
Pattern Recognition 37 (2004) 1591–1605
www.elsevier.com/locate/patcog

E!cient region segmentation on compressed gray images
using quadtree and shading representation�

Kuo-Liang Chunga ;∗, Hsu-Lien Huanga, Hsueh-I Lub
aDepartment of Computer Science and Information Engineering, National Taiwan University of Science and Technology, No. 43,

Section 4, Keelung Road, Taipei 10672, Taiwan, ROC
bInstitute of Information Science, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan, ROC

Received 6 August 2003; received in revised form 23 February 2004; accepted 23 February 2004

Abstract

Image segmentation, which partitions the image into homogeneous regions, is a fundamental operation in image processing.
Suppose the input gray image with size N × N has been compressed into the compressed image via quadtree and shading
representation. Assume that the number of blocks in the representation is B, commonly B¡N 2 due to the compression e6ect.
This paper 8rst derives some closed forms for computing the mean/variance of any block and for calculating the two statistical
measures of any merged region in O(1) time. It then presents an e!cient O(B�(B))-time algorithm for performing region
segmentation on the compressed image directly where �(B) is the inverse of the Ackerman’s function and is a very slowly
growing function. With the same time complexity, our results extend the pioneering results by Dillencourt and Samet from
the map image to the gray image. In addition, with four real images, experimental results show that our proposed algorithm
has about 55.4% execution time improvement ratio when compared to the previous fastest region-segmentation algorithm by
Fiorio and Gustedt whose O(N 2)-time algorithm is run on the original N × N gray image.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Gouraud shading; Image compression; Quadtree; Region growing; Region segmentation; Union-8nd

1. Introduction

In image processing [1,2], given a gray image, it is im-
portant to segment the image into homogeneous regions
such that each region has special content, e.g., the distri-
bution of gray levels in each region is under some allow-
able statistical measures. This segmentation work is also
called the region segmentation. After that, these segmented
regions can be used to determine the objects in which
usually each object consists of some consecutive regions.
These determined objects 8nd useful applications in image
retrieval [3].

� Supported by the National Science Council of ROC under
contracts NSC90-2213-E011-056 and NSC92-2213-E011-080.

∗ Corresponding author. Tel.: +886-2273-76991;
fax: +886-2273-76777.

E-mail address: klchung@cs.ntust.edu.tw (K.-L. Chung).

There are several techniques to perform the image seg-
mentation [1,2,4,5], ranging from the simple approach to
the complex approach. Di6erent kinds of image segmenta-
tion methods lead to di6erent segmented images. For ex-
ample, in thresholding method, we use the obtained thresh-
olds, say k thresholds, to transform the input gray image
into the segmented image with k + 1 gray levels. How-
ever, using the thresholding approach, the segmented image
lacks the characteristic of separated regions. Region grow-
ing approach relies on aggregating the neighboring pixels
based on some growing principles, and 8nally the input im-
age is transformed into some segmented regions. In this re-
search, we adopt the region growing approach for perform-
ing the image segmentation. Previously, considering a map
image, Dillencourt and Samet [6] presented a pioneering
region-segmentation algorithm on the quadtree representa-
tion [7], where each leaf node represents a block with con-
stant color. On the gray image of size N × N , Fiorio and

0031-3203/$30.00 ? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2004.02.009

mailto:klchung@cs.ntust.edu.tw


1592 K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605

Gustedt [8] presented two linear-time, i.e., O(N 2)-time, al-
gorithms for performing the region segmentation. The spe-
cial version of the union-8nd strategy used in Ref. [8] fur-
ther leads to other applications [9].
Previously, based on the B-tree triangular approach, Dis-

tasi et al. [10] presented an e!cient image compression
method. Their method has shorter execution time than that
of the standard JPEG [11], although the bit rate is higher by
a factor of about 2. Based on the S-tree data structure [12]
and the Gouraud shading technique [13], an improved com-
pression method called the STC method [14] is presented
to partition the given image into a set of blocks. Under the
same compression ratio, the STC method has shorter encod-
ing/decoding time than that in Ref. [10] while preserving the
same image quality. In fact, the STC method can be viewed
as a promising spatial data structure (SDS) that extends the
previous SDSs [7] from the binary image domain to the gray
image domain.
Instead of using the binary tree decomposition principle

in Ref. [14], we adopt the quadtree decomposition and sup-
pose the gray image has been compressed into the com-
pressed image using the quadtree and shading representa-
tion where the number of generated blocks is B and each
block is not with constant color, commonly B¡N 2 due to
the compression e6ect. This paper 8rst derives some closed
forms for computing the mean/variance of any block and
for calculating the two statistical measures of any merged
region in O(1) time. Then, this paper presents an e!cient
O(B�(B))-time algorithm for performing region segmenta-
tion on the compressed image directly where �(B) is the
inverse of the Ackerman’s function and is a very slowly
growing function. The time complexity of our proposed al-
gorithm is nearly linear. With the same time complexity,
the results of this paper extend the previous pioneering re-
sults by Dillencourt and Samet [6] from the map domain to
the gray image domain. In addition, with four real images,
experimental results show that our proposed algorithm has
about 55.4% execution time improvement ratio when com-
pared to the previous fastest algorithm by Fiorio and Gust-
edt [8] whose algorithm is run on the original N × N gray
image.

2. The QS-based compressed images

Based on the compression method [14], this section
presents a quadtree—and shading-based (QS-based) com-
pression method. For convenience, this method is called the
QSC method. In the QSC method, the original image is 8rst
partitioned into homogeneous blocks based on the quadtree
decomposition principle. During the partition processing,
the Gouraud shading method [13] is used to control the
image quality under a speci8ed error tolerance.
The quadtree decomposition is based on recursively di-

viding the image into four equal-sized subimages, i.e., quad-
rants, and they are labeled nw (northwest), ne (northeast),

Fig. 1. A homogeneous block.

