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Abstract

Previously, several efficient Hilbert scan-based operations were presented, but they all suffer from the constraint that the
image size must be 2r · 2r. Considering an image with arbitrary size I1 · I2, this paper first presents an efficient snake scan-
based algorithm for coding the Hilbert curve of the given image. The proposed coding algorithm takes Oðk þ log UÞ time
to code the Hilbert order of one pixel where k denotes the number of the quadrants and U ¼ minðI1; I2Þ. Next, a memory-
saving Hilbert curve representation called HCGL is presented for representing the encoded Hilbert curve and it can be
constructed in OðL2 log LÞ time where L ¼ maxðI1; I2Þ. Based on the HCGL representation of arbitrary-sized image, an
application to window query is presented and the proposed window query algorithm takes OðM log Lþ P Þ time where
M denotes the number of generated maximal quadtree blocks and P denotes the number of output codes. Under the same
PSNR (Peak Signal to Noise Ratio), experimental results demonstrate that our proposed HCGL representation outper-
forms some existing related algorithms in terms of execution-time and BPP (Bit Per Pixel). In addition, our proposed win-
dow query algorithm has been justified in the GIS (Geographical Information System) application.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Cantor [7] was the first researcher to map the interval [0,1] into the square [0,1]2. Later the first space-filling
curve, the Peano curve [33], was presented to construct a curve that passes through every entry of a two-
dimensional region. Afterwards, several different space-filling curves [17,26,30,37] were presented and the
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Hilbert curve is the most well-known. Previously, Liu and Schrack [27,28] presented efficient encoding and
decoding algorithms to map 2-D/3-D images to Hilbert curves. Based on the Hilbert curve representation,
many applications [3,4,6,8,10,18,23–25,35,36,39,43,11,9,15,5,29] have been developed. These Hilbert curve-
based applications all suffer from the common constraint that the given image must be of size 2r · 2r. The main
motivation of this research is to relax this constraint and to develop efficient algorithms for coding the Hilbert
curve on arbitrary-sized image, for compressing the Hilbert curve, and for performing the window query on
the compressed Hilbert curve representation.

Considering an image with arbitrary size I1 · I2, first an efficient snake scan-based algorithm is presented in
this paper for coding the Hilbert curve and the proposed algorithm takes Oðk þ log UÞ time to code the Hil-
bert order of one pixel where k denotes the number of the quadrants and U ¼ minðI1; I2Þ. Next, a memory-
saving Hilbert curve representation called HCGL is presented to compress the encoded Hilbert curve and the
proposed HCGL representation can be constructed in OðL2 log LÞ time where L ¼ maxðI1; I2Þ. The proposed
HCGL representation outperforms the previous two representations – the split point approximation [19] and
the zero order interpolation [25]. Based on HCGL representation for arbitrary-sized image, a window query
application is presented and the proposed window query algorithm takes OðMLþ P Þ time where M denotes
the number of maximal quadtree blocks and P denotes the number of output codes. The proposed window
query algorithm is faster than the naive algorithm which needs Oðw1w2Lþ P Þ time where the query window
is of size w1 � w2. We definitely have w1w2 > M . Under the same PSNR (Peak Signal to Noise Ratio), exper-
imental results demonstrate that our proposed HCGL representation outperforms some existing related algo-
rithms in terms of execution-time and BPP (Bit Per Pixel). In addition, our proposed window query algorithm
has been justified in GIS (Geographical Information System) application.

The rest of the paper is organized as follows. Section 2 presents the previous efficient coding scheme
proposed by Liu and Schrack [27] for coding the Hilbert curve of a 2r · 2r image. Based on the proposed
snake scan-based approach, Section 3 presents an efficient algorithm for coding the Hilbert curve of an
arbitrary-sized image. Section 4 presents the proposed HCGL representation for compressing the
constructed Hilbert curve. Section 5 presents the proposed window query algorithm based on HCGL rep-
resentation. Section 6 demonstrates some related experimental results. Finally, Section 7 addresses some
concluding remarks.

2. The past work by Liu and Schrack

This section introduces the previous efficient coding scheme proposed by Liu and Schrack [27] for gener-
ating the Hilbert curve of a 2r � 2r image. The result of Liu and Schrack will be used as a subroutine in
our proposed snake scan-based coding scheme for generating the Hilbert curve of an arbitrary-sized image.

Considering a sub-image of size 2r · 2r, according to the efficient encoding scheme by Liu and Schrack [27],
the pixel at location ðx; yÞ ¼ ððxr�1 . . . x1x0Þ2; ðyr�1 . . . y1y0Þ2Þ can be encoded to Hilbert order which is repre-
sented by a quaternary digit string h ¼ ðqr�1 . . . q1q0Þ4 ¼

Pr�1
0 4iqi where qi 2 f0; 1; 2; 3g. Let the two bits of

a quaternary digit hk in h be represented by h2k+1 and h2k. The recursive encoding formulas for calculating
h2k+1 and h2k are given by
h2kþ1 ¼ v0;kðv1;k � xkÞ þ v0;kðv1;k � ykÞ
h2k ¼ xk � yk

ð1Þ
where k ¼ 0; 1; . . . ; r � 1 and the values of v0,k and v1;k can be calculated by
v0;r�1 ¼ 0

v1;r�1 ¼ 0

v0;j�1 ¼ v0;jðv1;j � xjÞ þ v0;jðv1;j � yjÞ
v1;j�1 ¼ v1;jðxj � yjÞ þ ðxj � yjÞðv0;j � yjÞ

ð2Þ
where j ¼ r � 1; . . . ; 2; 1.
When r = 1, the pixel at position (1, 1) can be encoded to Hilbert order h ¼ ðh1h0Þ2 ¼ 2 ð¼ ð02Þ4Þ according

to the following derivation of Eq. (1) and (2):
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v0;0 ¼ 0

v1;0 ¼ 0

h1 ¼ �0ð0� 1Þ þ 0ð0� �1Þ ¼ 1

h0 ¼ 1� 1 ¼ 0:
According to the above encoding scheme, the Hilbert curves of resolution 1, resolution 2, and resolution 3 are
shown in Fig. 1, where the lower-left corner of the image is defined as the origin and the encoded Hilbert or-
ders are recorded along the Hilbert curve. In general, given the position (x,y) of one pixel in the image, the
above encoding scheme by Liu and Schrack can encode the pixel into Hilbert order in OðrÞ time [27].

