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a b s t r a c t

A reversible data hiding algorithm which uses prediction errors in the color difference
domain for mosaic images with the Bayer color filter array (CFA) is proposed. Furthermore,
the proposed algorithm can be extended to deal with the digital time delay and integration
(DTDI) mosaic images and Lukac and Plataniotis (LP) mosaic images. Experimental results
on CFA, DTDI, and LP mosaic images demonstrate that the proposed algorithm can achieve
high embedding capacity while maintaining good image quality.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Data hiding is an important technique for embedding secret data in a host image [12]. In the last decade, a large number
of data hiding algorithms have been proposed for black/white images and color images, e.g. [9,10,12,16,20]. A common
drawback of data hiding algorithms is that the original image cannot be recovered completely. The problem becomes more
serious when dealing with certain sensitive images, such as military, medical, and artwork images. To completely recover the
original images, the reversible data hiding technique was first developed by Barton [1]. Researchers on reversible data hiding
algorithms emphasized how to increase the embedding capacity and enhance the quality of the marked images [4,6–8,
13–15,17–19,25,27,29–34].

Tian [32] proposed a reversible data hiding algorithm based on an integer version of the Haar wavelet transform [26]. Kam-
stra and Heijmans [17] introduced an algorithm, which used the low-pass subband to determine the location for embedding,
to resolve the image distortion problem in Tian’s algorithm. Kim et al. [18] developed a difference expansion transform to im-
prove the performance of Kamstra and Heijmans’ algorithm. Ni et al. [27] and Chang et al. [4] developed reversible data hiding
algorithms based on the use of peak-valley pairs in an image histogram and the outcome of side match vector quantization,
respectively. Chang et al. [5] introduced a reversible data hiding algorithm, which modified the coefficients of the medium-
frequency components to embed the hidden data, for DCT-based compressed images. Lin et al. [19] proposed a multilevel
reversible data hiding algorithm by modifying the difference image histogram. Fallahpour [13] presented a reversible data
hiding algorithm based on gradient adjusted prediction. Based on joint neighboring coding scheme, two reversible data hiding
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algorithms were, respectively, developed by Chang et al. [6] and Wang and Lu [34]. Tseng and Hsieh [33] proposed a predic-
tion-based reversible data hiding algorithm. Chang and Kieu [7] proposed a reversible data hiding algorithm based on the
complementary embedding strategy; while Chang et al. [8] introduced a frequency-based reversible image hiding algorithm.
Luo et al. [25] proposed a reversible data hiding algorithm exploiting a multi-level histogram shifting mechanism. Gao et al.
[14] developed a reversible data hiding algorithm by using the generalized statistical quantity histogram. In [29–31], three
reversible data hiding algorithms based on the concepts of prediction error expansion and histogram modification were pro-
posed. The three algorithms utilized prediction schemes to predict the pixel values and embedded hidden data in the pixels by
modifying the corresponding prediction errors. Thodi and Rodriguez [31] used the LOCO-I predictor [35], which utilized the
information of the neighboring pixels, to predict the value of the pixel. Then, a histogram shifting scheme based on the pre-
diction error expansion was used to embed the hidden data. Furthermore, a two-pass testing method with a flag bit stream
was applied to resolve the overflow and underflow problems. Tai et al. [30] scanned an image by an inverse s-order and pre-
dicted each pixel using the scanned value of the previous pixel. Then, the histogram of the prediction errors was used to
embed the hidden data. Without using the two-pass testing method, the pixel histogram was contracted from both sides
to ensure that the embedding would not cause the overflow and underflow problems. The algorithm could also solve the prob-
lem of communicating multiple peak points to recipients, which was the major drawback in Lin et al.’s algorithm [19]. Using
different prediction scheme, Sachnev et al. [29] predicted the pixel value by averaging the gray values of the four neighboring
pixels in a rhombus shape. The hidden data were embedded, using the difference expansion, into the pixels with prediction
errors falling into the range of the two specified thresholds Tn and Tp. Furthermore, in order to enhance the quality of the
marked image, the shifting scheme in [31] is used and the embedding order is determined by a sorting strategy.

Most reversible data hiding algorithms are often applied on the black/white and color images but seldom on the mosaic
images, which are captured by the digital cameras. Since digital cameras are becoming increasingly popular in the consumer
electronics market, equipping them with a secret data embedding capability is an important issue. To reduce costs, most dig-
ital cameras capture color information by using a single charge-coupled device/complementary metal–oxide–semiconductor
(CCD/CMOS) sensor with the Bayer color filter array (CFA) structure [2,22–24]. As shown in Fig. 1, each pixel in the Bayer CFA
structure only has one measured color. This kind of image is called a mosaic image [11,36]. Because the green (G) channel is the
most important factor to determine the luminance of a color image, half of the pixels in the Bayer CFA structure are assigned to
the G channel whereas the red (R) and blue (B) channels, which share the other half of the Bayer CFA structure, contribute to
the chrominance information. Since the structure of a mosaic image is quite different from that of gray and color images, exist-
ing reversible data hiding algorithms do not work well on the mosaic images. Although we can partition a mosaic image into
four color planes, and then apply existing reversible data hiding algorithms to each of the rearranged color planes, the most
important property of spectral–spatial correlation [28,21,37] in a CFA mosaic image cannot be exploited. A reversible data
hiding algorithm exploiting the spectral–spatial correlation can efficiently reduce the prediction errors, resulting in large
embedding capacity and good quality of marked images. In addition to CFA mosaic images, there exist other types of mosaic
images. A digital time delay and integration (DTDI) mosaic image [3], which has two color channels in each pixel, can be
decomposed into two CFA mosaic images. A Lukac and Plataniotis (LP) mosaic image [22], which is another type of the mosaic
arrangement exploited in the single sensor digital camera, can be converted into a CFA mosaic image. Therefore, we can apply
the proposed algorithm to the DTDI and LP mosaic images. The main motivation of this work is twofold. In the first place, de-
velop a reversible data hiding algorithm, which exploits spectral–spatial correlation, for CFA mosaic images. Second, apply the
proposed algorithm to DTDI mosaic images, widely used in industrial printer applications, and LP mosaic images.