sw (southwest), and se (southeast), respectively. If a subim-
age is not a homogeneous block, it is subdivided into four
equal-sized subimages again until all the blocks are homo-
geneous. A block is called a homogeneous block if the es-
timated gray levels of this block are in some vicinity of its
real gray levels. In what follows, the formal de8nition of a
homogeneous block is given.
As shown in Fig. 1, there are four corners for a homo-

geneous block. Suppose the coordinates of the four corners
are (x1; y1), (x2; y1), (x1; y2), and (x2; y2); their gray levels
are denoted by g1, g2, g3, and g4, respectively. Using the
Gouraud shading method, the estimated gray level gest of
the pixel at (x; y) in the block is calculated by

gest(x; y) = g5 + (g6 − g5)× r1; (1)

where g5 = g1 + (g2 − g1) × r2, g6 = g3 + (g4 − g3) × r2,
r1 = (y − y1)=(y2 − y1), and r2 = (x − x1)=(x2 − x1).
Speci8cally, g5 (g6) is the estimated gray level of the

pixel at (x; y1) ((x; y2)). Given a speci8ed error tolerance
�, if the image quality |g(x; y)− gest(x; y)|6 � holds for all
the pixels in the block, x16 x6 x2 and y16 y6 y2, then
we say that this block is homogeneous. In the estimated
block, the gray levels are smoothly varied within the four
corners.
For example, one gray image has been partitioned into

some homogeneous blocks as shown in Fig. 2(a) according
to the above partition principle. The corresponding quadtree
is illustrated in Fig. 2(b). Each homogeneous block in
Fig. 2(a) corresponds to a leaf node of the quadtree in
Fig. 2(b).
Now two tables are used to save the quadtree structure

and the related gray levels e!ciently. One table is the
linear-tree table which is used to record the quadtree struc-
ture and the other is the color table which is used to record
the related gray levels on the corners of these homogeneous
blocks. First, we traverse the quadtree in a depth 8rst search
(DFS) manner, when an internal node of the quadtree is en-
countered, we add a ‘0’ to the linear-tree table; when a leaf
of the quadtree is encountered, we add a ‘1’ to the linear-tree
table.



K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605 1593

Fig. 2. (a) An example and (b) the quadtree representation.

After traversing the quadtree in a DFS manner, we can
get a sequence of ordered binary values of the linear-tree
table. In fact, besides representing the quadtree structure,
the linear-tree table can be used to guide the sweep of the
whole image in our region-segmentation algorithm. During
traversing the quadtree, each time a leaf node is encountered,
we add a four-tuple entry to the color table. The values in
the four-tuple entry added for a leaf of the quadtree are the
four corners’ gray levels, namely Iul, Iur , Ibl, and Ibr , where
Iul, Iur , Ibl, and Ibr denote the gray levels of the upper-left
corner, upper-right, bottom-left, and bottom-right, respec-
tively, of the block indexed with I . After traversing the
quadtree in a DFS manner, a sequence of ordered four-tuple
entries are stored in the color table. The contents of the
linear-tree table and the color table for Fig. 2(a) are listed
below:
linear-tree table : 001101111011110101111011110

11110011111110011110111111;

color table : (1ul; 1ur ; 1bl; 1br); (2ul; 2ur ; 2bl; 2br);

: : : ; (40ul; 40ur ; 40bl; 40br):

The data structure consisting of the above two tables is
also called the S-tree representation. When traversing the
linear-tree table, if the bit ‘1’ is found, we jump to the color
table and can know the size and the four corners’ gray
levels of the scanned leaf node, i.e., block.
On the above S-tree representation, for a given error tol-

erance �, suppose the linear-tree table has ‘ bits where the
number of 1’s is k1, then the number of four-tuple entries in
the color table is also equal to k1.

3. Our region-segmentation algorithm

This section presents the main contributions of the pa-
per. First, we derive some closed forms for computing the
mean/variance of any homogeneous block and for calculat-
ing the mean/variance of a newly merged region in O(1)
time. Secondly, based on the data structures used in Ref. [6],
we present a modi8ed data structure which will be used in
our region-segmentation algorithm on the above S-tree rep-
resentation. Then a simulation is given. Finally, the formal
algorithm is given.



1594 K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605

3.1. Computing the mean/variance of a block in O(1) time

Before presenting our proposed region-segmentation al-
gorithm on the S-tree representation, we 8rst present an
e!cient method for calculating the mean and the variance
of a block in O(1) time. The calculated mean and the
variance of one block will be used in the region-merging
process.
Consider the top boundary of Fig. 1, i.e., the segment be-

tween (x1; y1) and (x2; y1). For convenience, let this segment
be denoted by st . Similarly, the segment between (x1; y2)
and (x2; y2) is denoted by sb; the segment from (x1; y1) to
(x1; y2) is denoted by sl and the segment from (x2; y1) to
(x2; y2) is denoted by sr . It is clear that the estimated gray
level changes per displacement along st , sb, sl, and sr , re-
spectively, are equal to

Pgst =
g2 − g1
x2 − x1

=
g2 − g1
n − 1

;

Pgsb =
g4 − g3
x2 − x1

=
g4 − g3
n − 1

;

Pgsl =
g3 − g1
y2 − y1

=
g3 − g1
n − 1

and

Pgsr =
g4 − g2
y2 − y1

=
g4 − g2
n − 1

; (2)

where n denotes the length of the side of the homogeneous
block.
From Eq. (2), the estimated gray level at position (x1; y1+

1) is gest(x1; y1+1)=g1+Pgsl . Further, we want to compute
the di6erence of gray level from (x1+1; y1) to (x1+1; y1+1).
Equivalently, we want to compute Pgy1 = gest(x1 + 1; y1 +
1)− gest(x1 + 1; y1). We consider the segment sl+1 between
(x1+1; y1) and (x1+1; y2). The estimated gray level change
per displacement along the segment sl+1 is equal to ((g3 +
Pgsb) − (g1 + Pgst ))=(n − 1). In fact, the di6erence of
gray level from (x1 + 1; y1) to (x1 + 1; y1 + 1) is equal
to the estimated gray level change per displacement along
the segment sl+1. That is, we have Pgy1 = gest(x1 + 1; y1 +
1)− gest(x1 + 1; y1)= ((g3 +Pgsb)− (g1 +Pgst ))=(n− 1).
Consequently, we have Pgy1 =gest(x1+1; y1+1)−gest(x1+
1; y1)= ((g3 +Pgsb)− (g1 +Pgst ))=(n− 1)= ((g3 − g1)+
(Pgsb −Pgst ))=(n− 1) =Pgsl + (Pgsb −Pgst )=(n− 1) =
Pgy0 + (Pgsb −Pgst )=(n − 1).
Let Pgy0 = Pgsl and D1 = (Pgsb − Pgst )=(n − 1), the

above equality can be written as

Pgy1 = Pgy0 + D1: (3)

Similarly, the di6erence of gray levels from (x1 + 2; y1) to
(x1 + 2; y1 + 1) is represented by

Pgy2 = gest(x1 + 2; y1 + 1)− gest(x1 + 2; y1)

=
(g3 + 2Pgsb)− (g1 + 2Pgst )

n − 1

=
(g3 − g1) + 2(Pgsb −Pgst )

n − 1

= Pgy0 + 2× D1: (4)

In general, from Eqs. (3) and (4), the gray level change
from (x1 + i; y1) to (x1 + i; y1 + 1) is

Pgyi = gest(x1 + i; y1 + 1)− gest(x1 + i; y1)

=
g3 − g1
n − 1

+ i × PgSb −PgSt
n − 1

= Pgy0 + i × D1; where 06 i6 n − 1: (5)

By Eq. (5), we have the following result.

