
Signal Processing 84 (2004) 1689–1699
www.elsevier.com/locate/sigpro

E�cient cache-based spatial combinative lifting algorithm
for wavelet transform

Chun-Kuang Hua, Wen-Ming Yana, Kuo-Liang Chungb;∗;1

aDepartment of Computer Science and Information Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road,
Taipei 10764, Taiwan

bDepartment of Computer Science and Information Engineering, National Taiwan University of Science and Technology, No. 43,
Section 4, Keelung Road, Taipei 10672, Taiwan

Received 31 May 2002; received in revised form 2 April 2004

Abstract

Recently, a fast spatial combinative lifting algorithm (SCLA) for performing the wavelet transform (WT) was presented
by Meng and Wang, and the SCLA speeds up the well-known lifting scheme presented by Daubechies and Sweldens.
Employing the concept in the block-based WT by Bao and Kuo, this letter presents an e�cient cache-based SCLA
(CSCLA) for performing the WT. Theoretically, the number of total arithmetical operations required in the proposed
CSCLA is equal to that in the SCLA. Experimental results con9rm the computational advantage of our proposed CSCLA
when compared to some other previous results. In addition, the VTune Performance Analyzer is used to evaluate the cache
performance among the concerning algorithms.
? 2004 Elsevier B.V. All rights reserved.

Keywords: Cache-based algorithm; Spatial combinative lifting algorithm; Wavelet transform

1. Introduction

The biorthogonal wavelet 9
7 9lter proposed by Cohen et al. [6] is used in the JPEG2000 standard [4]. Previ-

ously, Mallat [11] presented a convolution-based implementation for performing the WT. The convolution-based
implementation takes 9n2 multiplications and 14n2 additions where the image size is of n×n. Later Daubechies
and Sweldens [7] presented a lifting scheme-based implementation which takes 6n2 multiplications and 8n2

additions and is faster than the convolution-based implementation. Recently, Meng and Wang [12] presented
an e�cient spatial combinative lifting algorithm (SCLA) for performing the WT in order to improve the
lifting scheme-based WT. The SCLA only takes 3:5n2 multiplications and 8n2 additions. From the comparison
of the number of operations required, the SCLA is the fastest among the three methods. Under the cache
memory environment [8], some cache—and VLSI-based WTs [3,10] and cache—and convolution-based WTs
[2,5] have been developed in the literatures. Among the cache- and convolution-based WTs, Bao and Kuo

∗ Corresponding author. Tel.: +866-2-27376771; fax: +886-2-27376777.
E-mail address: klchung@cs.ntust.edu.tw (K. Chung).

1 Supported by the National Science Council of R.O.C. under contract NSC90-2213-E011-056.

0165-1684/$ - see front matter ? 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.sigpro.2004.05.014

mailto:klchung@cs.ntust.edu.tw


1690 C. Hu et al. / Signal Processing 84 (2004) 1689–1699

[2] presented the block-based WT to improve the line-based WT [5]. Especially, once the WT of one block
has been 9nished, then a portion of the resulting block can be sent to the image codec immediately. Since
the SCLA is faster than the convolution-based implementation for performing the WT, the motivation of this
letter is to present an e�cient cache-based SCLA (CSCLA) by employing the block-based approach [2].
According to the special computational structure of the SCLA, we 9rst analyze the data dependence in

the SCLA, then we present an e�cient CSCLA. Theoretically, the number of total arithmetical operations is
equal to that in the SCLA. Experimental results con9rm the computational advantage of our proposed CSCLA
when compared to some other previous results [2,5,12]. In addition, the VTune Performance Analyzer is used
to evaluate the cache performance among the concerning algorithms. The cache performance evaluation also
reveals the memory-access advantage of our proposed CSCLA.