In this paper, we propose an efficient reversible data hiding algorithm for CFA mosaic images. The proposed algorithm
utilizes the spectral–spatial correlation to achieve small prediction errors in the color difference domain for embedding
hidden data. Since such prediction errors tend to follow a Laplacian distribution with relatively small variance, the proposed
algorithm achieves high embedding capacity and good quality of marked images. The proposed algorithm can also be applied
to DTDI and LP mosaic images. Experimental results on typical CFA, DTDI, and LP mosaic images demonstrate that with the

Fig. 1. The Bayer CFA structure [2].
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same embedding capacity, the proposed data hiding algorithm yields better quality of marked images than the algorithms
presented in [29–31]. We compare the proposed algorithm with the above three reversible algorithms for two reasons. First,
like the proposed algorithm, the three compared algorithms are based on the concepts of prediction error expansion and his-
togram modification. Second, they are regarded as state-of-the-art reversible data hiding algorithms.

The major novel contributions of this work can be stated as follows. First, we propose a novel reversible algorithm, which
explicitly exploits spectral–spatial correlation, for the CFA mosaic image. Second, to further enhance the quality of the
marked image, a variance-sorting strategy the color difference domain is used to determine the embedding order and a
smoother color difference domain is selected to embed the hidden data. Third, since the DTDI and LP images can be decom-
posed or converted to CFA mosaic images, the proposed algorithm can also process DTDI and LP mosaic images.

The remainder of this paper is organized as follows. In Section 2, a brief introduction to spectral–spatial correlation in the
color difference domain is given. In Section 3, we discuss the prediction errors in the color difference domain and the asso-
ciated Laplacian distribution. In Section 4, we present the proposed reversible data hiding algorithm for CFA mosaic images.
Section 5 explains how to apply the proposed algorithm to DTDI and LP mosaic images. In Section 6, we report the exper-
imental results on the embedding capacity and the quality of marked images. Section 7 gives the concluding remarks.

2. Spectral–spatial correlation in the color difference domain

In this section, we introduce spectral–spatial correlation in the color difference domain. Fig. 2(a)–(c) illustrate, respec-
tively, the G color channel, the G-R color difference plane, and the G-B color difference plane of the Carving image. From
the three figures, it is obvious that the contrasts of the G-R and G-B color difference planes are much flatter than that of
the G channel, indicating that the color difference plane is more suitable for predicting the pixel values. Since spectral–spa-
tial correlation in the G-R color difference domain is the same as that in the G-B color difference domain, we only discuss how
to predict the pixel values in the G-R color difference domain.

As shown in Fig. 1, denote by IK
moði; jÞ the color value in channel K(K 2 {R,G,B}) of the pixel located at position (i, j) in a

mosaic image of size M � N with i 2 {0,1, . . . ,M � 1} and j 2 {0,1, . . . ,N � 1}. For simplicity, consider how to predict the G-
R color difference value of the pixel at position (3,3). Denote by eIR

moði; jÞ the predicted color value of channel R. Due to the
flat property of a color difference domain, the assumption of spectral–spatial correlation suggests

IG
moð3;3Þ �eIR

moð3;3Þ ¼ IG
moð2;2Þ �eIR

moð2;2Þ; ð1Þ
where eIR

moð2;2Þ is predicted by IR
moð2;1ÞþIR

moð2;3Þ
2 . Then, the predicted G-R color difference value of the pixel at position (3,3) along

upper-left direction can be approximated by

Gul
R ð3;3Þ ¼ IG

moð2;2Þ �eIR
moð2;2Þ ¼ IG

moð2;2Þ �
IR
moð2;1Þ þ IR

moð2;3Þ
2

: ð2Þ

Similarly, the predicted G-R color difference value of the pixel at position (3,3) along upper-right, lower-left, and lower-right
directions can be approximated by

Gur
R ð3;3Þ ¼ IG

moð2;4Þ �
IR

moð2;3Þ þ IR
moð2;5Þ

2
;

Gll
Rð3;3Þ ¼ IG

moð4;2Þ �
IR

moð4;1Þ þ IR
moð4;3Þ

2
;

Glr
R ð3;3Þ ¼ IG

moð4;4Þ �
IR

moð4;3Þ þ IR
moð4;5Þ

2
:

ð3Þ

Thus, the predicted G-R color difference value for the G pixel at position (3,3) can be expressed as

GRð3;3Þ ¼
1
4

X
d2ful;ur;ll;lrg

Gd
Rð3;3Þ: ð4Þ

In addition to predicting the color difference values for G pixels, we can also apply the concept of spectral–spatial correlation
to predict the color difference values for both R and B pixels.

