ j then W [t]6W [i],

then we know that PLW [t][t] · · ·PL2[t]PL[t]PtPj is a shortest path
from P1 to Pj . We thus assign L[j]= t andW [j]=W [t]+1.
So, the shortest path PLW [ j][ j] · · ·PL2[ j]PL[ j]Pj is identical to
the path PLW [t][t] · · ·PL2[t]PL[t]PtPj .

Since Sl(j − 1; j) = 0 for all l = 1; 2; : : : ; 9, we have
d(j−1) j=0 and we can compute dij for i= j−1; j−2; : : : ; 1
in O(j) time using the following procedure:

S1(j − 1; j) = 0; S2(j − 1; j); : : : ; S9(j − 1; j) = 0,
d(j−1) j = 0
for i ← j − 2 downto 2
{the values of S1(i + 1; j); S2(i + 1; j); : : : ; S9(i + 1; j)
are known}
Compute S1(i; j); S2(i; j); : : : ; S9(i; j) {it takesO(1) time
in an incremental way}
Compute dij {it takes O(1) time}

endfor

Hence, givenW [1]; W [2]; : : : ; W [j−1]; L[2]; L[3]; : : :, and
L[j − 1], we can compute d(j−1) j ; d(j−2) j ; : : : ; d1j in O(j)
time. Furthermore, we can compute W [j] and L[j] in O(j)
time using the following procedure:

m← W [j − 1],
t ← j − 1
for i ← j − 2 downto 2

if dij ¡ � then
if W [i]¡m then
m← W [i]; t ← i

endif
endif

endfor
W [j]← m+ 1; t ← j; L[j]← t

Since at most O(n) space and O(n) time are required to
update the current node Pj , it takes O(n) space and O(n2)
time to 7nd the path-length of the path P1–Pn under the

speci7ed LISE. Finally, using the backtracking technique,
the desired approximate polygon P′ is obtained. The formal
algorithm is listed below.

Algorithm 1. PA-#
Input: the LISE � and the 3-D polygon P with n points,
{Pk = (xk ; yk ; zk) for k = 1; 2; 3; : : : ; n}.
Output: the approximate 3-D polygon P′ with P′

1 = P1 and
P′
m = Pn, where m denotes the number of points in P′.

Function 7nd(�) {return the solution, the number of seg-
ments}
W [1]← 0; L[2]← 1; W [2]← 1
for j ← 3 to n

m← W [j − 1]
t ← j − 1
for k ← j − 1 downto 2
i ← k − 1
Compute S1(i; j); S2(i; j); : : :, and S9(i; j)
Compute dij
if dij ¡ � then

if W [i]¡m then
m← W [i]; t ← i

endif
endif

endfor
W [j]← m+ 1; t ← j; L[j]← t

endfor
m← W [n]
t ← n
for i ← m+ 1 downto 1
P′
i ← Pt
t ← L[t]

endfor
return m

begin
7nd(�) {function call}
end

According to the above description and the algorithm, the
7rst main result is given below.

Theorem 1. Given an LISE of �; the 3-D PA-# problem
can be solved in O(n2) time and using O(n) space.

Suppose we are given a 2-D curve with n points
and the coordinate of the point Pk is (xk ; yk) for
k=1; 2; 3; : : : ; n. We now discuss the calculation of the LISE∑i−1

k=2 d
2(Pk ; line(P1Pi)), where d(Pk ; line(P1Pi)) is the

Euclidean distance from the point Pk to the line line(P1Pi).
Since the equation of the line P1Pi can be represented by
aix + biy + ci = 0, where ai = yi − y1; bi = x1 − xi and
ci = xiy1− x1yi. Hence the SE from the point Pk to the line
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P1Pi is equal to

(aixk + biyk + ci)2

a2i + b
2
i

:

Hence, the LISE can be written as
i−1∑
k=2

d2(Pk ; lineP1Pi)

=
1

a2i + b
2
i

i−1∑
k=2

(aixk + biyk + ci)
2

=
1

a2i + b
2
i

i−1∑
k=2

[a2i x
2
k + b

2
i y

2
k + c

2
i

+2aibixkyk + 2aicixk + 2biciyk ]

=
1

a2i + b
2
i

[
a2i

i−1∑
k=2

x2k + b
2
i

i−1∑
k=2

y2k + (i − 2)c2i

+2aibi
i−1∑
k=2

xkyk + 2aici
i−1∑
k=2

xk + 2bici
i−1∑
k=2

yk

]
:

By the same arguments used for solving the 3-D PA-#
problem, the following result is followed.

