
Information Processing Letters 61 (1997) 97-99

Efficient Huffman decoding

Kuo-Liang Chung ’
Department of Information Management, National Taiwan Institute of Technology,

No. 43, Section 4, Keelung Road, Taipei, Taiwan 10672, ROC

Received 30 July 1996
Communicated by W.M. Turski

Abstract

We first present a memory-efficient army data structure to represent the Huffman tree. We then present a fast Huffman

decoding algorithm. @ 1997 Elsevier Science B.V.

Keywords: Data structures; Decoding algorithms; Huffman code

1. Introduction

Since Huffman discovered the Huffman encoding

scheme [61 in 1952, Huffman code has been widely
used in data, image, and video compression [11. For

example, the Huffman encoding is used to compress

the result of a quantization stage in JPEG [71. The
simplest data structure used in a Huffman decoding
scheme is the Huffman tree. The array data structure

[6,8] has been used to implement the corresponding

complete binary tree for the Huffman tree. The major

disadvantage is the memory cost spent on storing such

a complete binary tree by using an array. Suppose the
height of the Huffman tree is t. The size of the array

required in [6,8] is O(2’).
Consider the sparsity in the Huffman tree due to

one-side growth of the tree. Using a novel array data

structure, Hashemian [41 presented an efficient decod-
ing algorithm consisting of an ordering and clustering

I Email: klchung@cs.ntit.edu.tw. This research was supported in
part by the National Science Council of R.O.C. under contract
NSC86-2213-EOI I-010.

scheme in order to alleviate the effect of sparsity in

the Huffman tree and support quick search time in the
look-up tables. However, how to partition the Huffman

tree into many smaller clusters such that the memory
required is minimum is still an open problem. Basi-

cally, the memory requirement in [4] is ranged from

O(n) to 0(2’), where 2n - 1 denotes the number of

nodes in the Huffman tree. Based on the modified S-
tree [2], Chung and Lin [3] presented an array data

structure with size 5n - 4 to represent the Huffman

tree.
We first present a memory-efficient array data struc-

ture to represent the Huffman tree. The memory re-
quired in the proposed data structure is 3n - 2. Then

we present a fast Huffman decoding algorithm based
on the proposed data structure. Furthermore, the mem-

ory size can be reduced from 3n - 2 to 2n - 3.

2. The data structure

We take an example to demonstrate our proposed
data structure for Huffman coding. Consider the source

0020-0190/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved
PII SOO20-0190(96)00204-9

98 K.-L. Chung/lnformation Processing Letters 61 (1997) 97-99

”

0 1 d\ 9

“/\’ & s2 s’ chAl 0 1 0 1 s4 s3

R3 Sl $6 s5

Fig. 1. An example of a Huffman tree.

symbolsS= {st,~~,~g,~4,~s,~~,~7,~s}withfrequen-
ties W = {9,7,3, 3,1,1,1, l}, respectively. Based
on the Huffman encoding method, the corresponding
Huffman tree is shown in Fig. 1, where each leaf node
is corresponding to a source symbol.

Our data structure for representing the above Huff-
man tree is obtained by using the following two
steps:

Step 1: We traverse the Huffman tree in preorder
[51. For each left edge (branch), we record the num-
ber of edges and leaf nodes in the subtree of that edge,
then add one to each of these values. For convenience,
these update values are called the “jump values” of
these traversed edges. For example, the left edge of
theroothasthejumpvalue17(=10+6+1).

Step 2: We traverse the Huffman tree in preorder
again. At each time, we emit the “jump value” when
a left edge is encountered, or a “1” when a right edge
is encountered; we emit the source symbol when a
leaf node is encountered. After traversing the Huffman
tree, the sequence of these ordered values is saved in
the array, namely, H-array.

Let 2n - 1 denote the number of nodes in the Huff-
man tree. The memory required in the data structure
H-array is 3n - 2. According to the above procedure,
the data structure for Fig. 1 is:

H-array: 17,11,5,2,SS,l,s7,1,2,s6,

l,Ss,1,2,S4,l,S3,1,2,S2,l,Sl

3. The de-coding algorithm

We follow the same example to demonstrate
the basic concept of our Huffman decoding al-
gorithm based on the above array H-array. Two
variables, code_ptr and array_ptr, are used to point
to current positions in the Huffman code (repre-
sented by array Huf-array) and H-array, respec-
tively.