2. The SCLA

In this section, we 9rst introduce the lifting scheme [7], and then we introduce the SCLA [12]. Let the
input image of size n× n be denoted by the matrix X where

X =




x0;0 x0;1 x0;2 : : : x0; n−1

x1;0 x1;1 x1;2 : : : x1; n−1

x2;0 x2;1 x2;2 : : : x2; n−1

: : : : : : :

: : : : : : :

xn−1;0 xn−1;1 xn−1;2 : : : xn−1; n−1




and let the 9
7 9lter T be denoted by

T =




h0 2h1 2h2 2h3 2h4

g1 g0 + g2 g1 + g3 g2 g3

h2 h1 + h3 h0 + h4 h1 h2 h3 h4

g3 g2 g1 g0 g1 g2 g3

h4 h3 h2 h1 h0 h1 h2 h3 h4

:

:

:

h4 h3 h2 + h4 h1 + h3 h0 + h2 h1

2g3 2g2 2g1 g0




;

where h0 = 0:60295, h1 =−0:26686, h2 =−0:07822, h3 = 0:01686, h4 = 0:02675, g0=1:11509, g1 = 0:59127,
g2 =−0:05754, and g3 =−0:09127. Using the above 9lter T , the WT of X can be calculated by

Y = TXT t: (1)



C. Hu et al. / Signal Processing 84 (2004) 1689–1699 1691

From the result in [7], T can be factorized into T = EDCBA where

A=




1 0 0 0 0 · · · 0 0 0

� 1 � 0 0 · · · 0 0 0

0 0 1 0 0 · · · 0 0 0

0 0 � 1 � · · · 0 0 0

· · ·
· · ·

0 0 0 0 · · · � 1 � 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 2� 1




; B=




1 2� 0 0 0 · · · 0 0 0

0 1 0 0 0 · · · 0 0 0

0 � 1 � 0 · · · 0 0 0

0 0 0 1 0 · · · 0 0 0

· · ·
· · ·

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 � 1 �

0 0 0 0 · · · 0 0 0 1




;

C =




1 0 0 0 0 · · · 0 0 0

� 1 � 0 0 · · · 0 0 0

0 0 1 0 0 · · · 0 0 0

0 0 � 1 � · · · 0 0 0

· · ·
· · ·

0 0 0 0 · · · � 1 � 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 2� 1




; D =




1 2� 0 0 0 · · · 0 0 0

0 1 0 0 0 · · · 0 0 0

0 � 1 � 0 · · · 0 0 0

0 0 0 1 0 · · · 0 0 0

· · ·
· · ·

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 � 1 �

0 0 0 0 · · · 0 0 0 1




;

and E =




�

−�−1

�

−�−1

· · ·
�

−�−1




;

where � = −1:586134342, � = −0:0529801185, � = 0:8829110762, � = 0:4435068522, and � = 1:149604398.
Instead of performing TXT t directly, the lifting scheme performs ((((((E(D(C(B(AX )))))At)Bt)Ct)Dt)Et) and
it leads to some computational advantage.
By T = EDCBA and Eq. (1), the SCLA performs the WT of X as follows:

Y = TXT t

= E(D(C(B(AXAt)Bt)Ct)Dt)Et: (2)

In order to characterize the computational structure of the SCLA, let YA = AXAt , YB = BYABt , YC = CYBCt ,
YD = DYCDt , and YE = EYDEt , where YE = Y .



1692 C. Hu et al. / Signal Processing 84 (2004) 1689–1699

From YA = AXAt , we have

yA2i;2j = x2i;2j; yA2i;2j+1 = x2i;2j+1 + �(yA2i;2j + y
A
2i;2j+2);

yA2i+1;2j+1 = x2i+1;2j+1 + �(x2i+1;2j + x2i+1;2j+2 + yA2i;2j+1 + y
A
2i+2;2j+1);

yA2i+1;2j = x2i+1;2j + �(yA2i;2j + y
A
2i+2;2j): (3)

Assume yAi;−1 = y
A
i;1 and yA−1; i = y

A
1; i for i =−1; 0; 1; : : : ; n− 1. In order to use the temporary results of YA

in computing YB, we change the calculation “square” from [(2i; 2j); (2i; 2j+1); (2i+1; 2j); (2i+1; 2j+1)] to
[(2i− 1; 2j− 1); (2i− 1; 2j); (2i; 2j− 1); (2i; 2j)]. For computing YB = BYABt , we can derive that yB2i−1;2j−1=