The decoding formulas are used to map the Hilbert order h along the Hilbert curve into the position
ðx; yÞ ¼ ððxr�1 . . . x1x0Þ2; ðyr�1 . . . y1y0Þ2Þ of the pixel in the image. For k ¼ 0; 1; . . . ; r � 1, xk and yk are calcu-
lated by
xk ¼ ðv0;kh2kÞ � v1;k � h2kþ1

yk ¼ ðv0;k þ h2kÞ � v1;k � h2kþ1

ð3Þ
where v0;k and v1;k are calculated by
v0;r�1 ¼ 0

v1;r�1 ¼ 0

v0;j�1 ¼ v0;j � h2j � h2jþ1

v1;j�1 ¼ v1;j � ðh2jh2jþ1Þ

ð4Þ
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where j ¼ r � 1; . . . ; 2; 1. For example, when r = 1, the Hilbert order h ¼ 3 ð¼ ð11Þ2Þ along the Hilbert curve
can be decoded to the position ðx; yÞ ¼ ððx0Þ2; ðy0Þ2Þ of the pixel in the image according to the following der-
ivation using Eq. (3) and (4):
v0;0 ¼ 0

v1;0 ¼ 0

x0 ¼ ð01Þ � 0� 1 ¼ 1

y0 ¼ ð0þ 1Þ � 0� 1 ¼ 0:
Thus, the Hilbert order h = 3 yields the decoded position ðx; yÞ ¼ ð1; 0Þ.
3. The proposed snake scan-based coding algorithm

Based on the proposed snake scan-based approach, this section presents an efficient scheme for coding the
Hilbert curve of an arbitrary-sized image. The proposed coding scheme extends Liu and Schrack’s work from
the 2r · 2r image domain to the image domain of arbitrary size.

3.1. Encoding arbitrary-sized image into a set of Hilbert curves

Definition 1. A square sub-image is called a quadrant if the square sub-image is of size 2r · 2r.

Lemma 1 [27]. Each 2r · 2r quadrant can be encoded into the Hilbert curve Hr.

The main idea of the proposed snake scan-based scheme for coding the Hilbert curve of the given arbitrary-
sized image is that the given arbitrary-sized image domain is first partitioned into a set of square sub-images.
Then, each partitioned square sub-image is further decomposed into a set of quadrants. For one square sub-
image, we first present one concatenation strategy to concatenate the corresponding Hilbert curves to form a
longer Hilbert curve. Note that by Lemma 1, each concatenated Hilbert curve is encoded from the partitioned
quadrant in the square sub-image. Then for the given arbitrary-sized image, we present another concatenation
strategy to concatenate these Hilbert curves to form a complete Hilbert curve where each concatenated Hilbert
curve is constructed from the partitioned square sub-image in the arbitrary-sized image.

Given a 15 · 15 square sub-image as shown in Fig. 2, the upper-left 23 · 23 quadrant is first partitioned
because of 23

6 15 < 24. By Lemma 1, the partitioned 23 · 23 quadrant can be represented by the Hilbert curve
H3. Because of 22

6 7ð¼ ð15� 23ÞÞ < 23, five 22 · 22 quadrants, which are adjacent to H3, are partitioned.
Each partitioned 22 � 22 quadrant can be represented by the Hilbert curve H 2. Following this partition rule,
due to 21

6 3ð¼ ð7� 22ÞÞ < 22 and 20
6 1ð¼ ð3� 21ÞÞ < 21, 13 H1’s and 29 H0’s are obtained, respectively.

According to well-ordering principle [21], the above decomposition process only needs finite partition steps
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Fig. 2. An example for encoding a 15 · 15 square sub-image into a set of Hilbert curves.
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to encode any square sub-image into a set of Hilbert curves. After discussing the special example in Fig. 2, the
construction of Hilbert curves for the general square sub-image is discussed below.

Although the above case is for the image with size 15 · 15, in the following lemma, a general procedure is
presented for such a partition. Let the general square sub-image be of size I · I, then we have the following
result.

Lemma 2. For any I · I square sub-image, it can be encoded (partitioned) into a set of Hilbert curves (quadrants)

and the number of Hilbert curves (quadrants) is bounded by O(I).

Proof. First, the case I ¼ 2r � 1 is taken into consideration (see Fig. 3). In this case, the given I · I

(=ð2r � 1Þ � ð2r � 1Þ) square sub-image can be decomposed into one 2r�1 � 2r�1 quadrant, five 2r�2 � 2r�2

quadrants, . . ., and ð2rþ1 � 3Þ 20 � 20 quadrants. These decomposed quadrants can be represented by one
Hr�1, five Hr�2’s, . . ., and ð2rþ1 � 3Þ H0’s, respectively. For this case, the number of encoded Hilbert curves,
i.e. the number of partitioned quadrants, is calculated by
Q ¼
Xr�1

i¼0

ð2r�iþ1 � 3Þ ¼
Xr�1

i¼0

2r�iþ1 �
Xr�1

i¼0

3 ¼ ð22 þ 23 þ � � � þ 2rþ1Þ � 3r ¼ 4ð2r � 1Þ � 3r

¼ 4I � 3 logðI þ 1Þ ¼ OðIÞ:
After discussing the case for I ¼ 2r � 1, we examine the general case for I ¼ 2r � 1� X where
X ¼ ðbr�12r�1 þ br�22r�2 þ � � � þ b121 þ b020Þ, bi 2 f0; 1g and 0 6 i 6 r � 1. I ¼ 2r � 1� X can be rewritten by
I ¼ 2r � 1� ðbr�12r�1 þ br�22r�2 þ � � � þ b121 þ b020Þ
¼ ð2r�1 þ 2r�2 þ � � � þ 21 þ 20Þ � ðbr�12r�1 þ br�22r�2 þ � � � þ b121 þ b020Þ
¼ ½ð1� br�1Þ2r�1 þ ð1� br�2Þ2r�2 þ � � � þ ð1� b1Þ21 þ ð1� b0Þ20�:
Without loss of generality, assume bi ¼ 1; bj ¼ 0; i 6¼ j, i.e. I ¼ 2r�1 þ � � � þ 2iþ1 þ 2i�1 þ 2i�2 þ � � � þ 20. Then
the quadrants shown in the shaded area of Fig. 4 are removed from the ð2r � 1Þ � ð2r � 1Þ square sub-image.
In Fig. 4, each removed quadrant is of size 2i � 2i and the number of the removed quadrants is
Qi ¼ 2� ðli=2iÞ þ 1

¼ 2� ðð2r�1 þ � � � þ 2iþ1Þ=2iÞ þ 1

¼ 2r�i þ � � � þ 22 þ 1 ¼ 2r�iþ1 � 22 þ 1

¼ 2r�iþ1 � 3:
After removing these 2r�iþ1 � 3 quadrants, each with size 2i � 2i. Fig. 4 illustrates the removal of related
quadrants. Before removing these 2r�iþ1 � 3 quadrants where each quadrant is of size 2i � 2i, the number
of quadrants, each with size 2i�1 � 2i�1, is given by
Fig. 3. The worst case for decomposing the I · I square image into a set of Hilbert curves.
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Qi�1 ¼ 2� ðli�1=2i�1Þ þ 1