Fig. 2. (a) G color channel, (b) G-R color difference plane, and (c) G-B color difference plane of the Carving image.
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3. Prediction errors in the color difference domain and the associated Laplacian distribution

According to the concept of spectral–spatial correlation, in small regions, the contrast of an image’s color difference plane
is much flatter than that of the spacial channel, indicating that the color difference domain is more appropriate for error pre-
diction. Thus, performing prediction in the color difference domain instead of the spacial domain can enhance the embed-
ding capacity and yield better quality of the marked images. In the following sub-sections, we explain how to obtain the
prediction errors and derive the associated Laplacian distribution.

3.1. Prediction errors in G pixels

Based on the spectral–spatial correlation concept, we can predict the color difference values for the G pixels and obtain
the associated prediction errors. For embedding hidden data in each color channel, two independent pixel sets in each
channel will be constructed. For simplicity, we use Fig. 3 to show how to obtain the prediction errors of the G pixels in a
mosaic image of size M � N. In Fig. 3, for a generic G pixel at (i, j), divide the G pixels into two sets, denoted by
XG1 ¼ fði� 2m; j� 2nÞj8m;n 2 N;0 6 i� 2m 6 M � 1;0 6 i� 2n 6 N � 1g and XG2 ¼ fði� ð2mþ 1Þ; j� ð2nþ 1ÞÞj8m;n 2 N;

0 6 i� ð2mþ 1Þ 6 M � 1;0 6 i� ð2nþ 1Þ 6 N � 1g, and mark, respectively, the set elements by the symbols ‘‘N’’ and ‘‘�.’’
Since XG1 and XG2 are disjoint, the color difference values of the pixels in XG1 can be predicted by using the color difference
values of the pixels in XG2 and vice versa. Two reasons exist for dividing the G pixels into two independent sets. The first
reason is that since embedding hidden data in the pixels in one set would not affect the pixels in the other set, the precise
predicted color difference value of each pixel can be obtained to extract the hidden data and then recover the original pixel
values in the proposed extraction strategy. The second reason is that the embedding order for one set, determined by the
other set, can be maintained for recovering. Since the color difference prediction process is the same for both sets, we only
discuss the prediction process for XG1.

In the sub-image shown in Fig. 4, the color difference prediction error corresponding to the central pixel located at posi-
tion (i, j) is the difference between the predicted color difference value, which is the average color difference value of four
neighboring corner pixel with positions (i ± 1, j ± 1), and its own color difference. For each corner pixel at position (x,y),
denoting respectively by GRðx; yÞ ¼ IG

moðx; yÞ � 1
2

P
k2f�1gI

R
moðx; yþ kÞ and GBðx; yÞ ¼ IG

moðx; yÞ � 1
2

P
k2f�1gI

B
moðxþ k; yÞ the G-R and

G-B color difference values, the predicted G-R color difference value GRði; jÞ and predicted G-B color difference value GBði; jÞ
for the pixel at position (i, j) can be expressed as

GRði; jÞ ¼
1
4

X
ðx;yÞ2WG

GRðx; yÞ;

GBði; jÞ ¼
1
4

X
ðx;yÞ2WG

GBðx; yÞ;
ð5Þ

where WG = {(i ± 1, j ± 1)}. Since the predictor with less variation yields better prediction, only one of GRði; jÞ and GBði; jÞ that
has lower variance is used as the predicted color difference value for the central pixel at position (i, j). Thus, the predicted
color difference value Gði; jÞ for the central pixel is determined by

Gði; jÞ ¼
GRði; jÞ; if r2

GR
ði; jÞ 6 r2

GB
ði; jÞ;

GBði; jÞ; otherwise;

(
ð6Þ

where r2
GR
ði; jÞ ¼ 1

4

P
ðx;yÞ2WG

½GRðx; yÞ � GRði; jÞ�2 and r2
GB
ði; jÞ ¼ 1

4

P
ðx;yÞ2WG

½GBðx; yÞ � GBði; jÞ�2. The G-R and G-B color difference val-
ues of the central pixel at position (i, j) can be expressed as

Fig. 3. Pixels in XG1 and XG2 with N denoting pixels in XG1 and � in XG2.

W.-J. Yang et al. / Information Sciences 190 (2012) 208–226 211
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bGRði; jÞ ¼ IG
moði; jÞ �

1
2

X
k¼�1

IR
moðiþ k; jÞ;

bGBði; jÞ ¼ IG
moði; jÞ �

1
2

X
k¼�1

IB
moði; jþ kÞ:

ð7Þ

Then, the prediction error for the central pixel at position (i, j) is determined as

DGði; jÞ ¼
bGRði; jÞ � GRði; jÞ; if r2

GR
ði; jÞ 6 r2

GB
ði; jÞ;bGBði; jÞ � GBði; jÞ; otherwise:

(
ð8Þ

Next, we consider the prediction errors in R and B pixels.

3.2. Prediction errors in R and B pixels

Since the process for obtaining the prediction errors in R and B pixels is the same, we only discuss the prediction errors in
R pixels. Similar to the prediction process for G pixels, as shown in Fig. 5, for a generic R pixel at (i, j), divide R pixels into two
sets, denoted by XR1 ¼ fði� 4m; j� 4nÞ [ ði� ð4mþ 2Þ; j� ð4nþ 2ÞÞj8m;n 2 N;0 6 i� 4m; i� ð4mþ 2Þ 6 M � 1;0 6 j�
4n; j� ð4nþ 2Þ 6 N � 1g and XR2 ¼ fði� 4m; j� ð4nþ 2ÞÞ [ ði� ð4mþ 2Þ; j� 4nÞj8m;n 2 N;0 6 i� 4m; i� ð4mþ 2Þ 6 M�
1;0 6 j� 4n; j� ð4nþ 2Þ 6 N � 1g, and mark the set elements by the symbols ‘‘N’’ and ‘‘�’’, respectively. Again, since the color
difference prediction process for the pixels in XR1 and XR2 is the same, we only discuss the prediction process for XR1.