yA2i−1;2j−1, y
B
2i−1;2j=y

A
2i−1;2j+�(y

B
2i−1;2j−1+y

B
2i−1;2j+1), y

B
2i;2j=y

A
2i;2j+�(y

A
2i;2j−1 + yA2i;2j+1+y

B
2i−1;2j+y

B
2i+1;2j),

and yB2i;2j−1 = y
A
2i;2j−1 + �(y

B
2i−1;2j−1 + y

B
2i+1;2j−1). Because the structures of matrices C and D are similar to

those of matrices A and B, the calculation of the multiplications with matrices C and D is following exactly
the steps used for A and B with a cascade replacement of the input by the output of the previous step.
Since the computational structure of YA, YB, YC , and YD are similar, we only list the procedure for

computing YA = AXAt for saving the space of the context. Initially we perform zi; j = xi; j. The 9nal result yAi; j
is saved into zi; j, i.e. zi; j = yAi; j.

for i ← 0 to n− 1

zi;n ← zi;n−2

for j ← 0 to n

zn;j ← zn−2; j

for i ← 0 to n
2

for j ← 0 to n
2 − 1

z2i;2j+1 ← z2i;2j+1 + �(z2i;2j + z2i;2j+2)

for i ← 0 to n
2 − 1

for j ← 0 to n
2 − 1

z2i+1;2j+1 ← z2i+1;2j+1 + �(z2i+1;2j + z2i+1;2j+2 + z2i;2j+1 + z2i+2;2j+1)

for i ← 0 to n
2 − 1

for j ← 0 to n
2

z2i+1;2j ← z2i+1;2j + �(z2i;2j + z2i+2;2j)

In the above procedure, it is easy to verify that 3
4 n

2 multiplications and 2n2 additions are needed for comput-
ing YA.



C. Hu et al. / Signal Processing 84 (2004) 1689–1699 1693

Finally we want to compute Y = EYDEt . Trivially we have y2i;2j = �s2i;2j = �2yD2i;2j, y2i;2j+1 = �s2i;2j+1 =
−yD2i;2j+1, y2i+1;2j =−�−1s2i+1;2j =−yD2i+1;2j, and y2i+1;2j+1 =−�−1 s2i+1;2j+1 = �−2yD2i+1;2j+1. The following
procedure is used to perform YE = EYDEt and it takes 1

2n
2 multiplications.

for i ← 0 to n
2 − 1

for j ← 0 to n
2 − 1

z2i;2j ← �2z2i;2j; z2i+1;2j ← −z2i;2j; z2i;2j+1 ← −z2i;2j; z2i+1;2j+1 ← �−2z2i;2j

Summing up the total number of multiplications and additions required in the the computations, YA, YB, YC ,
YD, and YE , it takes 3:5n2(=3

4n
2 + 3

4n
2 + 3

4n
2 + 3

4n
2 + 1

2n
2) multiplications and 8n2 additions.

3. The proposed cache-based SCLA: CSCLA

In this section, we describe our proposed CSCLA. In order to increase the performance of the SCLA in
the cache memory, following the block-based approach [2], we 9rst partition the input image X into some
smaller blocks and then we perform the SCLA on one block each time in the cache environment. During
performing the SCLA on one block, we need to consider the overlapped areas between that block and its
north and west neighbors. In Fig. 1, we assume that the size of each block is M ×M and a sliding window
is used to bound a region covering the needed pixels to perform the SCLA on that block. In order to perform
the CSCLA successfully, we must keep additional 5 columns (rows) in the west (south) neighboring block.
In Fig. 1, when the sliding window has been shifted from block a to block b, we thus have a (M + 5) × 5
area that is overlapped with the previous sliding window. When shifting the sliding window to block d, we
have a 5× (M +5) horizontal overlapped area. By the same way, when shifting the sliding window to block
e, we have an M × 5 vertical overlapped area and a 5 ×M horizontal overlapped area. After the horizontal
overlapped area and the vertical overlapped area have been taken into account, we thus can perform the SCLA
on any one block successfully.
Fig. 2, which is quite similar to that in [2], illustrates how the proposed CSCLA is performed. The CSCLA