Corollary 1. Given an LISE �; the 2-D PA-# problem can
be solved in O(n2) time and using O(n) space.

3. The proposed 3-D PA-” algorithm

Given the number of segments allowable, say s,
consider a 3-D curve with n points again. In this sec-
tion, an O(n2 log n)-time and O(n)-space algorithm will be
presented for solving the PA-� problem.

Following the results in Refs. [8,19], it is not hard to
derive the following result.

Lemma 1. Let �A; �B be two LISEs; with �A to
obtain an approximate curve P′

A of mA segments and with
�B to obtain an approximate curve P′

B of mB segments; then
(1) if �A ¡ �B; then mA¿mB; (2) if mA¡mB; then �A ¿ �B.

From the discussion in Section 2, for 16 i ¡ j6 n, all
the LISEs dij =

∑j−1
k=i+1 d

2(Pk ; line(PiPj)), each of which is
equal to or less than the prespeci7ed error, can be obtained
in O(n2) time.

We 7rst apply the sorting algorithm [18] to sort these
O(n2) LISEs in an increasing order and save these sorted
LISEs in an array. Suppose these sorted LISEs are denoted
by err1; err2; : : : ; and errq, where q = O(n2).

Based on the binary search method, we 7rst 7x errq=2 as
the speci7ed LISE and apply the proposed PA-# algorithm
described in Section 2. Then the approximate polygon with

the minimal number of segments is obtained and the number
of segments required, say m′, is known. If m′ is equal to
the given number of segments, s, we indeed solve the PA-�
problem. If m′ is greater than (less than) s, by Lemma 1,
we 7x errq=4 (err3q=4) as the speci7ed LISE and apply the
previous PA-# algorithm again. Continuing this way, it takes
at most O(log n) search steps. By Theorem 1, each search
step takes O(n2) time, so totally it takes O(n2 log n) time
and O(n2) space for solving the PA-� problem, where O(n2)
space is used for saving those sorted LISEs, err1; err2; : : : ;
and errq. The algorithm is listed below.

Algorithm 2. PA-”
Input: the number of segments allowable in P′, say s, and
the given 3-D polygon P with n points, say {Pk=(xk ; yk ; zk)
for k = 1; 2; 3; : : : ; n} .
Output: the approximate 3-D polygon P′ with P′

1 = P1 and
P′
m = Pn with the minimal LISE.
begin
l← 1; r ← q
repeat
t ← (l+ r)=2
m← 7nd(�t)
if m6 s then

if m¡s then
r ← t − 1

else
r ← t

else
l= t + 1

endif
until l= r
return(�l)
end

Finally, we want to reduce the memory required in Al-
gorithm 2 to O(n) by using the sampling method [11], but
preserve the same time bound, O(n2 log n).

For the ith point in P, 16 i6 n, suppose the con-
structed set of feasible edges under the speci7ed LISE in
the weighted, directed graph G is denoted by Erri and
Erri = O(n). In G, we have Err1; Err2; : : : ; and Errn−1.

In order to keep the memory requirement bounded in
O(n), we process Err1 7rst. That is, we sort it using
O(n log n) time and O(n) space. Then we select the j

√
nth

elements for 16 j6
√
n in the sorted Err1 and these

√
n

selected elements form the set ERR1 with size O(
√
n).

By the same arguments, we process Err2 and the corre-
sponding ERR2 with size O(

√
n) is obtained. It still takes

O(n log n) time and O(n) space. We continue to process
the remaining

√
n− 2 Erri’s one by one. Finally, we obtain

ERR1; ERR2; : : : ; and ERR√
n, each ERRi with size O(

√
n).

We further sort these
√
n ERRi’s and obtain the sorted list

with size O(n). We then select the j
√
nth elements for

16 j6
√
n in the sorted list and these

√
n selected ele-
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Fig. 1. The running time performance for our proposed algorithm
for solving PA-# problem.

ments form the set S1 with size O(
√
n). According to the

result in Ref. [11], there are O(n) erri’s between any two
consecutive elements in S1. The time required for obtaining
S1 is bounded by O(n

√
n log n) and the space is bounded

by O(n). Up to now, the size of S1 is O(
√
n).

Very similar to obtain S1, we can obtain S1; S2; : : : ; and
S√n using O(n2 log n) time and O(n) space. We then sort
theseO(

√
n) Si’s and obtain the sorted set S′ with sizeO(n).