Lemma 1. The estimated gray level at position (x1+i; y1+
j), 06 i, j6 n−1, is (g1+ i×Pgst )+j×(Pgy0 + i×D1).

Proof. The estimated gray level at position (x1 + i; y1) is

gest(x1 + i; y1) = g1 + i ×Pgst : (6)

By Eq. (6), the estimated gray level at position (x1+i; y1+j)
is gest(x1 + i; y1 + j) = gest(x1 + i; y1) + j × Pgyi = (g1 +
i ×Pgst ) + j ×Pgyi .
By Eq. (5), we have gest(x1+ i; y1+j)=(g1+ i×Pgst )+

j × Pgyi = (g1 + i × Pgst ) + j × (Pgy0 + i × D1) and
completing the proof.

By Lemma 1 and Eq. (2), we have the following result
where the block in Fig. 1 is of size n × n since each block
in the quadtree structure is of size 2m × 2m(=n × n).

Lemma 2. The mean of Fig. 1 is �Bi=(g1+g2+g3+g4)=4,
where Bi denotes the block in Fig. 1.

Proof. The mean of the block Bi can be calculated by

n−1∑
i=0

n−1∑
j=0

gest(x1 + i; y1 + j)

=
n−1∑
i=0

n−1∑
j=0

[(g1 + i ×Pgst )

+ j × (Pgy0 + i × D1)];

= n2 × g1 +
(n − 1)n2

2
× g2 − g1

n − 1

+
(n − 1)n2

2
×

(
g3 − g1
n − 1

)
+
(n − 1)n

2



K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605 1595

× (n − 1)n
2

× g4 − g3 − g2 + g1
(n − 1)2

=
n2

4
(g1 + g2 + g3 + g4):

Therefore, we have

� =

∑n−1
i=0

∑n−1
j=0 gest(x1 + i; y1 + j)

n2

=(g1 + g2 + g3 + g4)=4:

We complete the proof.

Before deriving the closed form for calculating the vari-
ance of Bi, we need the following preliminary result.

Lemma 3. The square sum of the estimated gray levels in
the block Bi is n2{( 12 −2C)(g1g4 +g2g3)+C(g1 +g4)(g2 +
g3)+[C(g1−g2−g3 +g4)]2} where C=(2n−1)=6(n−1).

Proof. It is known that gest(x1+ i; y1+j)=(g1+ i×Pgst )+
j × (Pgy0 + i × D1), thus the square sum of the estimated
gray levels in Bi is equal to

n−1∑
i=0

n−1∑
j=0

[gest(x1 + i; y1 + j)]2

=
n−1∑
i=0

n−1∑
j=0

[(g1 + iPgst ) + j(Pgy0 + iD1)]
2

=
n−1∑
i=0

n−1∑
j=0

[(g1 + jPgy0 ) + (iPgst + ijD1)]
2

=
n−1∑
i=0

n−1∑
j=0

[(g1 + jPgy0 )
2 + 2(g1 + jPgy0 )

× (iPgst + ijD1) + (iPgst + ijD1)
2]

=
n−1∑
i=0

n−1∑
j=0

{[g21 + 2jg1Pgy0 + (jPgy0 )
2]

+ 2(ig1Pgst + ijD1g1 + ijPgy0Pgst

+ ij2Pgy0D1) + [(iPgst )
2

+ 2i2jPgstD1 + (ijD1)
2]}

= n2g21 + 2n × n(n − 1)
2

g1Pgy0

+ n × n(n − 1)(2n − 1)
6

Pg2y0

+ 2n × n(n − 1)
2

g1Pgst

+2× n(n − 1)
2

n(n − 1)
2

D1g1

+ 2× n(n − 1)
2

n(n − 1)
2

Pgy0Pgst

+2× n(n − 1)
2

n(n − 1)(2n − 1)
6

Pgy0D1

+ n × n(n − 1)(2n − 1)
6

Pg2st

+2× n(n − 1)
2

n(n − 1)(2n − 1)
6

PgstD1

+
n(n − 1)(2n − 1)

6
n(n − 1)(2n − 1)

6
D2
1 : (7)

FromD1=(Pgsb−Pgst )=(n−1)=(g4−g3−g2+g1)=(n−1)2,
Eq. (7) can be written by
n−1∑
i=0

n−1∑
j=0

[gest(x1 + i; y1 + j)]2

= n2g21 + n2g1(g3 − g1) +
n2(2n − 1)

6
(g3 − g1)2

n − 1

+ n2g1(g2 − g1) +
n2

2
g1(g4 − g3 − g2 + g1)

+
n2

2
(g3 − g1)(g2 − g1) +

n2(2n − 1)
6(n − 1)

(g3 − g1)

× (g4 − g3 − g2 + g1) +
n2(2n − 1)
6(n − 1)

(g2 − g1)
2

+
n2(2n − 1)
6(n − 1)

(g2 − g1)(g4 − g3 − g2 + g1)

+
n2(2n − 1)2

36(n − 1)2
(g4 − g3 − g2 + g1)

2

= n2g21 + n2g1g3 − n2g21 +
n2(2n − 1)
6(n − 1)

g23

− 2n2(2n − 1)
6(n − 1)

g1g3 +
n2(2n − 1)
6(n − 1)

g21

+ n2g1g2 − n2g21 +
n2

2
g1g4 − n2

2
g1g3

− n2

2
g1g2 +

n2

2
g21 +

n2

2
g2g3 − n2

2
g1g3



1596 K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605

− n2

2
g1g2 +

n2

2
g21 +

n2(2n − 1)
6(n − 1)

g3g4

− n2(2n − 1)
6(n − 1)

g23 − n2(2n − 1)
6(n − 1)

g2g3

+
2n2(2n − 1)
6(n − 1)

g1g3 − n2(2n − 1)
6(n − 1)

g1g4

+
n2(2n − 1)
6(n − 1)

g1g2 − n2(2n − 1)
6(n − 1)

g21

+
n2(2n − 1)
6(n − 1)

g22 − 2n2(2n − 1)
6(n − 1)

g1g2

+
n2(2n − 1)
6(n − 1)

g21 +
n2(2n − 1)
6(n − 1)

g2g4

− n2(2n − 1)
6(n − 1)

g2g3 − n2(2n − 1)
6(n − 1)

g22

+
2n2(2n − 1)
6(n − 1)

g1g2 − n2(2n − 1)
6(n − 1)

g1g4

+
n2(2n − 1)
6(n − 1)

g1g3 − n2(2n − 1)
6(n − 1)

g21

+
n2(2n − 1)2

36(n − 1)2
(g4 − g3 − g2 + g1)