is composed of nine cases to be considered. Among these nine cases, case 1 case 3 case 7 and case 9 are
concerning with four corner cases; case 2 case 4 case 6 and case 8 are concerning with four boundary cases,
and all the remaining blocks belong to case 5. According to the raster scan order, the horizontal overlapped
area of each block must be kept in an additional buPer which will be used by the south neighboring block
in the next block row. All the vertical overlapped area is not required to be saved in the buPer since the
overlapped area can be used in the next block immediately. For each case of Fig. 2, the light shaded area
is unnecessary to be saved in the buPer while the dark shaded area must be kept in the additional memory.
For exposition, we de9ne two types of memory which are used in our proposed CSCLA. The 9rst type of
memory is the working memory which is used to perform the SCLA in a block and the size of working
memory equals to the size of sliding window, i.e. (M + 5)× (M + 5). The second type of memory is called
the row buPer and we use this row buPer to keep the horizontal overlapped area of a whole block row. The
size of the row buPer is 5× N where N denotes the width of the input image.
In order to describe the computational Qow of the proposed CSCLA, we demonstrate some simulation

snapshots to demonstrate how the CSCLA works. For simplicity, we only simulate one stage WT although
it can be extended to the multistage WT. In our experiments (see Section 3), we compare the performance
among our proposed CSCLA and the related previous methods by carrying out four-stage WT and inverse
WT. Here only case 5 (see Fig. 2) of the CSCLA is investigated since the remaining eight cases are similar
to case 5 but involve the mirroring process on the boundary pixels. First, the initial working memory is



1694 C. Hu et al. / Signal Processing 84 (2004) 1689–1699

Fig. 1. The concerning overlapped areas.

given by

W =




D D D D D : D

D D D D D : D

D C C C C : C

D C B B B : B

D C B A A : A

D C B A X : X

: : : : : : :

D C B A X : X

C C B A X : X

B B B A X : X

A A A A X : X




;



C. Hu et al. / Signal Processing 84 (2004) 1689–1699 1695

Fig. 2. The nine cases of the CSCLA.

where W denotes a (M+5)×(M+5) working memory; X denotes one pixel of the block with size M×M , and
A, B, C, and D denote the previously calculated wavelet coe�cients, i.e. YA, YB, YC , and YD, respectively.
W [0::M + 4; 0::4] and W [0::4; 5::M + 4] denote the vertical and horizontal overlapped areas, respectively.
From the data dependence (see Eq. (3)) in the computation YA=AXAt , we begin with performing YA[5::M+

4; 4::M + 3] in the cache memory and the resulting snapshot of W is shown below:


D D D D D : D

D D D D D : D
D C C C C : C
D C B B B : B
D C B A A : A
D C B A X : X
: : : : : : :
D C B A X : X
C C B A X : X
B B B A X : X
A A A A X : X




→




D D D D : D D
D D D D : D D
D C C C : C C
D C B B : B B
D C B A : A A
D C B A : A X
: : : : : : :
D C B A : A X
C C B A : A X
B B B A : A X
A A A A : A X




:



1696 C. Hu et al. / Signal Processing 84 (2004) 1689–1699

Then we perform YB = BMBt , YC = CMCt , YD = DMDt , and YE = EMEt based on the data dependence
mentioned in the SCLA (see Section 2); the related four snapshots of W ’s are shown below:




D D D D : D D

D D D D : D D

D C C C : C C

D C B B : B B

D C B A : A A

D C B A : A X

: : : : : : :

D C B A : A X

C C B A : A X

B B B A : A X

A A A A : A X




→




D D D : D D D

D D D : D D D

D C C : C C C

D C B : B B B

D C B : B A A

D C B : B A X

: : : : : : :

D C B : B A X

C C B : B A X

B B B : B A X

A A A : A A X




→




D D : D D D D

D D : D D D D

D C : C C C C

D C : C B B B

D C : C B A A

D C : C B A X

: : : : : : :

D C : C B A X

C C : C B A X

B B : B B A X

A A : A A A X




→




D : D D D D D

D : D D D D D

D : D C C C C

D : D C B B B

D : D C B A A

D : D C B A X

: : : : : : :

D : D C B A X

C : C C B A X

B : B B B A X

A : A A A A X




→




Y : Y D D D D D

Y : Y D D D D D

Y : Y D C C C C

Y : Y D C B B B

Y : Y D C B A A

Y : Y D C B A X

: : : : : : : :