Consider the Huffman code 011. Initially, code-ptr
and array-ptr point to the first element of Huf-array
and Hat-ray, respectively. Since Huf-array [l] = 0,
code_ptr and array_ptr are increased by 1. At this time,
Huf_array[2] = 1 and H_array[2] = 11. Then ar-
ray_ptr is increased by 11, i.e., array_ptr = 2 + 11 =
13 and we have H_array[131 = Huf-array[21 = 1.
Next, code-ptr is increased by 1. Since Hufarray [31 =
1, we proceed to the fourteenth element (= 13 +
1) of H-array and it follows that H_array[141 = 2.
Therefore, array_ptr is increased by 2 and we have
H-array [161 = 1. Since we have scanned the Huffman
code, the decoding process is terminated. The Huff-
man code 011 is decoded to the symbol sg which is
pointed by array_ptr + 1 (= 16 + 1) in H-array.

Our Huffman decoding algorithm is shown in
Fig. 2.

The complexity of the above algorithm depends on
the traversed path in the corresponding Huffman tree
and takes O(t) time, where t denotes the height of the
Huffman tree.

4. Discussions and conclusions

The significance of the Huffman decoding is
its popular use in data, image, and video com-
pression. The main contribution of this paper is
that we have presented a memory-efficient ar-
ray data structure to store the Huffman tree and
have designed the related Huffman decoding algo-
rithm.

It is observed that in the array H-array, the value
“1” is always following a source symbol. In fact, the
value “1” can be removed in the array H-array and the
memory size can be reduced from 3n - 2 to 2n - 3; the
derived Huffman decoding algorithm still works well
if we modify the above Huffman decoding algorithm
slightly.

K.-L. Chung/lnformation Processing Letters 61 (1997) 97-99 99

code_ptr: =I

array_ptr : =1
while(code_ptr<=len) /* ‘len’ denotesthe lengthof Huffmancode */

/* for example, the length of Huffman code 011 is 3 */
do begin

If Huf -array [code_ptrl=O
then begin

code_ptr:=code_ptr+l
array_ptr:=array_ptr+l

end
else begin

code_ptr:=code_ptr+i

array_ptr : =array_ptr+H_array [array_ptrl +i

If Huf_arrayCcode_ptr]<>$ /* ‘<>’ denotesthe symbol ‘not equal’ */
/* ‘$I is the symbol for end of Huffmancode */

then begin
If Huf -array [code_ptrl =i

then begin
code_ptr:=code_ptr+l
array_ptr:=array_ptr+H_arrayCarray_ptrl+i
end

else begin
code_ptr:=code_ptr+l

array_ptr:=array_ptr+l
end

end
end

end

output H-array [array_ptrl

Fig. 2.

Acknowledgments [41

The author appreciates the anonymous referees and
Professor W.M. Turski for their help in processing this [51

paper. 161

References
171

181
[I] T.C. Bell, J.G. Cleary and I.H. Witten, Text Compression

(Prentice Hall, Englewood Cliffs, NJ, 1990).
[21 K.L. Chung and C.J. Wu, A fast search algorithm on modified

S-trees, Pattern Recognirion Left. 16 (1995) 1159-1164.
[31 K.L. Chung and Y.K. Lin, A novel memory-efficient and

fast Huffman decoding algorithm, Research Rept., Dept.
of Information Management, National Taiwan Institute of
Technology, 1996.

R. Hashemian, Memory efficient and high-speed search
Huffman coding, IEEE Trans. Commun. 43 (1995) 2576-

2581.
E. Horowitz, S. Sahni and S. Andersonfreed, Fundamentals
of Data Structures in C (New York, 1993) 201.
A. Huffman, A method for the construction of minimum
redundancy codes, in: Proc. IRE 40 (1952) 1098-l 101.
W.B. Pennebaker and J.L. Mitchell, JPEG: Still Image Data

Compression Standard (New York, 1993).
S. Roman, Coding and Inform&ion Theory (Springer, New
York, 1992).