¼ 2� ðð2r�1 þ � � � þ 2iÞ=2i�1Þ þ 1

¼ 2r�iþ1 þ � � � þ 22 þ 1

¼ 2r�iþ2 � 22 þ 1 ¼ 2r�iþ2 � 3:
After removing these quadrants in the shaded area of Fig. 4, the value of the above Qi-1 is changed to
Q0i�1 ¼ 2� ðli=2i�1Þ þ 1

¼ 2� ðð2r�1 þ � � � þ 2iþ1Þ=2i�1Þ þ 1

¼ 2r�iþ1 þ � � � þ 23 þ 1

¼ 2r�iþ2 � 23 þ 1

¼ 2r�iþ2 � 7:
Because of 4 ¼ Qi�1 � Q0i�1, by induction, it is not hard to verify that 4 ¼ Qi�2 � Q0i�2, 4 ¼ Qi�3 � Q0i�3, . . ., and
4 ¼ Q0 � Q00 hold. Therefore, the number of the total removed quadrants is equal to Mi ¼ Qi þ 4i ¼
2r�iþ1 � 3þ 4i. Because of 0 6 i 6 r � 1, we have Mi > 0. Consequently, the number of the partitioned quad-
rants in the ð2r � 1� X Þ � ð2r � 1� X Þ square sub-image must be less than or equal to that of the partitioned
ð2r � 1Þ � ð2r � 1Þ square sub-image. It comes to a conclusion that given an I � I square sub-image, the num-
ber of the constructed Hilbert curves (or partitioned quadrants) is always bounded by O(I). The proof is com-
pleted. h

From Lemma 2, it is known that an arbitrary I � I square sub-image can be encoded into O(I) Hilbert
curves or partitioned into O(I) quadrants. We next describe how to partition an arbitrary I1 � I2 image into
a set of square sub-images and prove that any arbitrary-sized I1 � I2 image can be encoded (partitioned) into a
set of O(L) Hilbert curves (quadrants) where L ¼ maxðI1; I2Þ.

Given a 7 · 17 image as shown in Fig. 5a, we partition the given image according to the left-to-right scan-
ning way then top-to-down scanning way alternatively. Fig. 5a can be partitioned into two maximal square
sub-images, each with size 7 · 7, two middle square sub-images, each with size 3 · 3, and three 1 · 1 square
sub-images. By Lemma 2, as shown in Fig. 5b, each maximal square sub-image can be encoded by 1 H2, 5
H1’s, and 13 H0’s. As shown in Fig. 5c, each middle square sub-image can be encoded by 1 H1 and 5 H0’s.

Theorem 1. Any arbitrary-sized I1 · I2 image can be encoded (partitioned) into O(L) Hilbert curves (quadrants)

where L ¼ maxðI1; I2Þ.

Proof. Without loss of generality, assume I1 < I2 and let L1 ¼ bI2=I1c � I1. As shown in Fig. 6, the image is
first partitioned into one I1 � L1 sub-image and one I1 � ðI2 � L1Þ sub-image. Next, the I1 � L1 sub-image is
partitioned into ðL1=I1Þ smaller square sub-images, each with size I1 � I1. By Lemma 2, each I1 � I1 square
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sub-image can be encoded into OðI1Þ Hilbert curves. Thus, the number of the encoded Hilbert curves in the
I1 � L1 sub-image is bounded by OððL1=I1Þ � I1Þ ¼ OðL1Þ. By the same arguments, the remaining
I1 � ðI2 � L1Þ sub-image also can be partition into one ðI2 � L1Þ � L2 sub-image and one
ðI2 � L1Þ � ðI1 � L2Þ sub-image where L2 ¼ bI1=ðI2 � L1Þc � ðI2 � L1Þ. The ðI2 � L1Þ � L2 sub-image can be
encoded into OðL2Þ Hilbert curves. Repeating the above rule to partition the remaining
ðI2 � L1Þ � ðI1 � L2Þ sub-image until the remaining sub-image is of size Z1 � Z2 such that when Z1 > Z2

ðZ1 > Z2Þ, Z2 (Z1) is a factor of Z1 (Z2); at that time, the final remaining sub-image can be partitioned into
Z1/Z2 (Z2/Z1) square images. By Lemma 2, the final sub-image can be encoded into O(Lr) Hilbert curves.

After encoding the I1 · I2 image into a set of Hilbert curves, we now analyze the upper bound of the
number of required Hilbert curves. Let us first consider the case when r is an even integer. The number of the
encoded Hilbert curves in the partitioned I1 � I2 image is calculated by
Q ¼ OðL1Þ þOðL2Þ þOðL3Þ þOðL4Þ þ � � � þOðLrÞ
¼ ½OðL1Þ þOðL3Þ þ � � � þOðLr�1Þ� þ ½OðL2Þ þOðL4Þ þ � � � þOðLrÞ�:
Because of I2 > L1 þ L3 þ � � � þ Lr�1 and I1 ¼ L2 þ L4 þ � � � þ Lr, the value of Q is bounded by
Q ¼ OðI2Þ þOðI1Þ ¼ OðI2Þ ¼ OðLÞ

where L ¼ maxðI1; I2Þ. Considering the case when r is an odd integer, the value of Q is bounded by
Q ¼ OðL1Þ þOðL2Þ þOðL3Þ þOðL4Þ þ � � � þOðLrÞ
¼ ½OðL1Þ þOðL3Þ þ � � � þOðLrÞ� þ ½OðL2Þ þOðL4Þ þ � � � þOðLr�1Þ�:
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Because of I2 ¼ L1 þ L3 þ � � � þ Lr and I1 > L2 þ L4 þ � � � þ Lr�1, the value of Q is bounded by
Q ¼ OðI2Þ þOðI1Þ
¼ OðI2Þ
¼ OðLÞ:
Consequently, it comes to a conclusion that any arbitrary-sized I1 � I2 image can be encoded (partitioned)
into O(L) Hilbert curves (quadrants) where L ¼ maxðI1; I2Þ. The proof is completed. h
3.2. Concatenating encoded Hilbert curves to form a complete Hilbert curve

By Theorem 1, it is known that any arbitrary-sized I1 · I2 image can be encoded into O(L) quadrants where
L ¼ maxðI1; I2Þ and each quadrant can be encoded into a corresponding Hilbert curve. We present how to
concatenate these encoded Hilbert curves to obtain a complete Hilbert curve.

Definition 2. After encoding one square sub-image into a set of Hilbert curves, a subset of Hilbert curves, in
which each Hilbert curve is with the same resolution j, is called an Hj-set.

As shown in Fig. 7, assume the given square sub-image has been partitioned into a set of Hilbert curves.
For convenience, all the Hilbert curves in the Hj-set are arranged in clockwise orientation. For Fig. 7, by
Definition 2, we have Hr-set = < H 1

r >, Hr�1-set = < H1
r�1;H

2
r�1; . . . ;H5

r�1 >, and H r�2-set =
< H1

r�2;H
2
r�2; . . . ;H 13

r�2 >. Therefore, Fig. 7 can be represented by the set fH r-set;Hr�1-set;Hr�2-setg.