Y : Y D C B A X

D : D D C B A X

D : D D C B A X

C : C C C B A X

B : B B B B A X

A : A A A A A X




;

where Y ’s denote the one stage wavelet coe�cients. It is observed that the above cache-based computation in
the CSCLA fully utilize the locality advantage of the current block in the cache memory. Up to here, the partial
9nal wavelet coe�cients, i.e. W [0::M; 0::M ], has been obtained, and it can be pumped out. W [M::M +4; 0::M ]
must be moved to the row buPer and they will be used as the horizontal overlapped area in the south
neighboring block. For performing the CSCLA on the east neighboring block, we shift W [0::M +4; M::M +4]
to W [0::M +4; 0::4], then feed M ×M X ’s in the next block into W [5::M +4; 5::M +4] and move temporary
the last 9ve rows of the north neighboring block into the vertical overlapped area, i.e. W [0::4; 5::M + 4], we



C. Hu et al. / Signal Processing 84 (2004) 1689–1699 1697

thus obtain

W =




D D D D D : D

D D D D D : D

D C C C C : C

D C B B B : B

D C B A A : A

D C B A X : X

: : : : : : :

D C B A X : X

C C B A X : X

B B B A X : X

A A A A X : X




once again. Repeating the above process continually, the proposed CSCLA can complete one stage WT on
whole input image. In fact, the next stage of WT can be performed by the same argument.
From the above description, theoretically, the number of total arithmetical operations required in our pro-

posed CSCLA is equal to that in the SCLA. However, besides inheriting the computational advantage of
SCLA, our proposed CSCLA utilizes the fast accessing capability of the cache memory environment.

4. Experimental results

In this section, some experimental results are demonstrated to justify the computational advantage of our
proposed CSCLA. All the experiments are performed on the Pentium III computer with 800 MHz and the
size of the main memory, L1 cache memory, and L2 cache memory are 128 MB, 32 KB, and 256 KB,
respectively. In our experiments, we compare the performance among our proposed CSCLA and the related
previous methods by carrying out four-stage WT and inverse WT. The experimental results are shown in
Table 1. The 9rst row of Table 1 denotes the size of the input image. The second row and the third row
show that the execution-time of two previous cache-based WT in terms of seconds, and they are the line- and
convolution-based WT [5] and the block- and convolution-based WT [2], respectively. The execution-time
of SCLA is listed in fourth row. Finally, the time performance of our proposed CSCLA is shown in the
9fth row. The experimental results reveal that our proposed CSCLA has 50–68% execution-time improvement
ratio when compared to the SCLA. Moreover, when compared to the previous two cache-based methods, our
proposed CSCLA still has 50% execution-time improvement ratio.

Table 1
Execution-time comparison among our proposed CSCLA and three related methods

Size of the image 256 × 256 512 × 512 1024 × 1024
Convolution + line-based WT 0.016 0.068 0.301
Convolution + block-based WT 0.016 0.068 0.296
SCLA 0.017 0.107 0.434
CSCLA 0.008 0.034 0.17



1698 C. Hu et al. / Signal Processing 84 (2004) 1689–1699

Table 2
Cache performance among our proposed CSCLA and three related methods

Memory event L1 CRs L2 CRs L2 CRMs
Convolution + line-based WT 2,467,192 113,962 15,019
Convolution + block-based WT 2,251,415 49,921 23,087
SCLA 1,454,253 77,690 73,889
CSCLA 609,787 44,257 20,309

To directly measure cache hits and misses for each concerning algorithm, the VTune Performance Analyzer
is used to evaluate the cache performance. In this analyzer, there are three types of memory events, namely
the L1 cache requests (L1 CRs), L2 cache requests (L2 CRs), and L2 cache request misses (L2 CRMs), to
be used to measure the cache performance. Here one L2 CR is needed when the response of one L1 CR is a
miss. For simplicity, we use a 512×512 image as the testing image. Table 2 illustrates the cache performance
among the proposed CSCLA and the three concerning algorithms. We 9rst compare the cache performance
between the SCLA and the CSCLA. Table 2 reveals that the number of L1 CRs required in the CSCLA is
much less than that in the SCLA; the number of L2 CRs required in the CSCLA is still less than that in the
SCLA, and the number of L2 CRMs required in the CSCLA is still less than that in the SCLA. It is clear
that the proposed CSCLA has better cache performance when compared to the SCLA and it is consistent with
the execution-time comparison in Table 1.
Finally, we compare the cache performance among the proposed CSCLA, the block- and convolution-based

