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Abstract

Thresholding is a fundamental operation in image processing. Based on the pairwise nearest neighbor technique and
the variance criterion, this theme presents two fast adaptive thresholding algorithms. The proposed 4rst algorithm takes
O((m− k)m�) time where k denotes the number of thresholds speci4ed by the user; m denotes the size of the compact image
histogram, and the parameter � has the constraint 16 �6m. On a set of di8erent real images, experimental results reveal that
the proposed 4rst algorithm is faster than the previous three algorithms considerably while having a good feature-preserving
capability. The previous three mentioned algorithms need O(mk) time. Given a speci4c peak-signal-to-noise ratio (PSNR),
we further present the second thresholding algorithm to determine the number of thresholds as few as possible in order to
obtain a thresholded image satisfying the given PSNR. The proposed second algorithm takes O((m− k)m�+ �N ) time where
N and � denote the image size and the fewest number of thresholds required, respectively. Some experiments are carried
out to demonstrate the thresholded images that are encouraging. Since the time complexities required in our proposed two
thresholding algorithms are polynomial, they could meet the real-time demand in image preprocessing.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Thresholding is an important operation in image segmen-
tation. Previously, Otsu [1] presented a statistical approach
to determine the thresholds. Assuming that the gray levels
of each object in the input image are normally distributed,
Kittler and Illingworth [2] presented an eCcient threshold-
ing algorithm. Kapur et al. [3] presented an entropy-based
thresholding algorithm. All the three developed threshold-
ing algorithms need O(mk) time where m denotes the size of
the compact image histogram and k denotes the number of
thresholds to be determined. For a 4xed m, the time bound
required in the previous three mentioned algorithms are ex-
ponentially proportional to k. Following the concepts used
in the above three thresholding algorithms, several variants
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[4–11] were presented. However, they are still time consum-
ing for some large k.

Based on the PNN approach [12,13] and the variance cri-
terion [14], which are originally used in vector quantiza-
tion, this theme presents two new thresholding algorithms.
The proposed 4rst algorithm only takes O((m− k)m�) time
where the parameter � has the constraint 16 �6m. On
a set of di8erent real images, experimental results reveal
that the proposed 4rst algorithm is faster than the previous
three algorithms [1–3] considerably while having a good
feature-preserving capability. This con4rms the theoretical
analysis that our proposed algorithm has a polynomial time
bound while the time bound required in the previous three
algorithms are exponentially proportional to k. Given a spe-
ci4c PSNR, following a modi4ed version of the proposed
4rst algorithm, we present the second thresholding algorithm
to determine the number of thresholds as few as possible
such that the thresholded image satis4es the given PSNR.
The proposed second algorithm takes O((m− k)m� + �N )
time where N and � denote the image size and the fewest
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number of determined thresholds, respectively. Some exper-
iments are carried out to demonstrate the thresholded images
that are encouraging. To the best of our knowledge, this is
the 4rst time that such a thresholding algorithm is presented
to satisfy the speci4ed image quality requirement.

2. Preliminary

This section gives a brief survey for the previous three
algorithms mentioned above. For saving the space of the
context, we only consider the case k = 1. Let each pixel of
the image have gray level in [0; 1; : : : ; I−1], and commonly
I = 256. The number of pixels with gray level i is denoted
by ni, 06 i6 I − 1, and the total number of pixels is de-
noted N = n0 + n1 + · · · + nI−1. Thus, the gray level his-
togram is de4ned as a probability distribution: p(i) = ni=N ,
p(i)¿ 0, and

∑I−1
i=0 p(i) = 1. Suppose these N pixels is

partitioned into two clusters C1 and C2 by the threshold T
for 06 T6 I − 1, where C1 denotes those pixels with gray
levels in [0; 1; : : : ; T ] and C2 denotes those pixels with gray
levels in [T +1; : : : ; I − 1]. In order to unify the parameters
used throughout this theme, the probabilities of the clus-
ter occurrence, !j , the cluster mean level, �j , the cluster
variance, �2

j , and the mean level of the original image, �T ,
are de4ned by !1 = Pr(C1) =

∑T
i=0 p(i), !2 = Pr(C2) =∑I−1

i=T+1 p(i), �1 =
∑T

i=0 ip(i)=!1, �2 =
∑I−1

i=T+1 ip(i)=!2,
�2
1 =

∑T
i=0 (i−�1)2p(i)=!1, �2

2 =
∑I−1

i=T+1 (i−�2)2p(i)=!2,
and �T =

∑I−1
i=0 ip(i), respectively.

2.1. The work by Otsu [1]

In Ref. [1], the threshold T? is determined by maxi-
mizing the between-cluster variance �2

B or minimizing the
within-cluster variance �2

W where �2
B(T ) =!1(�1 − �T )2 +

!2(�2−�T )2 and �2
W (T )=!1�2

1 +!2�2
2. The found T? sat-

is4es �2
B(T

?)=max �2
B(T ) for 06 T6 I−1 and �2

W (T?)=
min �2

W (T ) for 06 T6 I − 1 where the total variance of
gray levels satis4es �2

T = �2
B + �2

W .
Suppose we transfer the image histogram into a compact

histogram, which will be explained in Section 3. It is not hard
to verify that Otsu’s thresholding algorithm takes O(mk)
time.