In the sub-image shown in Fig. 6, the prediction error of the central pixel at position (i, j) is the difference between the
predicted color difference value, which is the average color difference value of four neighboring pixel with positions
{(i ± 2, j), (i, j ± 2)}, and its own color difference. For each neighboring (around (i, j)) pixel at position (x,y), denoting by
RGðx; yÞ ¼ IR

moðx; yÞ � 1
4

P
ðx;yÞ2n1

IG
moðx; yÞ with n1 = {(x ± 1,y), (x,y ± 1)} the R-G difference values, the predicted R-G color differ-

ence value RGði; jÞ for the pixel at position (i, j) can be expressed as

Rði; jÞ ¼ 1
4

X
ðx;yÞ2WR

RGðx; yÞ; ð9Þ

where WR = {(i ± 2, j), (i, j ± 2)}. The color difference value, bRði; jÞ, of the central pixel at (i, j) can be expressed as

Fig. 5. Pixels in XR1 and XR2 with N denoting pixels in XR1 and � in XR2.

Fig. 4. Typical colors in XG1.
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bRði; jÞ ¼ IR
moði; jÞ �

1
4

X
ðx;yÞ2n2

IG
moðx; yÞ; ð10Þ

with n2 = {(i ± 1, j), (i, j ± 1)}, which is the same as Rði; jÞ. Thus, the prediction error DRði; jÞ can be calculated by

DRði; jÞ ¼ bRði; jÞ � Rði; jÞ: ð11Þ

Since the color difference domain has smaller measuring scale due to less variation, the distribution of the prediction er-
rors in the color difference domain tends to have smaller variance than that in the spatial domain, implying that higher
embedding capacity and better quality of marked images can be achieved.

Fig. 6. Typical colors in XR1.

Fig. 7. The mosaic wall image.
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3.3. Laplacian distribution of prediction errors and the potential embedding benefits

The prediction errors generally follow a Laplacian distribution on which the performance of prediction-error-based
reversible data hiding algorithms heavily depend. It is known that less variation of the Laplacian distribution implies better
embedding performance [29]. In this sub-section, we compare specifically the variance of the prediction error distribution
associated with the proposed scheme with those corresponding to the previously proposed schemes by Tai et al. [30], Thodi
and Rodriguez [31], and Sachnev et al. [29].

Since the above three previous schemes were designed to operate in the spatial domain, for the purpose of comparison,
we partition a CFA mosaic image into four color planes, G0, G1, R0 and B0, according to the following rules [24]:

G0 ¼ IG
moði; jÞji and j are even

n o
;

G1 ¼ IG
moði; jÞji and j are odd

n o
;

R0 ¼ IR
moði; jÞji is even and j is odd

n o
;

B0 ¼ IB
moði; jÞji is odd and j is even

n o
:

ð12Þ

The mosaic Wall image shown in Fig. 7 is used as an example and the associated four color planes are shown in Fig. 8. The
histograms of the prediction errors associated with the three compared schemes and the proposed scheme are shown,
respectively, in Fig. 9(a)–(d). Clearly, the histogram associated with the proposed scheme has smaller variance, implying that
the proposed algorithm can achieve better embedding performance.

4. The proposed reversible data hiding algorithm

In this section, we describe the proposed reversible data hiding algorithm for CFA mosaic images. Since the application of
the algorithm is the same for the G, R, and B color pixels, only G color pixels are considered. In Section 4.1, we present the
embedding and extraction strategies. Section 4.2 explains how to determine an appropriate threshold to guide the data hid-
ing process. In Section 4.3, we describe how the embedding order determined by a sorting strategy is used to reduce the dis-
tortion in the marked images. The detailed procedure of the proposed algorithm is given in Section 4.4.

Fig. 8. Four partitioned color planes (a) G0, (b) G1, (c) R0, and (d) B0 of the mosaic Wall image.
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4.1. The embedding and extraction strategies

For the proposed algorithm, the G pixels in a CFA mosaic image IG
mo are first divided into two sets XG1 and XG2, as shown in

Fig. 3. The embedding strategy states that we first embed, as much as possible, the hidden data in the pixels in XG1, and then
embed the remaining hidden data in the pixels in XG2. Given an input pixel IG

moði; jÞ, as shown in Fig. 4, the embedding strat-
egy involves three steps:

Step 1: Calculate, by Eq. (8), the prediction error DGði; jÞ which can be re-expressed as

DGði; jÞ ¼ IG
moði; jÞ � bCði; jÞ � Gði; jÞ; ð13Þ

where

bCði; jÞ ¼
1
2

P
k2f�1g

IR
moðiþ k; jÞ; if r2

GR
ði; jÞ 6 r2

GB
ði; jÞ;

1
2

P
k2f�1g

IB
moði; jþ kÞ; otherwise;

8>><>>: ð14Þ

implying that IG
moði; jÞ ¼ DGði; jÞ þ bCði; jÞ þ Gði; jÞ.