Definition 3. After reversing the scanning order of the Hilbert curves in the Hj-set, the reversed Hj-set is called
the H j-set.

It is known that in Fig. 7, H r�1-set is equal to < H 1
r�1;H

2
r�1; . . . ;H 5

r�1 >. By Definition 3, the reversed Hr�1-
set is equal to Hr�1-set ¼< H 5

r�1;H
4
r�1; . . . ;H1

r�1 > and the reversed H r�2-set is equal to Hr�2-set =
fH 13

r�2;H
12
r�2; . . . ;H1

r�2g. Following Definition 2 and 3, we present how to concatenate all the encoded Hilbert
curves in the square sub-image. Suppose one square sub-image has been represented by
fH r-set;Hr�1-set; . . . ;Hr�k-setg.

Definition 4 (NW–NE Concatenation Strategy). When the entrance point is at the north–west corner of H r-set
and the exit point is at the north–east corner of H r-set, starting from the Hr-set, we first concatenate its exit
point with the entrance point of Hr�1-set. Then we concatenate the exit point of H r�1-set with the entrance
point of H r�2-set, and so on.

Definition 5 (NW–SW Concatenation Strategy). When the entrance point is at the north–west corner of H r-set
and the exit point is at the south–west corner of H r-set, starting from the Hr-set, we first concatenate its exit
point with the entrance point of Hr�1-set. Then we concatenate the exit point of H r�1-set with the entrance
point of H r�2-set, and so on.
Fig. 7. One example for packing a subset of Hilbert curves into an Hj-set, each Hilbert curve with resolution j.
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From Lemma 2, it is known that we partition the input image into a set of Hilbert curves from NW
direction to SE direction. On the contrary, if we partition the input image into a set of Hilbert curves from the
SE direction to the NW direction, instead of using the NW–NE (NW–SW) concatenation strategy, we utilize
the SE–SW (SE–SN) concatenation strategy.

Following Definition 4 (Definition 5), applying the NW–NE (NW–SW) concatenation strategy to Fig. 7,
the resulting concatenated configuration is shown in Fig. 8a (Fig. 8b). Based on the NW–NE concatenation
strategy, Fig. 8a indicates that the entrance (exit) point of the resulting concatenated configuration of Fig. 7 is
at the upper-left (upper-right) corner of H 1

r ðH 1
r�2Þ. From Fig. 8b, the entrance (exit) point of the resulting

concatenated configuration of Fig. 7 is at the upper-left (lower-left) corner of H 1
r ðH 13

r�2Þ.
By Lemma 2, either applying the NW–NE concatenation strategy or the NW–SW concatenation strategy to

the partitioned square sub-image, we have the following result.

Lemma 3. For any partitioned square sub-image, the encoded Hilbert curves can be concatenated to obtain a com-
plete Hilbert curve.

Given a 7 · 7 square sub-image, by Lemma 3, the constructed complete Hilbert curve by applying the NW–
NE (NW–SW) concatenation strategy to the given square sub-image is shown in Fig. 9a (Fig. 9b).

After describing the NW–NE concatenation strategy and the NW–SW concatenation strategy to construct
a complete Hilbert curve for any partitioned square sub-image, we further generalize it to construct a complete
Hilbert curve for any arbitrary-sized I1 · I2 image. For convenience, we still assume I1 < I2. As mentioned in
Theorem 1, let N 1 ¼ bI2=I1c denote the number of I1 � I1 square sub-images which are partitioned from the
given I1 · I2 image. Let L1 ¼ N 1 � I1 ¼ bI2=I1c � I1, then the I1 � ðI2 � L1Þ sub-image denotes the remaining
image after removing these N1 square sub-images which each square sub-image is of size I1 � I1. Next, the
remaining I1 � ðI2 � L1Þ sub-image is partitioned into one L2 � ðI2 � L1Þ sub-image and one
ðI1 � L2Þ � ðI2 � L1Þ sub-image where L2 ¼ bI1=ðI2 � L1Þc � ðI2 � L1Þ. The ðI2 � L1Þ � L2 sub-image is further
partitioned into N 2 ¼ L2=ðI2 � L1Þ square sub-images in which each square sub-image is of size
ðI2 � L1Þ � ðI2 � L1Þ. For example, as shown in Fig. 10, suppose one given image is partitioned into two max-
imal square sub-images, namely S1 and S2, and two middle square sub-images, namely S3 and S4, and so on.
For exposition, the two square sub-images, S1 and S2, are called horizontally oriented square sub-images and
the two square sub-images, S3 and S4, are called vertically oriented square sub-images.

The following definition is used to characterize four types of one square sub-image in the partitioned arbi-
trary-sized image.
Fig. 8. Two concatenation strategies for Fig. 7. (a) Applying the NW–NE concatenation strategy to Fig. 7. (b) Applying the NW–SW
concatenation strategy to Fig. 7.
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Definition 6. If the number of Hj-set’s in the horizontally oriented square sub-image is even (odd), the
horizontally oriented square sub-image is called the H-EVEN (H-ODD) square sub-image. If the number of
Hj-set’s in the vertically oriented square sub-image is even (odd), the vertically oriented square sub-image is
called the V-EVEN (V-ODD) square sub-image.

Returning to the 7 · 17 image as shown in Fig. 5a and the corresponding one in Fig. 10, by Definition 6, the
first partitioned horizontally oriented 7 · 7 square sub-image is S1; the number of Hj-set’s is 3 and the three Hj-
set’s are denoted by H2, H1, and H0. Therefore, for the square sub-image S1, it is called the H-ODD square
sub-image. Similarly, the second partitioned square sub-image S2 is also called the H-ODD square sub-image.
Further, the two partitioned 3 · 3 square sub-images, S3 and S4, are the V-EVEN square sub-images since the
number of Hj-set’s in each vertically oriented 3 · 3 square sub-image is even.

After characterizing the type of each partitioned square sub-image, by Lemma 3, we have the following
result.

Theorem 2. Given a partitioned arbitrary-sized image, for the H-ODD square sub-image or V-EVEN square sub-

image, by Definition 4, the NW–NE Concatenation Strategy is used to concatenate the set of the related Hilbert

curves. For the H-EVEN square sub-image or V-ODD square sub-image, by Definition 5, the NW–SW

Concatenation Strategy is used to concatenate the set of the related Hilbert curves. After concatenating the exit

point of the former square sub-image with the entrance point of the current square sub-image, the complete Hilbert

curve can be constructed from the arbitrary-sized image.

By Theorem 2, the complete Hilbert curve constructed from Fig. 5a is illustrated in Fig. 11.