Based on the binary search method, by Theorem 1, we can
locate two consecutive elements in S′, say x and y, using
O(n2 log n) time and O(n) space such that the given number
of segments, s, is within range from x to y. By the same
argument, there are O(n

√
n) erri’s between x and y in S′.

Next, we use x and y as a 7lter and err1; err2; : : : ; and errq
are fed into the 7lter one by one. There are O(n

√
n) erri’s

retained, but they will not be saved explicitly. In real imple-
mentation, an incremental approach is still adopted. The pre-
vious O(n) erri’s in the O(n

√
n) retained erri’s are fed into

the 7rst group. Then the 7rst group is sorted. We then select
the j
√
nth elements for 16 j6

√
n in the 7rst sorted group.

These
√
n selected elements form a new set T1 with size

O(
√
n). We do the same thing incrementally and obtain the

new sets, T2; T3; : : : ; and T√n. Collecting these
√
n new sets,

we sort these n elements. We then select the j
√
nth elements

for 16 j6
√
n in the sorted list. There exist O(n) erri’s

within the interval of any two consecutive elements. Apply-
ing the binary search method associated with Algorithm 1
on the sorted list, two consecutive elements are located and
are used as a 7lter again. Then err1; err2; : : : ; and errq are
fed into the 7lter one by one. There are O(n) erri’s retained,
and they are saved explicitly. Finally, applying algorithm
2 (only using O(n) space), the desired solution can be ob-
tained. We thus have the following result.

Theorem 2. Suppose the number of segments allowable in
P′ is speci9ed by s; the 3D PA-� problem can be solved in

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fig. 2. The resulting PAs for PA-# problem: (a) PA for LISE
� = 10; (b) PA for LISE � = 20; (c) PA for LISE � = 30; (d) PA
for LISE � = 40.
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Fig. 3. The running time performance for our proposed two PA-�
algorithms.

O(n2 log n) time and using O(n) space under the minimal
LISE.

By the same arguments mentioned in solving the 2-D
PA-# problem, it is not hard to derive the following result.

Corollary 2. Suppose the number of segments allowable
in P′ is speci9ed by s; the 2-D PA-� problem can be solved
in O(n2 log n) time and using O(n) space under the minimal
LISE.

4. Experimental results

We implement the related algorithms using Borland C++
Builder 4.0 language and the Pentium 133 PC with 48 MB
RAM. The digital map of the southern Taiwan with 233 seg-
ments is used for evaluating the performance. For solving
the PA-# problem, Fig. 1 depicts the running time perfor-
mance for our proposed algorithms, where the detailed time
compleity is rather stable and denoted by 1:1× 10−6n2.

Suppose the PA-# problem. LISEs are set to be � = 10,
20, 30, and 40. Applying our proposed algorithm for solving
minimal number of the PA-# problem, the resulting form
PAs are illustrated in Fig. 2(a), (b), (c), and (d), respec-
tively, with the minimal segments # = 27; 19, 15, and 13.

For solving the PA-� problem, Fig. 3 depicts the run-
ning time performance for our proposed two algorithms,
where the curve A denotes the proposed algorithm using
O(n2 log n) time and O(n2) space; the curve B denotes the
proposed algorithm employing the sampling technique and
using only O(n) space. Taking the leading constant fac-
tor in the big-O notation, we have that the time complex-
ity of the algorithm A (B) is rather stable and denoted by
2:023× 10−6n2 log n (7:155× 10−6n2 log n).

Given the number of segments, say # = 6, 11, 21, and
31, applying our proposed algorithm for solving the PA-�
problem, the resulting PAs are illustrated in Fig. 4(a), (b),
(c), and (d), respectively, with LISEs �=650:6, 70.0, 15.3,
and 8.7. Fig. 4. The resulting form PAs for PA-� problem.



K.-L. Chung et al. / Pattern Recognition 35 (2002) 2539–2548 2547

5. Conclusions

Solving the PA problem is very fundamental in shape rep-
resentation. The LISE is a practical error metric in the PA.
We have presented three e�cient algorithms for solving the
PA-# problem and the PA-� problem. To the best of our
knowledge, this is the 7rst time that such three algorithms
are presented under the LISE criterion. In fact, the results
of this research can be used in image progressive transmis-
sion.

The nontrivial lower bound proof for the PA problem
based on the LISE criterion is an open problem which can
tell us the gap between the proposed algorithms and the
theoretical lower bound. Sometimes the ratio n=m can be
viewed as the compression ratio. How to applying the re-
sults of this paper to design e�cient algorithms using the
normalized 7gure of merit (=n=m × ISE) metric [6,20,21]
is an interesting research problem.
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