Step 2: Embed, by difference expansion [32], the hidden data in the pixels with small magnitude of prediction errors and
calculate the modified prediction error as follows:

DG0ði; jÞ ¼
DGði; jÞ þ T þ 1; if DGði; jÞ > T;

DGði; jÞ � T � 1; if DGði; jÞ < �T � 1;
2DGði; jÞ þ h; otherwise;

8><>: ð15Þ

where h 2 {0,1} represents the hidden bit; and T (P0) denotes a predefined threshold, which will be discussed in
Section 4.2.

Fig. 9. Prediction error histograms of (a) Tai et al.’s scheme. (b) Thodi and Rodriguez’s scheme. (c) Sachnev et al.’s scheme, and (d) the proposed scheme for
the mosaic wall image.
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Step 3: Generate the marked mosaic G pixel I0Gmoði; jÞ by

I0Gmoði; jÞ ¼ DG0ði; jÞ þ bCði; jÞ þ Gði; jÞ ¼ IG
moði; jÞ þ G

0ði; jÞ � Gði; jÞ; ð16Þ

where G0ði; jÞ � Gði; jÞ denotes the distortion of the marked image.

For illustration, consider the case of IG
moði; jÞ ¼ 50; bCði; jÞ ¼ 47;Gði; jÞ ¼ 2;h ¼ 1, and T = 1 which implies

DGði; jÞ ¼ 50� 47� 2 ¼ 1. For ð�T � 1Þ 6 DGði; jÞ 6 T, we embed the hidden bit h = 1 in DGði; jÞ and obtain
DG0ði; jÞ ¼ 2DGði; jÞ þ h ¼ 3. Thus, we have the marked mosaic G pixel I0Gmoði; jÞ ¼ DG0ði; jÞ þ bCði; jÞ þ Gði; jÞ ¼ 52.

After modifying the input image by embedding the hidden data in the pixels in XG1, embed similarly the remaining hid-
den data in the pixels in XG2 based on the modified pixels in XG1 to yield the marked image. Furthermore, embedding the
hidden data based on the prediction errors may cause the problems of overflow and underflow. The problems may be re-
solved using the two-pass method proposed in [31,29] where an extra flag bit stream is stored for use in the extraction pro-
cess. Empirically, the size of the flag bit stream is often small and the deterioration on the embedding capacity can be
negligible.

For extracting the hidden data, first extract from XG2 and then XG1. Since the same strategy for extracting the hidden data
from the pixels in XG1 and XG2, for illustration, we only consider the case of extracting the hidden data from the pixels in
XG1. Consider extracting hidden data from the central pixel at position (i, j) in Fig. 4. Given marked mosaic G pixel I0Gmoði; jÞ,
the data extraction process is executed in four steps:

Step 1: Calculate, according to Eq. (16), the modified prediction error

DG0ði; jÞ ¼ I0Gmoði; jÞ � bCði; jÞ � Gði; jÞ: ð17Þ

Step 2: If DG0ði; jÞ 2 ½�2T � 2;2T þ 1�, extract the hidden bit h in I0Gmoði; jÞ by

h ¼ DG0ði; jÞ mod 2; ð18Þ

otherwise, go to Step 3.
Step 3: Obtain the original prediction error by

DGði; jÞ ¼
DG0ði; jÞ � T � 1; if DG0ði; jÞ > 2T þ 1;
DG0ði; jÞ þ T þ 1; if DG0ði; jÞ < �2T � 2;
bDG0ði; jÞ=2c; otherwise:

8><>: ð19Þ

Step 4: Recover the original mosaic G pixel by

IG
moði; jÞ ¼ DGði; jÞ þ bCði; jÞ þ Gði; jÞ: ð20Þ

4.2. Threshold determination

The embedding capacity and the quality of a marked image are affected by the threshold T in Eq. (15). Larger T provides
higher embedding capacity but results in more degradation in the marked images. Based on the mosaic Wall image and the
mosaic Girl image, Fig. 10(a) and (b) plot, respectively, the quality of the marked image against the embedding capacity for
different values of thresholds.

To embed hidden data, a header for recording the size of the hidden data, the size of flag bit stream, and the value of
threshold is required. Given the hidden data of size jPj, the accompanying flag bit stream of size jFj which depends on
the threshold used, and the header stream of size jHj, find the required capacity for accommodating these information of
size jTj ¼ jHj þ jFj þ jPj and then determine the smallest threshold that yields the best quality of the marked image. Since
a header of size jHj is embedded, using the least significant bit (LSB) replacement method [32], in the first jHj pixels of a
mosaic image, an extra correction bit stream of size jHj is required for recording the jHj LSB values that are replaced by
the header, implying that the embedding phase starts from the ðjHj þ 1Þth pixel.

The determination of the threshold can be summarized as follows.

Step 1: Set T = 0.
Step 2: Based on the current threshold T, calculate the number jCj, usually referred to the usable capacity, of pixels whose

prediction errors are within the range of [�T � 1,T] and in which embedding will not cause the problems of overflow
and underflow, and jTj ¼ jHj þ jFj þ jPj.

Step 3: If jCjP jTj, output T as the appropriate threshold and stop; otherwise, set T = T + 1 and go to Step 2.
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4.3. Determination of embedding order to reduce distortion in marked images

The quality of the marked images depends on the embedding order. Small variance of color difference usually suggests
small prediction errors, implying that we should first search for the pixels with small local variance to embed hidden data.
Therefore, an embedding order, based on the local variances, is determined to reduce the distortion of the marked images.

