Efficient Huffman decoding

Kuo-Liang Chung

Department of Information Management, National Taiwan Institute of Technology,
No. 43, Section 4, Keelung Road, Taipei, Taiwan 10672, ROC

Received 30 July 1996
Communicated by W.M. Turski

Abstract

We first present a memory-efficient array data structure to represent the Huffman tree. We then present a fast Huffman decoding algorithm. © 1997 Elsevier Science B.V.

Keywords: Data structures; Decoding algorithms; Huffman code

1. Introduction

Since Huffman discovered the Huffman encoding scheme [6] in 1952, Huffman code has been widely used in data, image, and video compression [1]. For example, the Huffman encoding is used to compress the result of a quantization stage in JPEG [7]. The simplest data structure used in a Huffman decoding scheme is the Huffman tree. The array data structure [6,8] has been used to implement the corresponding complete binary tree for the Huffman tree. The major disadvantage is the memory cost spent on storing such a complete binary tree by using an array. Suppose the height of the Huffman tree is \(t \). The size of the array required in [6,8] is \(O(2^t) \).

Consider the sparsity in the Huffman tree due to one-side growth of the tree. Using a novel array data structure, Hashemian [4] presented an efficient decoding algorithm consisting of an ordering and clustering scheme in order to alleviate the effect of sparsity in the Huffman tree and support quick search time in the look-up tables. However, how to partition the Huffman tree into many smaller clusters such that the memory required is minimum is still an open problem. Basically, the memory requirement in [4] is ranged from \(O(n) \) to \(O(2^t) \), where \(2n - 1 \) denotes the number of nodes in the Huffman tree. Based on the modified S-tree [2], Chung and Lin [3] presented an array data structure with size \(5n - 4 \) to represent the Huffman tree.

We first present a memory-efficient array data structure to represent the Huffman tree. The memory required in the proposed data structure is \(3n - 2 \). Then we present a fast Huffman decoding algorithm based on the proposed data structure. Furthermore, the memory size can be reduced from \(3n - 2 \) to \(2n - 3 \).

2. The data structure

We take an example to demonstrate our proposed data structure for Huffman coding. Consider the source
symbols $S = \{s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8\}$ with frequencies $W = \{9, 7, 3, 3, 1, 1, 1, 1\}$, respectively. Based on the Huffman encoding method, the corresponding Huffman tree is shown in Fig. 1, where each leaf node is corresponding to a source symbol.

Our data structure for representing the above Huffman tree is obtained by using the following two steps:

Step 1: We traverse the Huffman tree in preorder [5]. For each left edge (branch), we record the number of edges and leaf nodes in the subtree of that edge, then add one to each of these values. For convenience, these update values are called the "jump values" of these traversed edges. For example, the left edge of the root has the jump value $17 (= 10 + 6 + 1)$.

Step 2: We traverse the Huffman tree in preorder again. At each time, we emit the "jump value" when a left edge is encountered, or a "1" when a right edge is encountered; we emit the source symbol when a leaf node is encountered. After traversing the Huffman tree, the sequence of these ordered values is saved in the array, namely, H_{array}.

Let $2n - 1$ denote the number of nodes in the Huffman tree. The memory required in the data structure H_{array} is $3n - 2$. According to the above procedure, the data structure for Fig. 1 is:

$H_{\text{array}}: 17, 11, 5, 2, s_8, 1, s_7, 1, 2, s_6, 1, s_5, 1, 2, s_4, 1, s_3, 1, 2, s_2, 1, s_1$

3. The decoding algorithm

We follow the same example to demonstrate the basic concept of our Huffman decoding algorithm based on the above array H_{array}. Two variables, `code_ptr` and `array_ptr`, are used to point to current positions in the Huffman code (represented by array $H_{\text{uf-array}}$) and H_{array}, respectively.

Consider the Huffman code 011. Initially, `code_ptr` and `array_ptr` point to the first element of $H_{\text{uf-array}}$ and H_{array}, respectively. Since $H_{\text{uf-array}}[1] = 0$, `code_ptr` and `array_ptr` are increased by 1. At this time, $H_{\text{uf-array}}[2] = 1$ and $H_{\text{array}}[2] = 1$. Then `array_ptr` is increased by 11, i.e., `array_ptr` = $2 + 11 = 13$ and we have $H_{\text{array}}[13] = H_{\text{uf-array}}[2] = 1$. Next, `code_ptr` is increased by 1. Since $H_{\text{uf-array}}[3] = 1$, we proceed to the fourteenth element (= $13 + 1$) of H_{array} and it follows that $H_{\text{array}}[14] = 2$. Therefore, `array_ptr` is increased by 2 and we have $H_{\text{array}}[16] = 1$. Since we have scanned the Huffman code, the decoding process is terminated. The Huffman code 011 is decoded to the symbol s_3 which is pointed by `array_ptr` + 1 (= 16 + 1) in H_{array}.

Our Huffman decoding algorithm is shown in Fig. 2.

The complexity of the above algorithm depends on the traversed path in the corresponding Huffman tree and takes $O(t)$ time, where t denotes the height of the Huffman tree.

4. Discussions and conclusions

The significance of the Huffman decoding is its popular use in data, image, and video compression. The main contribution of this paper is that we have presented a memory-efficient array data structure to store the Huffman tree and have designed the related Huffman decoding algorithm.

It is observed that in the array H_{array}, the value "1" is always following a source symbol. In fact, the value "1" can be removed in the array H_{array} and the memory size can be reduced from $3n - 2$ to $2n - 3$; the derived Huffman decoding algorithm still works well if we modify the above Huffman decoding algorithm slightly.
code_ptr:=1
array_ptr:=1
while(code_ptr<=len) /* 'len' denotes the length of Huffman code */
 /* for example, the length of Huffman code 011 is 3 */
do begin
 If Huf_array[code_ptr]=0
 then begin
 code_ptr:=code_ptr+1
 array_ptr:=array_ptr+1
 end
 else begin
 code_ptr:=code_ptr+1
 array_ptr:=array_ptr+H_array[array_ptr]+1
 If Huf_array[code_ptr]<$ /* '<>' denotes the symbol 'not equal' */
 /* '$' is the symbol for end of Huffman code */
 then begin
 If Huf_array[code_ptr]=1
 then begin
 code_ptr:=code_ptr+1
 array_ptr:=array_ptr+H_array[array_ptr]+1
 end
 else begin
 code_ptr:=code_ptr+1
 array_ptr:=array_ptr+1
 end
 end
 end
output H_array[array_ptr]

Fig. 2.

Acknowledgments

The author appreciates the anonymous referees and Professor W.M. Turski for their help in processing this paper.

References