3.3. The proposed coding scheme

In this section, the encoding and decoding scheme for one pixel is presented. Given the (x,y)-coordinate of
one pixel in the input arbitrary-sized image, the encoding scheme is to find the corresponding Hilbert order.
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Fig. 11. Constructing the complete Hilbert curve from Fig. 5a.
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On the contrary, given a Hilbert order of one pixel, the decoding scheme is to find the (x,y)-coordinate of that
pixel.

Assume one arbitrary-sized image has been partitioned into k quadrants. According to the scanned quad-
rants in the input partitioned arbitrary-sized image, let the sequence of the scanned quadrants be represented
by < ððx; yÞe1

; o1; r1Þ; ððx; yÞe2
; o2; r2Þ; . . . ; ððx; yÞek

; ok; rkÞ > where ðx; yÞei
denotes the (x,y)-coordinate of the

entrance point ei in the quadrant qi; oi denotes the orientation of the quadrant qi; ri denotes the resolution
of the encoded Hilbert curve of the quadrant qi for 1 6 i 6 k. As shown in Fig. 12a–d, one quadrant may have
four orientations, namely orientation-0, 1, 2, and 3, respectively.

Given the (x,y)-coordinate of one pixel in one partitioned I1 � I2 image, the sequence of the scanned quad-
rants is first searched one by one to find the quadrant to which the pixel belongs. The search is bounded by
O(k) time. Assume the scanned quadrant is ððx; yÞei

; oi; riÞ and ðx0; y 0Þ denotes the (x,y)-coordinate of one pixel
in the quadrant qi. According to Table 1 associated with the orientation information of the quadrant qi, the
(x,y)-coordinate of that pixel, ðx0; y 0Þ, can be determined in O(1) time.

Based on the determined ðx0; y0Þ-coordinate of the pixel, the Hilbert order of the pixel in the quadrant qi, hi

can be calculated by Liu and Schrack’s coding scheme [27] (see Eqs. (1) and (2)). Upon calculating the Hilbert
order of the pixel in the quadrant qi, by Theorem 2, the Hilbert order of the pixel along the complete Hilbert
curve is given by
h ¼
Xi�1

j¼1

ð2rj � 2rjÞ þ hi

¼
Xi�1

j¼1

4rj þ hi: ð5Þ
Since the calculation of hi takes OðriÞ ¼ Oðlog UÞ time based on Liu and Schrack’s encoding scheme where the
size of each quadrant is bounded by U · U where U ¼ minðI1; I2Þ. Consequently we have the following result
because at most O(k) quadrants must be examined.
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Fig. 12. Four orientations of one quadrant: (a) orientation-0, (b) orientation-1, (c) orientation-2, and (d) orientation-3.



Table 1
The (x,y)-coordinate of one pixel in the ith quadrant

Quadrant’s orientation ðx0; y0Þ
0 ðxei � x; yei

� yÞ
1 ðyei

� y; xei � xÞ
2 ðx� xei ; y � yei

Þ
3 ðy � yei

; x� xei Þ
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Theorem 3. Given an arbitrary-sized I1 � I2 image, if the (x,y)-coordinate of one pixel is known, the Hilbert

order of that pixel can be encoded in Oðk þ log UÞ time.

For example, assume the (x,y)-coordinate of one pixel is (10, 3) in the 6 · 16 image as shown in Fig. 13. For
Fig. 13, by Theorem 2, the sequence of the scanned quadrants is < ðð0; 0Þe1

; 3; 2Þ; ðð0; 4Þe2
; 2; 1Þ;

. . . ; ðð15; 4Þe15
; 2; 1Þ >. According to the above discussion, we can find that the quadrant

q11 ¼ ðð11; 3Þe11
; 1; 1Þ to which the pixel with coordinate (10,3) belongs. According to the four orientations

defined in Fig. 12, the orientation type of the quadrant q11 is orientation-1. By Table 1, the ðx0; y0Þ-coordinate
of the pixel in the quadrant q11 is ð0; 1Þð¼ ðye11

� y; xe11
� xÞ ¼ ð3� 3; 11� 10ÞÞ. By Eqs. (1) and (2), the Hil-

bert order of the pixel in the quadrant q11 is 1. Further, by Eq. (5), the Hilbert order of the pixel along the
complete Hilbert curve in Fig. 13 is calculated by
h ¼
X10

j¼1

ð2rj � 2rjÞ þ 1

¼ ð16þ 5� 4þ 16þ 3� 4Þ þ 1

¼ 65:
In the proposed decoding scheme, the sequence of the scanned quadrants represented by < ððx; yÞe1
;

o1; r1Þ; ððx; yÞe2
; o2; r2Þ; . . . ; ððx; yÞek

; ok; rkÞ > is used again. Based on the obtained Hilbert order of the pixel
by Eq. (5), the Hilbert order hi of the pixel in the quadrant qi can be calculated and it can be done in O(k)
time. Using the Hilbert order hi as the input, the ðx0; y 0Þ-coordinate of the pixel in the quadrant qi can be cal-
culated by Eqs. (3) and (4) and it can be done in O(U) time. Finally, the (x,y)-coordinate of the pixel in the
arbitrary-sized image can be determined by Table 1. The total time complexity of our proposed decoding
scheme is Oðk þ log UÞ time.

4. Memory-saving Hilbert curve representation: HCGL

By Theorem 2, it is known that any arbitrary-sized image can be encoded into a complete Hilbert curve
which concatenates a set of Hilbert curves. Two pixels are said to be two neighboring pixels if their Hilbert
orders are consecutive. From this locality property, the gray levels of two neighboring pixels may be rather
similar. Based on the locality property, Gouraud shading technique [16], recursive binary partition scheme,
and S-tree data structure [22], this section presents a modified Hilbert curve representation called Hilbert
curve-based gray levels (HCGL) representation. Because of employing the recursive binary partition scheme
Fig. 13. One example for calculating the Hilbert order of one pixel along the complete Hilbert curve.
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and S-tree data structure, experimental results indicate that under the same image quality, the proposed
HCGL representation has better compression effect when compared to the previous two representations –
the split point approximation [19] and the zero order interpolation [25].

Based on the constructed complete Hilbert curve mentioned in Section 3, we scan all the pixels along the
complete Hilbert curve and generate a 3-D curve consisting of gray levels of all the scanned pixels. The scanned
pixels are called the HCGL. According to the binary recursive subdivision principle on the HCGL, the HCGL
is partitioned into two segments first. If any segment is not homogeneous, it is subdivided into two smaller seg-
ments until all the homogeneous segments are obtained. During subdividing the HCGL, a segment is called a
homogeneous segment if and only if the estimated grey level of each of the pixels in the segment is in some vicin-
ity of its real grey level. For any segment of HCGL, suppose the Hilbert orders of the end-points of the segment
are i1 and i2 and their corresponding grey levels are g1 and g2, respectively. Using the Gouraud shading tech-
nique, i.e. the linear interpolation, the estimated grey level of the pixel with Hilbert order i is calculated as
Fig. 14
(b) Th
gestðiÞ ¼ g1 þ
g2 � g1

i2 � i1

ði� i1Þ: ð6Þ
Given a specified error tolerance e, if the following image quality condition holds:
jgðiÞ � gestðiÞj 6 e
for every Hilbert order i, i1 6 i 6 i2, then the segment from the Hilbert order i1 to the Hilbert order i2 is called
the homogeneous segment. In fact, the above segmentation process can be emulated by a binary tree structure
called the bintree.