For a pixel IG
moði; jÞ, the corresponding local variance r2

Gði; jÞ is determined by

r2
Gði; jÞ ¼min r2

GR
ði; jÞ;r2

GB
ði; jÞ

� �
; ð21Þ

where r2
GR
ði; jÞ and r2

GB
ði; jÞ are defined in Eq. (6). When more than one pixel has the same local variance, the embedding order

is determined according to their positions in the lexicographic order. Since XG1 and XG2 are disjoint, there is no need to re-
cord the embedding orders for extraction. The embedding order of the pixels in XG1 is determined based on the local var-
iance calculated from the pixels in XG2. After embedding the hidden data in the pixels of XG1, the embedding order of
the pixels in XG2 is determined based on the local variance calculated from the modified pixels in XG1. For extraction, first
extract the hidden data in XG2 where embedding order can be retrieved from the modified XG1; then extract the hidden data
in XG1 with embedding order retrieved from the recovered XG2.

In addition, the embedding order for the R pixels is determined similarly, with local variance of each R pixel IR
moði; jÞ cal-

culated by r2
Rði; jÞ ¼ 1

4

P
ðx;yÞ2WR

½RGðx; yÞ � Rði; jÞ�2, where RGðx; yÞ;Rði; jÞ, and WR are defined in Eq. (9). The embedding order
for the B pixels is similar to that for the R pixels. Consequently, a pixel with smaller local variance has higher priority for
embedding the hidden data, and the embedding order is based on the sorted local variances.

4.4. The steps of the proposed reversible data hiding algorithm

We now describe the steps of the proposed reversible data hiding algorithm. Since the operations applied to the G, R, and
B color pixels are the same, we only describe the operations on G pixels. Similarly, since the embedding and extraction pro-
cesses for the pixels in XG1 and XG2 are the same, we only consider the processes for pixels in XG1. Note that the size of the
header stream jHj is known in advance by both the embedding and extraction processes.

The embedding process for all the pixels in XG1 composes of five steps:

Step 1: Preserve the first jHj pixels in XG1.
Step 2: From the ðjHj þ 1Þth pixel to the last pixel in XG1, determine the embedding order of the pixels by the sorting strat-

egy described in Section 4.3.
Step 3: Determine an appropriate threshold T by the threshold determination process described in Section 4.2, and then

obtain the flag bit stream.
Step 4: Embed the header stream, which records the threshold value T and the sizes of hidden data and flag bit stream, in

the first pixels by the LSB replacement method, and obtain the correction bit stream.
Step 5: According to the embedding order of the pixels, embed the correction bit stream, the flag bit stream, and the hidden

data into the pixels in XG1 using the embedding strategy described in Section 4.1.

The extraction process for the pixels in XG1 consists of four steps:

Step 1: Find all the pixels in XG1. Extract the header stream from the first jHj pixels to obtain the threshold T and the sizes of
hidden data and flag bit stream.

Fig. 10. Quality of the marked image (PSNR) against embedding capacity for different values of thresholds for CFA mosaic images: (a) wall and (b) girl.
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Step 2: From the ðjHj þ 1Þth pixel to the last pixel in XG1, determine the extraction order of the pixels by the method
described in Section 4.3.

Step 3: According to the extraction order of the pixels, extract the correction bit stream, the flag bit stream, and the hidden
data from the pixels in XG1 using the strategy described in Section 4.1.

Step 4: Based on the correction bit stream, recover the LSB values of the first jHj pixels.

Because the human visual system is more sensitive to the G channel than the other channels, the number of G pixels in a
CFA mosaic image is designed to be twice the number of R pixels and B pixels. Thus, the accuracy of the prediction process for
G pixels is higher than that for R and B pixels, implying that embedding a hidden bit in a G pixel often results in less distor-
tion than in an R pixel or a B pixel. For reducing the distortion in a marked image, we first embed the hidden data in the G
pixels, and then the R and B pixels. The extraction process is the inverse of the embedding process; that is, first extract the
hidden data from R and B pixels, and then from G pixels. The flowchart of the proposed data hiding algorithm for CFA mosaic
images is shown in Fig. 11. Empirically, the proposed embedding algorithm yields better quality of the marked images.

5. Application of the proposed algorithm to DTDI and LP mosaic images

We now extend the proposed algorithm to tackle the reversible data hiding in DTDI mosaic images [3] and LP mosaic
images [22]. In contrast to mosaic images captured by the Bayer CFA structure, two colors (G and R or G and B colors) are

Fig. 11. The flowchart of the proposed algorithm.

Fig. 12. A DTDI mosaic structure.
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measured in each pixel of a DTDI mosaic image. As shown in Fig. 12, denote by IK
Dði; jÞ the color value in channel

K(K 2 {R,G,B}) of the pixel located at position (i, j) in a DTDI mosaic image of size M � N with i 2 {0,1, . . . ,M � 1} and
j 2 {0,1, . . . ,N � 1}. Since a DTDI image can be regarded as the composition of two CFA mosaic images, the input DTDI mosaic
image is first decomposed into two CFA mosaic images, denoted by Imo1 and Imo2 , as shown in Fig. 13. Then, apply individually
the proposed data hiding algorithm to each decomposed CFA mosaic image. Finally, merge two marked CFA mosaic images to
generate the marked DTDI mosaic image. The DTDI decomposition method can be formulated as follows:

IG
mo1
ði; jÞ ¼ IG

Dði; jÞ; if ðiþ jÞ is even

IR
mo1
ði; jÞ ¼ IR

Dði; jÞ; if i is even and j is odd

IB
mo1
ði; jÞ ¼ IB

Dði; jÞ; if i is odd and j is even

8>><>>: ð22Þ

IG
mo2
ði; jÞ ¼ IG

Dði; jÞ; if ðiþ jÞ is odd

IR
mo2
ði; jÞ ¼ IR

Dði; jÞ; if i is odd and j is odd

IB
mo2
ði; jÞ ¼ IB

Dði; jÞ; if i is even and j is even:

8>><>>: ð23Þ

For applying the proposed data hiding algorithm to an LP mosaic image, first convert an LP mosaic image to a CFA mosaic
image by pixel shifting. The LP mosaic structure can be illustrated in Fig. 14. Denote by IK

lpði; jÞ the color value in channel
K(K 2 {R,G,B}) with i 2 {0,1, . . . ,M � 1} and j 2 {0,1, . . . ,N � 1} of the pixel located at position (i, j) in an LP mosaic image of
size M � N. The conversion by pixel shifting can be briefly described as follows.

IG
moði; jÞ ¼ IG

lpði; j� 1Þ; if i mod 4 ¼ 1 and j is odd

IG
moði; jÞ ¼ IG

lpði; jþ 1Þ; if i mod 4 ¼ 2 and j is even

IB
moði; jÞ ¼ IB

lpði; jþ 1Þ; if i mod 4 ¼ 1 and j is even

IR
moði; jÞ ¼ IR

lpði; j� 1Þ; if i mod 4 ¼ 2 and j is odd

IC
moði; jÞ ¼ IC

lpði; jÞ; otherwise;

8>>>>>>>><>>>>>>>>:
ð24Þ

where C 2 {R,G,B}. After an LP mosaic image is converted to a CFA mosaic image, apply the proposed data hiding algorithm to
the CFA mosaic image. Then, the marked CFA mosaic image is converted back to the marked LP image by the inverse pixel
shifting.

Fig. 13. The DTDI decomposition procedure.
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6. Experimental results

For comparison, the proposed algorithm was compared with three state-of-the-art reversible data hiding algorithms [29–
31] which are based on the prediction error expansion and histogram modification. Since the three compared algorithms
were designed to operate in the spatial domain, we partitioned each test mosaic image into four color planes by Eq. (12).
Then, three compared algorithms were first applied to each individual color plane and marked color planes were combined
to generate the marked mosaic image. The proposed algorithm was directly applied to the input mosaic images to generate
the marked mosaic images. The experiments were conducted on the 10 test CFA mosaic images shown in Fig. 15 which were
obtained by downsampling the original full color images in the Kodak photo CD [38] and the website [39]. The original sizes
of Fig. 15(a)–(h), Fig. 15(i), and Fig. 15(j) were 512 � 768,1024 � 1024, and 3456 � 2304, respectively. All the algorithms
were implemented on an IBM compatible computer with an Intel Core 2 Duo CPU 1.83 GHz and a 2 GB RAM. The operating
system was MS-Windows XP; the program development environment was Borland C++ Builder 6.0; and the hidden data
were generated by the function rand() in C++ language.

The comparisons were based on two performance measures, the peak signal-to-noise ratio (PSNR) and the Capacity. The
PSNR measures the quality of the marked image whereas the Capacity, measured in bits per pixel (bpp), represents the
amount of hidden data. The PSNR of a marked CFA mosaic image can be expressed as

PSNR ¼ 10log10
2552

1
MN

PM�1
i¼0

PN�1
j¼0 ½Imoði; jÞ � I0moði; jÞ�

2 ; ð25Þ

where Imo(i, j) and I0mo(i, j) denote, respectively, the color values of the pixels at position (i, j) in an input and marked CFA mo-
saic images of size M � N. Higher values of the PSNR indicate better quality of the marked images. The Capacity of a marked
CFA mosaic image of size M � N is defined as

Capacity ¼ #fhidden bitsg
MN

; ð26Þ

where #{hidden bits} denotes the number bits with hidden data. Large values of the Capacity indicate larger embedding
capacity. For the convenience of comparison, the PSNR is measured for different values of the Capacity for each test image,
as shown in Fig. 16. It is clear that the proposed algorithm delivered the marked image with the best quality in terms of the
PSNR.

For applying the proposed algorithm to the DTDI mosaic images, downsample the 10 test color images as DTDI mosaic
images, shown in Fig. 17. The comparisons were based on two performance measures, PSNR in the DTDI mosaic images, de-
noted by DPSNR, and the Capacity in the DTDI mosaic images, denoted by DCapacity. The DPSNR of a marked DTDI mosaic
image of size M � N is defined as

DPSNR ¼ 10log10
2552

1
2MN

PM�1
i¼0

PN�1
j¼0

P
C2UdCði; jÞ IC

Dði; jÞ � I0CD ði; jÞ
h i2 ; ð27Þ

where U ¼ fR;G;Bg; IK
Dði; jÞ, and I0KD ði; jÞ denote, respectively, the K(K 2U) color values of the pixel at location (i, j) in an input

and marked DTDI mosaic images, and

dGði; jÞ ¼ 1;
dBði; jÞ ¼ ðjþ 1Þ mod 2;
dRði; jÞ ¼ j mod 2:

8><>: ð28Þ

Fig. 14. Lukac and Plataniotis’ mosaic structure [22].
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Higher values of the DPSNR indicate better quality of the marked images. The DCapacity of a marked DTDI mosaic image of
size M � N can be expressed as Capacity/2 since there exist two channels, for embedding data, in the pixels of a DTDI image.
In Fig. 18, plot DPSNR against different values of the DCapacity for each test image. It is clear that the proposed algorithm
delivered the marked DTDI mosaic images with the best quality in terms of the DPSNR.