2

=
n2

2
g1g4 +

n2

2
g2g3 +

n2(2n − 1)
6(n − 1)

g3g4

− 2n2(2n − 1)
6(n − 1)

g2g3 − 2n2(2n − 1)
6(n − 1)

g1g4

+
n2(2n − 1)
6(n − 1)

g1g2 +
n2(2n − 1)
6(n − 1)

g2g4

+
n2(2n − 1)
6(n − 1)

g1g3 +
n2(2n − 1)2

36(n − 1)2

× (g1 − g2 − g3 + g4)
2: (8)

Let C = (2n − 1)=6(n − 1). Eq. (8) can be written by
n−1∑
i=0

n−1∑
j=0

[gest(x1 + i; y1 + j)]2

= n2{( 12 − 2C)(g1g4 + g2g3) + C(g1 + g4)(g2 + g3)

+ [C(g1 − g2 − g3 + g4)]
2}:

We complete the proof.

By Lemma 3, we have the following result.

Lemma 4. The variance of Bi is  2Bi = (12 − 2C)(g1g4 +
g2g3)+C(g1 +g4)(g2 +g3)+ [C(g1 −g2 −g3 +g4)]2 −�2.

Proof. The variance of Bi is

 2Bi =

∑n−1
i=0

∑n−1
j=0 [gest(x1 + i; y1 + j)− �Bi ]

2

n2

=

∑n−1
i=0

∑n−1
j=0 [gest(x1 + i; y1 + j)]2

n2
− �2Bi :

From Lemma 3, the above equality can be rewritten as

 2Bi = (12 − 2C)(g1g4 + g2g3) + C(g1 + g4)(g2 + g3)

+ [C(g1 − g2 − g3 + g4)]
2 − �2Bi :

We complete the proof.

3.2. Criteria for merging two regions and the related
closed forms

In a gray image, a region consists of a set of similar pix-
els. Initially, each leaf block corresponding to the bit ‘1’ in
the linear-tree table is considered as a new region. Before
merging two promising regions, we need some criteria to
determine the merging condition. The following two merg-
ing criteria are used in our proposed algorithm.
(1) Criterion 1: the absolute di6erence between the av-

erage gray values of two concerning regions must be less
than the threshold.
(2) Criterion 2: the variance of the newly merged region

must be less than the threshold.
Assume the two regions, A and B, can be merged and let

region C denote the merged region of A and B. Let �A, �B,
and �C denote the mean of region A, region B, and region
C, respectively; let  2A,  

2
B, and  2C denote the variance of

region A, region B, and region C, respectively. Here, we
assume the size of region A is nA; the size of region B is
nB, and the size of region C is nC = nA + nB. We have the
following two results.

Lemma 5. The mean of the merged region C is �C =
(nA�A + nB�B)=nC .

Proof. By de8nition, the mean of C is given by

�C =

∑
g∈C g

nC

=

∑
g1∈A g1 +

∑
g2∈B g2

nC

=
nA�A + nB�B

nC
;

where g denotes the gray level in the merged region C;
g1 (g2) denotes the gray level in the region A (region B).
We complete the proof.



K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605 1597

Lemma 6. The variance of the merged region C is equal
to  2C = (nA 2A + nB 2B)=nC + (nAnB(�A − �B)2)=n2C .

Proof. By Lemma 5, the variance of C is given by

 2C =

∑
g∈C (g − �C)2

nC

=

∑
g1∈A (g1 − �C)2 +

∑
g2∈B (g2 − �C)2

nC

=

∑
g1∈A (g

2
1 − 2g1�C + �2C) +

∑
g2∈B (g

2
2 − 2g2�C + �2C)

nC

=
nA{(∑g1∈A g

2
1)=nA − 2�C�A + �2C}+ nB{(∑g2∈B g

2
2)=nB − 2�C�B + �2C}

nC

=
nA{ 2A + (�A − �C)2}+ nB{ 2B + (�B − �C)2}

nC

=
nA 2A + nB 2B

nC
+

nA(nB(�A − �B)=nC)2 + nB(nA(�A − �B)=nC)2

nC

=
nA 2A + nB 2B

nC
+
(nAn2B + nBn2A)((�A − �B)=nC)2

nC

=
nA 2A + nB 2B

nC
+

nAnB(�A − �B)2

n2C
;

where g denotes the gray level in the merged region C;
g1 (g2) denotes the gray level in region A (region B). We
complete the proof.

From Lemmas 2, 4, 5, and 6, we have the 8rst main result.

Theorem 1. The mean/variance of any block can be calcu-
lated inO(1) time. The mean/variance of any newly merged
block also can be calculated in O(1) time.

From the viewpoint of practical implementation, instead
of applying Theorem 1, we calculate the related mean and
variance by the direct way when the block is of size 2× 2.
If we use the sample variance, it yields

 2C =

∑
g∈C (g − �C)2

nC − 1

=

∑
g∈C (g

2 − 2g�C + �2C)

nC − 1

=

∑
g∈C g2 − 2�C

∑
g∈C g+ nC�2C

nC − 1

=

∑
g∈C g2 − nC�2C

nC − 1

=

∑
g1∈A g

2
1+

∑
g2∈B g

2
2−(1=nC)(

∑
g1∈A g1+

∑
g2∈B g2)

2

nC−1 :

Since by Lemma 2, the sum of the data values in and the
sum of the squared data values in the two constituent regions
can be calculated in O(1) time, Theorem 1 is still true when
using the sample variance.

3.3. The required data structure

According to the S-tree representation described in Sec-
tion 2 and based on the data structure used in Ref. [6], this
subsection presents the related data structure which will be
used in our proposed region-segmentation algorithm on the
S-tree representation. Since our region-segmentation algo-
rithm extends the results in Ref. [6] from the map image to
the gray image, the data structure used in our algorithm is
somewhat di6erent from those in Ref. [6].
For exposition, as shown in Fig. 3, let us 8rst see the

8nal segmented regions of Fig. 2(a). In Fig. 3, there are
six segmented regions, namely A, B, C, D, E, and F . For
each region, we use a sequence of corners’ coordinates in a
clockwise manner to record the boundary of the region. For
example, the boundary of region A in Fig. 3 is recorded by

{(0; 0); (12; 0); (12; 4); (8; 4); (8; 6); (6; 6); (6; 8); (4; 8);
(4; 10); (2; 10); (2; 6); (0; 6)}:
Following the similar notations used in Ref. [6], in what

follows, three de8nitions are given.