In our proposed HCGL representation, we traverse the bintree in breadth-first-search manner, at each time,
we emit a ‘0’ when an internal node is encountered; emit a ‘1’ when a leaf node is encountered. After traversing
the bintree, the sequence of these ordered binary values is saved in the linear-tree table. Meanwhile, at each
time, we do nothing when an internal node is encountered. When a leaf node is traversed, we emit the grey level
of the starting point in the concerning homogeneous segment. The sequence of these emitted grey levels is stored
in the color table. The constructed linear-tree and color tables form the proposed HCGL representation. The
two tables used in the proposed HCGL representation are some similar to the S-tree representation [22].

For example, suppose the given complete Hilbert curve has been partitioned into the set of homogeneous
segments as shown in Fig. 14a according to the above bintree decomposition scheme. The corresponding bin-
tree is illustrated in Fig. 14b. The final HCGL representation for Fig. 14b is listed below:

linear-tree table: 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1
color table: ge, gh, gk, gl, ga, gb, gc, gd, gf, gg, gi, gj1

, gj2

where the symbol ge denotes the grey level of the leftmost endpoint in the segment e; the symbol gh denotes the
grey level of the leftmost endpoint in the segment h, and so on. Specifically, gj1

and gj2
denote the grey levels of

two endpoints of the segment j.
a

b

. One example of building up the proposed HCGL representation. (a) The homogeneous segments for one complete Hilbert curve.
e corresponding bintree.
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Given a complete Hilbert curve, assume there are n1 homogeneous segments based on the proposed HCGL
representation. Since each grey level in the color table needs 8 bits, it needs 8n1 bits for saving the color table.
It is easy to verify that the linear-tree table needs 2n1 � 1 bits. Consequently, the proposed HCGL represen-
tation needs 10n1 � 1 bits.

In the previous Hilbert curve representations [19,25], there is one common disadvantage that the lengths of
some homogeneous segments may be rather long. According to our experiments, seven bits are needed to
encode the length of one segment. In the zero order interpolation [25], excepting the last segment, (g, l) is used
to represent each segment where g denotes the mean value of the segment with length l. Specifically, ðg1; g2; lÞ
is used to represent the last segment where g1 (g2) denotes the grey level of the leftmost (rightmost) endpoint
of the segment with length l. If there are n2 homogeneous segments in the Hilbert curve representation, it
needs 15n2+8 ð¼ 7n2 þ 8ðn2 þ 1ÞÞ bits. In the split point approximation [19], suppose there are n3 segments,
then each segment is represented by ðg1; g2; lÞ and the grey level of each pixel in the segment is approximated
by linear interpolation. Consequently, the split point approximation method needs 23n3ð¼ ð7þ 8þ 8Þn3Þ
bits.

When comparing the proposed HCGL representation with the previous two Hilbert curve representations,
the proposed HCGL representation needs 10n1 � 1 bits while the previous zero order interpolation (split point
approximation) needs 15n2 + 8 ð23n3Þ bits. We thus have the following result.

Theorem 4. When n1 < 1:5n2 þ 1ðn1 < 2:3n3Þ, the memory requirement of the proposed HCGL representation is

less than the previous zero order interpolation method (split point approximation method).

Based on four testing images, experimental results (see Section 6) demonstrate that under the same image
quality, the proposed HCGL representation has better compression performance when compared to the zero
order interpolation [25] and the split point approximation [19].

5. Window query application

Previously, based on a 2r � 2r image, Chung et al. [10] presented a window query algorithm for image data-
base application [1,31,32]. In this section, based on the proposed results mentioned in Sections 3 and 4, we
extend the previous window query algorithm from 2r � 2r image domain to arbitrary-sized image domain.

Definition 7 (Maximal Quadtree Blocks [2]). Given any query window, the set of maximal quadtree blocks
can be obtained by decomposing the window into a set of quadtrants according to the quadtree decomposition
over the 2r � 2r image domain.

For example, we are given a 16 · 16 image domain and a query window W ¼ wðx; y; n1; n2Þ ¼ wð11; 10; 6; 5Þ
as shown in Fig. 15 where x and y represent the x- and y-coordinates of its upper-left corner; n1 is the height
and n2 is the width of the query window. By Definition 7, the set of maximal quadtree blocks is
fB1;B2; . . . ;B9g based on the quadtree decomposition of the query window over the 16 · 16 image domain.
For decomposing a query window into maximal quadtree blocks over the 24 � 24 image domain, Aref and
Samet [2] presented the first algorithm, then two different optimal algorithms [34,40] for determining maximal
quadtree blocks were presented.

Definition 8. Given an n1 � n2 window as a query, the window query problem is to output the codes of the
concerning maximal quadtree blocks.

For any arbitrary-sized image, our proposed window query algorithm is listed below.
ALGORITHM: WINDOW QUERY
Input: The query window W and the proposed HCGL representation for representing the given I1 · I2

image.
Output: The corresponding codes of the concerning maximal quadtree blocks.

Step 1. (Constructing the sequence of the scanned quadrants) From the height I1 and width I2 of the image
domain, by Theorem 1, the sequence of the k scanned quadrants is constructed. This step takes
O(k) time where k is the number of the quadrants.
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Fig. 15. An example for decomposing a query window into a set of maximal quadtree blocks.
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Step 2. (Finding the quadrants intersected with the query window W) The sequence of the k scanned quadrants
is searched one by one to find the quadrants intersected with the query window W. Then we collect the
intersected sub-windows and the corresponding intersected quadrants. For exposition, assume these
intersected (sub-window, quadrant)-pairs are fðW 1; q01Þ; ðW 2; q02Þ; . . . ; ðW m; q0mÞg. This step takes O(k)
time.

Step 3. (Generating the maximal quadtree blocks) For these intersected (sub-window, quadrant)-pairs, apply-
ing any maximal quadtree blocks partition strategy [34,40] to ðW i; q0iÞ; 1 6 i 6 m, it takes O(M) time to
generate all the M maximal quadtree blocks.

Step 4. (Outputting the codes) For 1 6 i 6 m, apply the code-generation method presented in [10] to generate
the code for each ðW i; q0iÞ-pair. It takes OðM log Lþ PÞ time to generate all the codes where
L ¼ maxðI1; I2Þ and P denotes the number of output codes.

According to the time analysis of each step in the above algorithm, our proposed window query algorithm
takes OðM log Lþ P Þð¼ OðkÞ þOðMÞ þOðM log U þ P ÞÞ time, commonly k 6 M .