To apply the proposed reversible data hiding algorithm to the LP mosaic images, first convert, by pixel shifting, LP mosaic
images to CFA mosaic images. Based on the same 10 test images, Table 1 gives the average, over 10 marked images, PSNR for
different values of Capacity. It is clear that the proposed algorithm produced better marked image quality when compared
with the other algorithms.

Fig. 15. Ten CFA mosaic images: (a) wall, (b) girl, (c) lighthouse (d) house, (e) boat, (f) carving, (g) door, (h) village, (i) satellite-map, and (j) brick-texture.
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Fig. 16. The PSNR for different values of Capacity for mosaic images (a) wall, (b) girl, (c) lighthouse, (d) house, (e) boat, (f) carving, (g) door, (h) village, (i)
satellite-map, and (j) brick-texture.
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The threshold used in the proposed algorithm is sequentially increased from zero. To embed more amount of hidden
data, more iterations may be required to find the appropriate threshold. Table 2 gives the number of iterations to deter-
mine the threshold T for different values of the embedding capacity. It is clear that more iterations are required to deter-
mine the threshold when embedding more amount of hidden data. The execution time for each iteration mostly depends
on the size of the image. For an image of size 512 � 768, the average execution time of each iteration is only around
0.16 s, indicating that the threshold determination is quite effective. Similar results appear in the DTDI and LP mosaic
images.

Fig. 17. Ten test DTDI mosaic images: (a) wall, (b) girl, (c) lighthouse, (d) house, (e) boat, (f) carving, (g) door, (h) village, (i) satellite-map and (j) brick-
texture.
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Fig. 18. The DPSNR for different values of DCapacity for DTDI images: (a) wall, (b) girl, (c) lighthouse, (d) house, (e) boat, (f) carving, (g) door, (h) village, (i)
satellite-map, and (j) brick-texture.
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The embedding order of the proposed algorithm is determined by sorting the local variances and embed hidden data first
in the pixels with small variances. Table 3 demonstrates the effect on the average PSNR of the marked mosaic images when
using the sorting strategy to determine the embedding order. It is clear that under the same embedding capacity, the algo-
rithm with the sorting strategy yielded higher average PSNR than the one without the sorting strategy, especially in the case
of low capacity. Since a few pixels are required to embed hidden data in the case of low capacity, only the pixels with very
small local variance would be selected, implying that embedding hidden data into the selected pixels would only cause little
distortion. Therefore, the effect of sorting strategy on the quality of marked images is clear in this case. However, for the case
of high embedding capacity, the effect of sorting strategy becomes less significant since most pixels will be used for embed-
ding the hidden data, indicating that there exists not much room for improvement by the embedding order.

7. Concluding remarks

We have proposed a reversible data hiding algorithm for CFA, DTDI and LP mosaic images. The algorithm differs from
existing approaches in that it uses prediction errors in the color difference domain to embed hidden data. Since such errors
tend to follow a Laplacian distribution with significantly small variance, the algorithm’s embedding capacity is high and it
has good quality on the marked images. To the best of our knowledge, this is the first reversible data hiding algorithm de-
signed specifically for CFA, DTDI, and LP mosaic images. The results of experiments on typical CFA, DTDI, and LP test mosaic
images demonstrate that under the same embedding capacity, the proposed data hiding algorithm produces better quality of
the marked images than the three compared data hiding algorithms [29–31]. The proposed reversible data hiding algorithm
is particularly useful for the field of sensitive images, such as military, medical, and artwork images, where the total recon-
struction of the original images is imperative.

Table 2
Number of iterations to determine the threshold for different values of embedding capacity.

Capacity (bpp)
Image 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Wall 0 2 3 5 7 10 14 20
Girl 0 0 1 2 2 3 5 7
Lighthouse 0 1 1 2 3 5 7 12
House 0 1 1 2 4 6 10 16
Boat 0 1 1 2 3 5 7 11
Carving 0 0 1 1 2 3 4 7
Door 0 0 1 2 2 3 5 7
Village 0 1 1 2 3 5 6 10
Satellite-map 1 2 3 5 7 9 11 15
Brick-texture 0 0 1 1 2 2 3 4

Table 1
Average PSNR (dB) (over 10 LP mosaic images) for different values of embedding capacity.

Capacity (bpp)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Tai et al.’s algorithm [30]
46.24 41.65 38.02 35.79 33.29 31.52 28.90 27.22

Thodi and Rodriguez’s algorithm [31]
48.66 43.09 39.65 37.29 35.08 32.97 30.99 28.90

Sachnev et al.’s algorithm [29]
50.07 44.86 41.47 38.81 36.35 34.09 31.86 29.51

The proposed algorithm
50.45 45.43 41.84 39.17 36.73 34.53 32.37 30.10

Table 3
The effect on the average PSNR (dB) when using sorting strategy to determine the embedding order.

Capacity (bpp)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Without sorting strategy
50.90 46.23 43.00 40.29 38.32 36.28 34.36 32.30

With sorting strategy
51.28 46.60 43.40 40.63 38.51 36.46 34.47 32.39
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