De$nition 1. A region is active if it will be merged with
the other region. Otherwise, a region is inactive.

De$nition 2. An active region or inactive region is rep-
resented by the boundary of that region and the boundary



1598 K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605

Fig. 3. An example for decomposing the image into some regions.

is composed of consecutive edges, each edge being active
or inactive. For an active edge, it will be merged with the
neighboring inactive edge or become a new inactive edge
if the two concerning active regions connecting the active
edge as the common edge cannot be merged.

Consider Fig. 3 again. Initially, we have 40 active regions,
but eventually there are only six inactive regions. As men-
tioned in Section 2, we represent the compressed gray image
using the S-tree representation consisting of linear-tree table
and the color table. We visit the linear-tree table bit-by-bit
from left to right. Once the bit ‘1’ is visited, it implies that
we visit a leaf node, i.e., block in the quadtree, and then
we access its corresponding four corners’ gray values in the
color table. Initially, each visited bit ‘1’ can be viewed as a
new region, i.e., active region, which may be merged with
the other active region later.

De$nition 3. The waveform consisting of some segments
is the border between those visited quadtree blocks corre-
sponding those 1s in the S-tree representation and those un-
visited blocks.

Let us return to Fig. 2(a). Before performing the
region-segmentation, the waveform is composed of two
segments, one segment from position (0; 0) to position
(0; 16) and the other segment from (0; 0) to (16; 0) since
those forty initial blocks indexed by 1; 2; : : : ; and 40 are
not visited. We now de8ne the data structure used for
the waveform. We use a double link list for representing
the waveform. Each node in the double link list denotes
one segment and the Segment record contains four 8elds:
{PreLink; Length; ActiveELink; SucLink} where the 8elds

Fig. 4. An example of waveform, inactive edges, active edges.

SucLink and PreLink are pointers denoting the next seg-
ment and the previous segment in the double link list; the
Length 8eld denotes the segment’s length, and the Ac-
tiveELink 8eld points to the Edge record which contains
8ve 8elds: {PreLink; First; Last; Reg; SucLink}.
We now take an example to explain how the data struc-

ture de8ned for segments are used. Under the S-tree rep-
resentation, as shown in Fig. 4, suppose we have scanned
the blocks 1; 2; 3; : : : ; and 16, then the waveform is like a
wave consisting of thirteen segments where each segment
is denoted by a solid line bounded by two arrows. Thus, the
data structure for the waveform in Fig. 4 can be depicted in
Fig. 5. In Fig. 5, the data structure of each segment in the
waveform is the record with four 8elds. The second node b
denotes the second segment starting from position (0; 8) to
(2; 8) and its related record is depicted in node b where the
PreLink 8eld points to node a; the Length 8eld contains
the second segment’s length, i.e., 2; the ActiveELink 8eld
points to the active edge B2.
Considering Fig. 4 again, we further explain how the data

structure de8ned for edges are used. Let us consider the ac-
tive region (see De8nition 2) containing the blocks with in-
dices 1, 2, 3, 4, 6, 7, 8, 9, and 11. The data structure for
inactive edge and active edge can be depicted in Fig. 6. In
Fig. 6, the data structure of each edge in the active region
is the record with 8ve 8elds. The second node denotes the
second edge starting from position (12; 4) to (10; 4) where
the PreLink 8eld points to the inactive edge A1; both the
First and Last 8elds contain NULL’s; the Reg 8eld points
to region 11, i.e., block 11; the SucLink 8eld points to
the inactive edge A3. Looking at the node named ‘inactive
edge A1, the First and Last 8elds are used to point the
starting position (2; 8) and the ending position (12; 4). Here



K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605 1599

Fig. 5. The data structure for the waveform in Fig. 4.

Fig. 6. The data structure for inactive edge and active edge.

positions (2; 8), (2; 6), (0; 6), (0; 0), (12; 0), and (12; 4) are
the corner-vertices of inactive edge A1. EachCorner-Vertex
record contains three 8elds: {X; Y; Next} where X and Y
denote the coordinates; the symbol Next points to the next
corner-vertex.
According to the DFS scanning order employed in the

linear tree table, let us look at Fig. 4 again. After processing
block 16, there are 8ve active regions. For each active region,
there exists at least one active edge commonly shared by
one segment on the waveform. In Fig. 4, one active region
contains the quadtree blocks indexed by 1, 2, 3, 4, 6, 7,
8, 9, and 11. Another active region contains the quadtree
blocks indexed by 12, 13, 14, and 15. The remaining three
active regions consist of the quadtree blocks 5, 10, and 16,
respectively.

If all the edges of one active region become inac-
tive, the status of that region becomes inactive and will
never be changed. For any two active regions, if we
want to merge them, we apply the union-8nd algorithm
[15,16]. Now we de8ne the Region record to specify
one region. One region record contains seven 8elds:
{Mean; Var; Size; Father; Count; SegmentCount;EdgeLink}
where the symbols Mean, Var, and Size denote the mean,
the variance, and the side-length of the block, i.e., the num-
ber of the pixels in the region. These three 8elds are used
to support for merging two active regions.
The 8eld Father is an address to point to the father of

this region. The 8eld Count is used to count the number
of region-nodes which are descendants of this region. The
above 8elds are used to support the union-8nd algorithm.



1600 K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605

The 8eld SegmentCount denotes the number of edges
commonly shared by the segments of the waveform. The
8eld EdgeLink points to the edge of this region, which
can be used to trace the boundary information of this
region.