Given an 18 · 22 image domain as shown in Fig. 16, after performing Step 1, the image domain can be par-
titioned into a set of quadrants which is represented by the sequence < ðð0; 0Þe1

; 3; 4Þ; ðð0; 16Þe2
;

2; 1Þ; . . . ; ðð20; 16Þe24
; 2; 1Þ >. Next, a query window W ¼ wð11; 10; 7; 8Þ shown in Fig. 16 is used to perform

the window query operation in the 18 · 22 image domain. After performing Step 2, the intersected quadrants
are ðð0; 0Þe0

; 3; 4Þ; ðð10; 16Þe6
; 2; 1Þ; . . . ; and ðð18; 16Þe22

; 2; 1Þ and their corresponding sub-windows are

wð11; 10; 6; 5Þ;wð11; 16; 1; 1Þ; . . . ; and wð18; 16; 1; 1Þ, respectively.
After performing Step 3, for each ðW i; q0iÞ-pair, the maximal quadtree blocks partition strategy is used to

obtain the set of the maximal quadrant blocks. For instance, the ðW 1; q01Þ-pair denotes the intersected
24 � 24 quadrant and the intersected 6� 5 query window where W 1 ¼ wð11; 10; 6; 5Þ and
q01 ¼ ðð0; 0Þe1

; 3; 4Þ. Over the 24 � 24 image domain, the maximal quadtree blocks partition strategy can
decompose the query window W1 into a set of maximal quadtree blocks fB1;B2; . . . ;B9g as shown in
Fig. 15. Fig. 17 illustrates the resulting maximal quadtree blocks. After performing Step 4, the code-generation
method [10] is used to generate the maximal Hilbert order and the minimal Hilbert order of the Hilbert curve
in each generated maximal quadtree block. Next, the set of all the generated maximal Hilbert orders and the
minimal Hilbert orders are sorted [14]. Among these sorted maximal Hilbert orders and the minimal Hilbert
orders, if the difference of the Hilbert orders of the entrance point of the current maximal quadtree block and
the exit point of the previous maximal quadtree block is exactly one, the two consecutive Hilbert curves in the
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two maximal quadtree blocks can be merged to one longer Hilbert curve in order to reduce the number of the
Hilbert orders used. Only the Hilbert orders of the entrance point of the first maximal quadtree block and the
exit point of the last maximal quadtree block are needed to represent the new merged maximal quadtree block
if some maximal quadtree blocks can be merged. The maximal Hilbert order and the minimal Hilbert order of
each longer Hilbert curve are considered as two search keys. Then, the binary search [14] is used to find the
corresponding output codes [10]. Consequently, the corresponding output codes of all maximal quadtree
blocks in the query window are united as the final output codes.

6. Experimental results

As shown in Fig. 18, two CIF format images, namely the Akiyo image and the mother image, each with size
288 · 352, and two 256 · 352 images, namely the Susie image and the dancer image, are used to evaluate the
performance among the related algorithms. First we compare the compression and image quality performance



Fig. 18. Four testing images. (a) Akiyo image. (b) Mother image. (c) Susie image. (d) Dancer image.
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between the proposed snake scan-based coding scheme and the raster scan-based coding scheme on the pro-
posed HCGL representation. Under the same image quality, we next compare the compression performance
among the proposed snake scan-based HCGL representation, the zero order interpolation [25], and the split
point approximation [19]. Finally, one aerial photo, namely the San Francisco image, is used as the testing
image in our proposed window query application. Moreover, the execution time performance between the pro-
posed window query algorithm and the naive window query algorithm is evaluated. All experiments are per-
formed on the Mobile Intel Pentium 4 microprocessor with 1.4 G MHz and 256 MB RAM. The operating
system is MS-Windows XP and all programs are developed by Borland C++ Builder.

For four testing images associated with e = 20, Table 2 illustrates the compression and image quality per-
formance comparison between our proposed snake scan-based HCGL scheme and the raster scan-based
HCGL scheme. The image quality performance is measured in terms of PSNR and the PSNR measure is
defined by
Table
Comp
HCGL

e = 20

Image

Akiyo
Mothe
Susie
Dance
PSNR ¼ 10 log10

2552

MSE

� �
2
ression and PSNR performance comparison between the proposed snake scan-based HCGL scheme and the raster scan-based

scheme

Number of segments BPP PSNR

Snake scan Raster scan Snake scan Raster scan Snake scan Raster scan

7247 12,509 0.71 1.23 32.91 32.83
r 6698 11,348 0.67 1.12 32.90 32.47

4903 8644 0.54 0.96 31.45 31.03
r 5091 10,056 0.57 1.12 32.33 34.17
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where MSE is the mean square error between the decompressed image and the original image. It is ob-
served that for three of the four testing images, the image quality of our proposed snake scan-based coding
scheme outperforms that of the raster scan-based coding scheme. For four testing images, the compression
effect of our proposed snake scan-based coding scheme, in terms of BPP, outperforms that of the raster
scan-based coding scheme since the number of segments in the proposed snake scan-based coding scheme
is much less than that of the raster scan-based one. With respect to five e’s, e ¼ 5; 10; 15; 20; 25, under the
same PSNR, Fig. 19 shows that the proposed snake scan-based HCGL scheme has the higher compression
effect.

Given the same error tolerances, e ¼ 5; 10; 15; 20; and 25, Table 3 illustrates the performance comparison
among the proposed snake scan-based HCGL representation, the zero order interpolation [25], and the split
point approximation [19] for Akiyo image. In order to reduce the total bits needed, we restricted the longest
length in the zero order interpolation and the split point approximation to be 127, i.e. the length is represented
by 7 bits. Although the number of segments required in the HCGL representation is more than that of the zero
order interpolation and the split point approximation, the memory requirement of the HCGL representation
is still less than that of the zero order interpolation and that of the split point approximation due to the mem-
ory-saving advantage of S-tree structure. For Akiyo image and mother image, Fig. 20 shows the compression
performance comparison among the proposed snake scan-based HCGL representation, the zero order inter-
polation, and the split point approximation. It is observed that under the same PSNR, the compression effect
of the HCGL representation is better than that of zero order interpolation and the split point approximation.
Moreover, as shown in Table 3, the execution time of the HCGL representation is faster than that of zero
order interpolation and the split point approximation.
Fig. 19. The compression performance comparison between the proposed snake scan-based HCGL scheme and the raster scan-based
HCGL scheme. (a) For Akiyo image; (b) for mother image; (c) for Susie image; (d) for dancer image.



Fig. 20. The compression performance comparison among the proposed snake scan-based HCGL scheme, the zero interpolation, and the
split point approximation. (a) For Akiyo image; (b) for mother image.