WT, and the line- and convolution-based WT. From Table 2, it is observed that the number of L1 CRs
required in the CSCLA is much less than that in the block- and convolution-based WT; the number of L2
CRs required in the CSCLA is still much less than that in the block- and convolution-based WT, and the
number of L2 CRMs required in the CSCLA is also less than that in the block- and convolution-based WT.
The better cache performance of our proposed CSCLA also meets the better execution-time performance when
compared to the block- and convolution-based WT. Table 2 also reveals the computational advantage of our
proposed CSCLA since the number of L1 CRs required in the CSCLA is much less than that in the line- and
convolution-based WT; the number of L2 CRs required in the CSCLA is still less than that in the block- and
convolution-based WT although the number of L2 CRMs required in the CSCLA is more than that in the
line- and convolution-based WT.

5. Conclusions

Following the block-based approach, we have presented the proposed CSCLA to improve the time perfor-
mance of the SCLA. The experimental results show that our proposed CSCLA is faster than the previous
three related methods. Experimental results also con9rm the computational advantage of our proposed CSCLA.
In addition, the VTune Performance Analyzer has been used to evaluate the cache performance among the
concerning algorithms. The cache performance evaluation also reveals the memory-access advantage of our
proposed CSCLA. Recently, some new VLSI- and lifting-based WTs have been proposed in [1,9]. It seems
that the results of this letter can be applied to the VLSI environment.

References

[1] K. Andra, C. Chakrabarti, T. Acharya, A VLSI architecture for lifting-based forward and inverse wavelet transform, IEEE Trans.
Signal Process. 50 (4) (April 2002) 966–977.



C. Hu et al. / Signal Processing 84 (2004) 1689–1699 1699

[2] Y.L. Bao, C.-C. Jay Kuo, Design of wavelet-based image codec in memory-constrained environment, IEEE Trans. Circuits Syst.
Video Technol. 11 (5) (May 2001) 642–650.

[3] C. Chakrabarti, C. Mumford, E�cient realizations of encoders and decoders based on the 2-D discrete wavelet transform, IEEE
Trans. VLSI Syst. 7 (3) (September 1999) 289–298.

[4] C. Christopoulos, JPEG2000 Veri9cation Model 4.0 (Technique Description), ISO/IEC JTC1/SC29/WG1 N1282.
[5] C. Chrysa9s, A. Ortega, Line-based, reduced memory, wavelet image compression, IEEE Trans. Image Process. 9 (3) (March 2000)

378–389.
[6] A. Cohen, I. Daubechies, J. Feauveau, Biorthogonal Bases of Compactly Supported Wavelets, Commun. Pure Appl. Math. 45 (1992)

485–560.
[7] I. Daubechies, W. Sweldens, Factoring wavelet transforms into lifting steps, J. Fourier Anal. Appl. 4 (3) (1998) 247–269.
[8] J. Hennessy, D. Patterson, Computer Architecture: A Quantitative Approach, Memory-Hierachy Design, Morgan Kaufmann, New

York, 1990 (Chapter 8).
[9] W. Jiang, A. Ortega, Lifting factorization-based discrete wavelet transform architecture design, IEEE Trans. on Circuits and Systems

for Video Technology 11 (5) (May 2001) 651–657.
[10] G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels, I. Bolsens, Optimal memory organization for scalable texture codecs in MPEG-4,

IEEE Trans. Circuits and Syst. Video 9 (2) (March 1999) 218–243.
[11] S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 11

(July 1989) 674–693.
[12] H.Y. Meng, Z.H. Wang, Fast spatial combinative lifting algorithm of wavelet transform using the 9/7 9lter for image block

compression, Electron. Lett. 36 (21) (October 2000) 1766–1767.


	Efficient cache-based spatial combinative lifting algorithmfor wavelet transform
	Introduction
	The SCLA
	The proposed cache-based SCLA: CSCLA
	Experimental results
	Conclusions
	References