3.4. The proposed algorithm

After describing the necessary data structure, based on the
related closed forms for merging two regions (see Sections
3.1 and 3.2), our proposed region-segmentation algorithm
on the S-tree representation is described in this subsection.
Since the input gray image has been compressed into

the S-tree representation which consists of two arrays,
namely the liner-tree table and the color table, we scan the
linear-tree table sequentially. Upon scanning the bit ‘0’,
four recursive procedures are called and the four recursive
procedures are corresponding to nw, ne, sw, and se quad-
rants, respectively. Upon scanning the bit ‘1’, a new region
is created and then we perform the merging work for the
created region and its neighboring active regions. If that
created region can be merged with some active regions,
we further update the edge information and the statistical
measures in the newly merged region.
In order to explain our proposed algorithm, we follow the

similar recursive approach in Ref. [6] to describe our pro-
posed region-segmentation algorithm. Since the concerning
blocks and the merging criterion are di6erent, the parame-
ters used in some procedures are some di6erent from those
in Ref. [6]. The main program of our proposed algorithm is a
recursive procedure named Region Segm where the related
parameters will be described after the following procedure:

/* Input: UpperLeft; Xleft ; Yupper ; Size */
/* Output: UpperRight; PreLowerLeft */
/* SegmentPTR is the pointer type of Segment */
Region Segm(UpperLeft; UpperRight; PreLowerLeft;
Xleft ; Yupper ; Size)
value SegmentPTR UpperLeft;
reference SegmentPTR UpperRight, PreLowerLeft;
value integer Xleft , Yupper , Size;
SegmentPTR UR, PLL, DUMMY ; /* local variable */
boolean bit; /* bit is ‘1’(leaf) or ‘0’(nonleaf) */

begin
if Length(UpperLeft)¿Size then SPLIT(UpperLeft;
Size);

if Length(SucLink(UpperLeft))¿Size then SPLIT
(SucLink(UpperLeft); Size);

bit = Get bit( );
if bit ==‘0′ then
begin
Region Segm(UpperLeft; UR; PLL; Xleft ,
Yupper ; Size=2); /* nw */
Region Segm(UR; UpperRight; DUMMY; Xleft

+Size=2; Yupper ; Size=2); /* ne */

Region Segm(PLL; UR; PreLowerLeft; Xleft ,
Yupper + Size=2; Size=2); /* sw */
Region Segm(UR; DUMMY; DUMMY; Xleft + Size=2;

Yupper + Size=2; Size=2); /* se */
end

else /* leaf node */
begin
FourGray Color; /* record the four corners’ gray

levels of leaf node */
Color = Get color( );
Leaf Operation(UpperLeft; UpperRight,
PreLowerLeft;
Xleft ; Yupper ; Size; Color);
end

end

In the above recursive program, there are six parameters
which are used to maintain the segments on the waveform;
calculate the size and location for each block, and update
the set of regions. Whenever the bit ‘1’ in the linear-tree
table is scanned, we want to 8nd the current waveform’s
segments which are shared commonly to the adjacent block
in the west and north directions. When Region Segm is
called, UpperLeft points to the uppermost segment along
the left segments of the current quadrant before processing
this quadrant. When Region Segm calls Leaf Operation,
it passes this pointer to Leaf Operation. Whenever Re-
gion Segm and Leaf Operation are called, they return two
pointers, UpperRight and PreLowerLeft. UpperRight is a
pointer to point to the uppermost segment along the right
segments of the current quadrant after this quadrant has been
processed and the waveform has been updated. For any left-
most block in the quadrant, its PreLowerLeft is a pointer
to point to the previous segment on the waveform. Now
we take a simple example to demonstrate the above related
parameters although it is applicable to more complex case.
For example, when the procedure Leaf Operation is

called to process block 28 in Fig. 2(a). UpperLeft points to
the segment between block 28 and block 25. After 8nishing
the procedure Leaf Operation, UpperRight (PreLower-
Left) points to the segment between block 28 and block
31, 33 (block 27 and block 29). Considering another ex-
ample, if the bit ‘0’ (corresponding to the quadrant P0) is
got and suppose the quadrant P0 has four sons, i.e., blocks
31, 32, 33, and 34. After Region Segm has been processed
once for the scanned bit ‘0’, PreLowerLeft points to the
segment between block 30 and block 39 and UpperRight
points to the segment between block 32 and block 35.
For the quadrant P0, the four pointers with respect to
the four directions are determined by the following four
assignments:

1. UpperLeft(nw(P0)) =UpperLeft(P0).
2. UpperLeft(ne(P0)) =UpperRight(nw(P0)).
3. UpperLeft(sw(P0)) = PreLowerLeft(nw(P0)).
4. UpperLeft(se(P0)) =UpperRight(sw(P0)).



K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605 1601

Fig. 7. A simulation of Leaf Operation for block 28: (a) create block 28; (b) after merging block 28 and active region B; (c) after merging
active region A and B; (d) after merging active region A and B; (e) after merging active region B and block 10; (f) update segments on the
waveform.

Region Segm will check whether the segment on the wave-
form is longer than the corresponding left edge or top edge
of the current quadrant. This situation can arise if the block
is smaller than its western or northern neighboring block.
For example, in Fig. 2(a), when block 3 is processed, its top
edge is shorter than the segment which is the line segment
from (0; 4) to (4; 4). In this case, the left and/or top segment
is split by half in order to perform the merging work.

The function call, Get bit( ), in the procedure Re-
gion Segm is used to get the next bit from the linear-tree
table. If the bit ‘1’ is got, we perform the function call
Get color( ) to record the four corners’ gray values of the
corresponding block in the color table and call the pro-
cedure Leaf Operation. By Theorem 1, we can calculate
the mean/variance using the four corners’ gray values and
the size of the current block in O(1) time. If we get bit



1602 K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605

Table 1
Execution time performance comparison

Image Camera Boat Lena F16

NP 262144 262144 262144 262144
NB (� = 10) 13903 32776 24955 26020
NB (� = 15) 10309 26467 17689 20677
NMB (� = 10) 8912 28908 19052 21692
NMB (� = 15) 5188 21696 12040 16316
linear tree table (� = 10) 18537 (bits) 43701 (bits) 33273 (bits) 34693 (bits)
linear tree table (� = 15) 13745 (bits) 35289 (bits) 23585 (bits) 27569 (bits)
color table (� = 10) 444896 (bits) 1048832 (bits) 798560 (bits) 832640 (bits)
color table (� = 15) 329888 (bits) 846944 (bits) 566048 (bits) 661664 (bits)
bpp (� = 10) 1.7678 (bit) 4.1676 (bit) 3.1731 (bit) 3.3086 (bit)
bpp (� = 15) 1.3108 (bit) 3.3654 (bit) 2.2492 (bit) 2.6292 (bit)
PSNR (� = 10) 40.4728 40.8214 39.0718 39.8347
PSNR (� = 15) 37.9068 37.1772 36.1628 36.9471
Tours (� = 10) 0.10 0.23 0.18 0.19
Tours (� = 15) 0.08 0.19 0.14 0.16
TLBL [8] 0.33 0.34 0.33 0.33
TDAC [8] 0.39 0.39 0.39 0.39
TLBL−Tours (�=10)