Table 3
Number of segments and execution time performance comparison among the HCGL representation, zero order interpolation, and split
point approximation for Akiyo image

e Number of segments Executive time (s)

HCGL Zero Split HCGL Zero Split

5 21,103 15,031 11,978 0.17 4.36 8.58
10 12,926 9714 7572 0.14 4.25 8.31
15 9357 7554 5692 0.12 4.20 8.21
20 7247 6301 4613 0.11 4.17 8.11
25 5553 5565 3879 0.10 4.15 8.06

Average 11,237 8833 6747 0.13 4.23 8.25
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Based on the our proposed window query algorithm, an aerial photo of one GIS application is used as an
example for window query application. In GIS application, the image size is usually very huge such that per-
forming operations on the related images is very time-consuming. Besides, from the window query viewpoint,
the high-frequency content of the image in GIS application is more important than the low-frequency content.
Since our proposed HCGL representation can preserve the high-frequency content of the given image quite
well, the proposed HCGL-based window query algorithm is suitable for the aerial photo in GIS application.
As shown in the upper-middle image of Fig. 21, the testing image is the San Francisco aerial photo whose size
is 896� 1024. Under the error tolerance e ¼ 10, the testing San Francisco aerial photo has been compressed in
terms of the proposed HCGL representation. Four window queries, each represented by the position of left-
top corner, the width and the length, are given and are represented by ðð300; 22Þ; 200; 200Þ, ðð2; 373Þ; 300; 200Þ,
ðð549; 622Þ; 200; 200Þ, and ðð700; 571Þ; 200; 300Þ. According to the proposed window query algorithm, the four
resulting sub-images are depicted by the four sub-images which are around the testing image.

Finally, based on the arbitrary-sized image, we compare the execution time performance between the pro-
posed window query algorithm and the naive algorithm. The input image is represented by using the proposed
snake scan-based HCGL representation with error tolerance e ¼ 20. Six types of query window sizes are used
and they are 10,000, 15,000, 20,000, 25,000, 30,000, and 35,000. For each specific window size, 100 query win-
dows are generated by choosing the width and the height of the window randomly. Here the locations of the
generated windows are also given randomly and it will affect the execution time required in our proposed win-
dow query algorithm. Based on four testing images, Table 4 illustrates the execution time performance com-
parison between the proposed window query algorithm and the naive algorithm. In Table 4, the time unit is
microsecond. It is observed that the execution time of the proposed window query algorithm is less than that
of naive algorithm significantly and the execution time improvement ratio ranges from 89% to 99%.



Fig. 21. One window query example for San Francisco aerial photo.

Table 4
Execution time performance comparison between the proposed window query algorithm and the naive algorithm

(ms) Akiyo Mother Susie Dancer

Window size Tour Tnav Tour Tnav Tour Tnav Tour Tnav

10,000 8.61 86.92 9.22 85.93 4.41 87.03 3.11 85.82
15,000 11.92 130.18 7.92 130.69 9.11 134.30 5.81 129.99
20,000 6.22 174.15 9.10 175.75 8.51 175.26 12.52 174.05
25,000 6.41 217.91 13.22 231.74 7.40 221.22 13.51 219.00
30,000 13.92 266.98 10.11 267.69 12.52 280.21 8.81 261.57
35,000 6.01 311.05 3.60 319.06 19.43 314.65 8.91 307.93
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7. Conclusions

This paper has presented the proposed snake scan-based algorithm for coding the Hilbert curve of an image
with arbitrary size I1 � I2. The proposed algorithm takes Oðk þ log UÞ time, where k denotes the number of
the quadrants and U ¼ minðI1; I2Þ, for coding the Hilbert order of one pixel and it extends the coding scheme
of Liu and Schrack from the quadrant domain to the arbitrary-sized image domain. Next the proposed mem-
ory-saving HCGL representation has been presented for representing the constructed complete Hilbert curve.
The proposed HCGL representation can be constructed in OðL2 log LÞ time. Experimental results show that
the proposed HCGL representation outperforms the previous two representations – the split point approxi-
mation [19] and the zero order interpolation [25]. Finally, based on the arbitrary-sized image domain, a win-
dow query algorithm is presented and the proposed window query algorithm takes OðkLþ P Þ time where k

denotes the number of maximal quadtree blocks and P denotes the number of output codes. The proposed
window query algorithm is faster than the naive algorithm which needs Oðw1w2Lþ PÞ time where the query
window is of size w1 � w2. Under the same PSNR, experimental results demonstrate that our proposed HCGL
representation outperforms some existing related algorithms in terms of execution-time requirement and BPP.
In addition, our proposed window query algorithm has been justified in the window query application in the
GIS application.
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Recently, Wang et al. [42] presented an efficient globally adaptive pixel-decimation (GAPD) algorithm for
block motion estimation. In their algorithm, for the current frame, the scanning order is based on the block-
based raster scan. Upon scanning the current block, it is transformed into Hilbert curve-based sequence, and
then the sequence is divided into some segments. Instead of using the block-based scanning order, it seems that
our proposed snake scan-based algorithm for coding the Hilbert curve of an arbitrary-sized image can be
applied to Wang et al.’s motion estimation algorithm in order to have better estimation accuracy and to gen-
eralize their result to the arbitrary-sized image domain. In addition, it is also an interesting research issue to
extend the results of this paper to the other applications such as retrieval [38], region segmentation [12],
moment computation [13], neighbor-finding, watermarking, alternative patterns, cost modeling of spatial
operators [20], count queries [41], image coding, and so on.
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[17] D. Hilbert, Über die stetige Abbildung einer Linie auf ein Fl€achenstuck, Mathematische Annalen 38 (1891) 459–460.
[18] H.V. Jafadish, Analysis of the Hilbert curve for representing two-dimensional space, Information Processing Letters 62 (1) (1997) 17–

22.
[19] F.C. Jian, Hilbert curves and its applications on image processing, M.S. thesis, National Taiwan University, 1996.
[20] S. Jiang, B.S. Lee, Z. He, Cost modeling of spatial operators using non-parametric regression, Information Sciences 177 (2) (2007)

607–631.
[21] R. Johnsonbaugh, Discrete Mathematics, fifth ed., Prentice Hall, NJ, 2001.
[22] W. de Jonge, P. Scheuerman, A. Schijf, Sþ-Tree: An efficient structure for the representation of large picture, CVGIP: Image

Understanding 59 (3) (1994) 265–280.
[23] S. Kamata, M. Niimi, E. Kawaguchi, A method of an interactive analysis for multi-dimensional images using a Hilbert curve, IEICE

Transactions J77-D-II (7) (1993) 1255–1264.
[24] S. Kamata, R.O. Eaxon, E. Kawaguchi, An implementation of the Hilbert scanning algorithm and its application to data

compression, IEICE Transactions Information and Systems E76-D (4) (1993) 420–428.
[25] S. Kamata, M. Niimi, E. Kawaguchi, A gray image compression using a Hilbert scan, in: Proceedings of the 13th International

Conference on Pattern Recognition, 1996, pp. 905–909.
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