TLBL
69% 32% 45% 42%

TDAC−Tours (�=10)
TDAC

74% 41% 53% 51%

TLBL−Tours (�=15)
TLBL

75% 44% 57% 51%

TDAC−Tours (�=15)
TDAC

79% 51% 64% 58%

‘0’ from the linear-tree table, then Region Segm calls it-
self recursively to process the four corresponding nw, ne,
sw, and se quadrants. In the procedure Region Segm, the
variables (Xleft ; Yupper) are used to denote coordinates of
the upper-left corner of the quadrant and the variable Size
represents the size of the quadrant.
When the procedure Leaf Operation read the input value

UpperLeft, we 8rst walk down along the left side of the cur-
rent block until we 8nd the corresponding segment pointed
by LowerLeft. For example, in Fig. 7(a), LowerLeft points
to the segment between the block 28 and the active region
B. Note that when reading the bit ‘1’ from the S-tree repre-
sentation, a new record with type Region is created for the
created block and the Region record consists of three active
edges, namely the east edge of this block (see Fig. 7(a)), the
south edge of this block (see Fig. 7(a)), and the northwest
active edge (see the CurActiveEdge in Fig. 7(a)).
By using the pointer SucLink, Leaf Operation processes

the segments, which are adjacent to the left side and the top
side of the current block, from the left-lowest one to the
upper-rightmost one (see Figs. 7(b)–(e)). Upon processing
one segment, according to the merging criterion described
in Section 3.2, we can determine whether the adjacent ac-
tive region should be merged with the current region or not.
If the adjacent active region can be merged with the current
region, a union-8nd operation [15,16] is applied. In each
union-8nd operation, both weight-balancing strategy and

path-compression strategy are used. After that, by Lemmas 5
and 6, the statistical measures of the newlymerged region are
calculated in O(1) time. Simultaneously, the edges informa-
tion of the merged region is saved in the root of the Region
record who is a tree structure. Let r denote the newly merged
region record. When SegmentCount(r)=0 and Count(r)=0,
the current active region does become the inactive region
and can be output. In fact, we output the corner-vertices of
this inactive region. When the current block has 8nished
the merging work, we update the waveform (see Fig. 7(f)).
Eventually, we have the following main result.

Theorem 2. On the compressed gray image using the
S-tree representation, our proposed region-segmentation
can be performed in O(B�(B)) time where B denotes the
number of 1s in the linear-tree table of the S-tree repre-
sentation. In fact, B is also the number of blocks.

Proof. In our proposed region-segmentation algorithm,
once the bit ‘0’ is read from the linear-tree table of the
S-tree representation, we call the procedure Region Segm,
so totally it takes at most O(A) times to call the procedure
Region Segm where A denotes the number of 0s in the
linear-tree table. Once the bit ‘1’ is read from the linear-tree
table of the S-tree representation, we call the procedure
Leaf Operation, so totally it takes at most O(B) times to
call the procedure Leaf Operation where B denotes the



K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605 1603

Fig. 8. The segmentation comparison for ‘camera’ image: (a) the original ‘camera’ image; (b) the partitioned blocks for � = 10; (c) the
segmented regions using our method (for each region, �¡ 30 and  2¡ 225); (d) each region is displayed by the mean value of that
region using our method; (e) the segmentation result by using the line by line strategy [8] (for each region, �¡ 30 and  2¡ 225); (f) the
segmentation result by using the divide and conquer strategy [8] (for each region, �¡ 30 and  2¡ 225).

number of 1s in the linear-tree table. When reading ‘1’ from
the linear-tree table, a new block is created. It can be easily
checked that there are at most four segments on the wave-
form which are adjacent to the edges of the newly created
block. Therefore, there are at most 4B times for applying the
merging operation to merge the current block and the neigh-

boring active regions via the segments’ guidance. Since each
merging work only needs O(1) time by Theorem 1, employ-
ing the union-8nd operations successively, it implies that
the total time complexity is O(B�(B)+A). Since A¡B, the
total time complexity can be expressed as O(B�(B)). We
complete the proof.



1604 K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605

4. Experimental results

In our experiments, four real images, namely the camera,
the boat, the Lena, and the F16, are used to test the perfor-
mance of our proposed region-segmentation algorithm on
the S-tree representation and the two variants of the previous
fastest region-segmentation algorithm by Fiorio and Gustedt
[8]. Each image is of size 512× 512 and it requires 262144
bits. All experiments are performed on the IBM Pentium III
microprocessor with 667 MHz and 128 MB RAM. The op-
eration system is MS-Windows 2000 and the program de-
veloping environment is Borland C++ Builder 5.0.
For the four tested images, the 8rst experiment is used to

evaluate the execution time performance among the concern-
ing algorithms. Experimental results are shown in Table 1
where the symbol NP denotes the number of pixels required
in the image; the symbol NB denotes the number of blocks,
i.e., the number of 1s, in the S-tree representation; the sym-
bol NMB denotes the number of 2× 2 blocks in the S-tree
representation; the symbol Tours (�=10) denotes the execu-
tion time in terms of seconds required in our proposed algo-
rithm for �=10; TLBL denotes the execution time required in
the line-by-line version of the algorithm in Ref. [8]; TDAC de-
notes the execution time required in the divide-and-conquer
version of the algorithm in Ref. [8]. The execution time im-
provement ratio of our proposed algorithm over the previous
line-by-line-based (divide-and-conquer-based) algorithm is
measured by (TLBL −Tours)=TLBL ((TDAC −Tours)=TDAC). The
image quality is denoted by PSNR [17] which is de8ned by

PSNR = 10 log10

(
2552

MSE

)
;

where MSE is the mean square error between the decom-
pressed image and the original image. The number of bits
required in one pixel is denoted by bpp (bits per pixel).
From Table 1, it is observed that for � = 10, the execution
time improvement ratio of our proposed algorithm over the
LBL (DAC) is 47% (55%); for � = 15, the execution time
improvement ratio of our proposed algorithm over the LBL
(DAC) is 57% (63%). From the rows for TLBL and TDAC , the
required execution time is linear and rather stable in terms
of NP. However, the execution time required in our pro-
posed algorithm is dependent on the number of blocks, i.e.,
NB, and is nearly linear and rather stable since �(B) is a
very slowly growing function.
To save space, we only show the resulting segmented re-

gions for the ‘camera’ image. Fig. 8(a) shows the original
test image ‘camera’. Fig. 8(b) is the partitioned blocks for
� = 10 via the QS-based method. Fig. 8(c) shows the in-
active edges for each segmented region. For displaying the
segmentation e6ect of our proposed algorithm, we use the
mean gray value of each region to demonstrate that region
(see Fig. 8(d)). In Figs. 8(e) and (f), we show the two seg-
mentation results using the two methods [8]. From the hu-
man visual point, the segmentation result of our proposed
method is quite competitive to the two variants in Ref. [8].

However, our proposed method is much faster than the two
variants [8].

5. Conclusions

We have presented the e!cient region-segmentation al-
gorithm on the compressed gray image using the S-tree
representation directly. The compressed gray image is pre-
sented by the quadtree and shading format. We 8rst de-
rive some closed forms for computing the mean/variance of
any one block and for calculating the new mean/variance
of the newly merged region. Then, a nearly linear-time
region-segmentation algorithm is presented, i.e., the time
complexity of our proposed algorithm depends on the num-
ber of 1s in the S-tree representation, say B, and the required
time complexity isO(B�(B)) where �(B) is the inverse of the
Ackerman’s function and nearly can be viewed as a constant.
With the same time complexity, our results extend the pre-
vious pioneering results by Dillencourt and Samet [6] from
the map domain to the gray domain. In addition, under four
real images, experimental results show that our proposed al-
gorithm has about 55.4% execution time improvement ratio
when compared to the previous fastest two variants of the
algorithm by Fiorio and Gustedt [8] whose O(N 2)-time al-
gorithm is run on the original N ×N gray image. It is an in-
teresting research problem to solve the region-segmentation
on the S-tree representation using O(B) time.

References

[1] R.C. Gonzalez, R.E. Woods, Digital Image Processing,
Chapter 10: Image Segmentation, 2nd Edition, Prentice-Hall,
New York, 2002.

[2] R.M. Haralick, L.G. Shapiro, Computer and Robot Vision,
Addison-Wesley, New York, 1992.

[3] J. Llados, E. Marti, J.J. Villanueva, Symbol recognition by
error-tolerant subgraph matching between region adjacency
graphs, IEEE Trans. Pattern Anal. Mach. Intell. 23 (10) (2001)
1137–1143.

[4] R.M. Haralick, L.G. Shapiro, Survey: image segmentation
techniques, Comput. Vision Graphics Image Process. 29
(1985) 100–132.

[5] P.K. Sahoo, S. Soltani, A.K.C. Wong, A survey of
thresholding techniques, Comput. Vision Graphics Image
Process. 41 (1988) 233–260.

[6] M.B. Dillencourt, H. Samet, Using topological sweep to
extract the boundaries of regions in maps represented by
region quadtrees, Algorithmica 15 (1) (1996) 82–102.

[7] H. Samet, The Design and Analysis of Spatial Data Structures,
Addison-Wesley, Reading, MA, 1990.

[8] C. Fiorio, J. Gustedt, Two linear time union-8nd strategies
for image processing, Theoret. Comput. Sci. 154 (2) (1996)
165–181.

[9] J. Gustedt, E!cient union-8nd for planar graphs and other
sparse graph classes, Theoret. Comput. Sci. 203 (1998)
123–141.



K.-L. Chung et al. / Pattern Recognition 37 (2004) 1591–1605 1605

[10] R. Distasi, M. Nappi, S. Vitulano, Image compression by
B-tree triangular coding, IEEE Trans. Commun. 45 (9) (1997)
1095–1100.

[11] W.B. Pennebaker, J.L. Mitchell, JPEG: Still Image Data
Compression Standard, New York, 1993.

[12] W.D. Jonge, P. Scheuermann, A. Schijf, S+-trees: an e!cient
structure for the representation of large pictures, Comput.
Vision Image Understanding 59 (1994) 265–280.

[13] J.D. Foley, A.V. Dam, S.K. Feiner, J.F. Hughes,
Computer Graphics, Principle, and Practice, 2nd Edition,
Addison-Wesley, Reading, MA, 1990.

[14] K.L. Chung, J.G. Wu, Improved image compression using
S-tree and shading approach, IEEE Trans. Commun. 48 (5)
(2000) 748–751.

[15] R.E. Tarjan, E!ciency of a good but not linear set union
algorithm, J. ACM 22 (2) (1975) 215–225.

[16] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein,
Introduction to Algorithms, 2nd Edition, McGraw-Hill, New
York, 2001.

[17] K. Sayood, Introduction to Data Compression, 2nd Edition,
Morgan Kaufmann, New York, 2000.

About the Author—KUO-LIANG CHUNG received the B.S., M.S., and Ph.D. degrees in Computer Science and Information Engineering
from National Taiwan University in 1982, 1984, and 1990, respectively. From 1984 to 1986, he was a soldier. From 1986 to 1987, he was a
research assistant in the Institute of Information Science, Academic Sinica. He has been a Professor in the Department of Computer Science
and Information Engineering at National Taiwan University of Science and Technology since 1995. He has been the Chairman since 2003.
Prof. Chung received the Distinguished Professor Award from the Chinese Institute of Engineers in May 2001. He has been the IEEE senior
member since 2001. Prof. Chung received the Outstanding I.T. Elite Award from the R.O.C. Information Month in November 2003. His
research interests include image compression, image processing, video processing, video compression, coding theory, and algorithms.

About the Author—HSU-LIEN HUANG received the M.S. degree in Information Management from National Taiwan University of Science
and Technology in 1999 and 2001, respectively. Her research interests include image compression, image processing, and algorithms.

About the Author—HSUEH-I LU received his B.S. and M.S. degrees in Computer Science and Information Engineering from National
Taiwan University, Taipei, Taiwan, in 1986 and 1990, respectively. He received his M.S. and Ph.D. degrees in Computer Science from
Brown University, Providence, RI, USA in 1992 and 1997, respectively. In 1997, he joined Department of Computer Science and Information
Engineering, National Chung-Cheng University, Chia-Yi, Taiwan. In 1999, he joined Institute of Information Science, Academia Sinica,
Taipei, Taiwan as an assistant research fellow. He was promoted to an associate research fellow in 2003. Dr. Lu’s research focuses on
design and analysis of algorithms. In 2002, he was awarded Ta-You Wu Memorial Award from National Science Council, Taiwan.


	Efficient region segmentation on compressed gray images using quadtree and shading representation
	Introduction
	The QS-based compressed images
	Our region-segmentation algorithm
	Computing the mean/variance of a block in O(1) time
	Criteria for merging two regions and the related closed forms
	The required data structure
	The proposed algorithm

	Experimental results
	Conclusions
	References