2.2. The work by Kittler and Illingworth [2]

In Ref. [2], Kittler and Illingworth assume that the gray
levels of each object (background or foreground) in an
image have a Gaussian distribution. The threshold is de-
termined by minimizing the Kullback directed divergence
J . The function J is de4ned in terms of the histogram
p(0); p(1); : : : ; p(I − 1) and the unknown mixture distribu-
tion f: J (p;f) =

∑I−1
i=0 p(i)log(p(i)=f(i)), where f(i) =

(!1=
√
2��1)e−1=2((i−�1)=�1)

2
+ (!2=

√
2��2)e−1=2((i−�2)=�2)

2
.

J can be rewritten by J =
∑ I−1

T=0 p(T )logp(T ) −

∑I−1
T=0 p(T )logf(T ). The 4rst summation term at the

right-hand side of J is a 4xed value, so the minimization
of J can be done by minimizing the second summation
term. Let H (T ) be the second summation term and we have
H (T ) = −∑I−1

T=0 p(T )logf(T ). The value T? that mini-
mizes H (T ) is the desired threshold and can be obtained
by computing H (T?) = min06T6I−1H (T ).

Using Kittler and Illingworth’s thresholding algorithm to
obtain the threshold, it also takes O(mk) time when employ-
ing the compact image histogram.

2.3. The work by Kapur et al. [3]

In Ref. [3], the threshold is determined based on the
entropy concept. Suppose T is selected to partition the
histogram into two clusters C1 and C2. The entropy of
C1 is given by H (C1) = −∑T

i=0 p(i)=!1 log(p(i)=!1) =
−1=!1[

∑T
i=0 p(i)logp(i)−p(i)log!1]= log!1 +HT =!1,

where HT =−∑T
i=0 p(i)logp(i). Similarly, the entropy of

C2 is given by H (C2)=−∑I−1
i=T+1 (p(i)=!2)log(p(i)=!2)=

−1=!2[
∑I−1

i=T+1 p(i)logp(i) − p(i)log!2] = log!2 +
(HI−1 − HT )=!2. Let  (T ) denotes the sum of H (C1) and
H (C2), then it yields to  (T )=log!1!2+HT =!1+(HI−1−
HT )=!2.  (T ) is maximized to obtain the maximum infor-
mation when summing up H (C1) and H (C2). The value
T? which maximizes  (T ) is the desired threshold and is
obtained by  (T?) = max06T¡I−1  (T ).
Using Kapur et al.’s thresholding algorithm to obtain the

threshold also takes O(mk) time when giving the compact
image histogram.

3. The proposed two algorithms

In this section, based on the PNN concept [12,13] and the
variance concept [14] used in vector quantization, we 4rst
present a faster thresholding algorithm when compared to
the previous three algorithms mentioned above while hav-
ing a good feature-preserving capability. Next, based on the
modi4ed version of our proposed 4rst algorithm, a novel
adaptive thresholding algorithm is presented to satisfy the
PSNR requirement.

3.1. The 7rst algorithm

It is known that the maximal number of gray levels
allowable in the image is I and the probability of gray
level i, 06 i6 I − 1, is denoted by p(i). Suppose those
zero p(j)s’ are deleted and we pack the remaining nonzero
p(k)’s, say m nonzero p(k)’s, into an array with size m. We
thus have a compact image histogram with the probability
distribution 〈p(i0); p(i1); : : : ; p(im−1)〉 for 06 ij6 I − 1,
06 j6m−1, and p(ij) �= 0. The total number of pixels is
denoted by N =ni0 +ni1 + · · ·+nim−1 =n′0 +n′1 + · · ·+n′m−1

where nij = n′j = N × p(ij). We now take a small example
to explain how to obtain the compact image histogram from
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Fig. 1. An example of image histogram.

Fig. 2. The compact image histogram of Fig. 1.

the image histogram. Given an image, suppose there are
N = 100 nonzero p(k)’s and we have the following image
histogram as shown in Fig. 1.
According to the above de4nition, the compact image

histogram is shown in Fig. 2. Considering Fig. 2, initially
we assign a node with index j to the index pair (ij ; nij ). For
example, we assign node 1 to the index pair (25; 20). For
node 1, the grey level Ij = 25 is counted as the initial mean
of node 1.

Initially, each node is viewed as a cluster. We thus have
m clusters, say C0; C1; : : :, and Cm−1. Let these m clusters
be represented by the set S and the size of the cluster Ci

be denoted by |Ci| = n′i . For any two clusters, Cj and Ck ,
for j �= k, Cj ∈ S, and Ck ∈ S, the squared error measure
[14] introduced by the cluster Cq after merging Cj and Ck

is given by

n′q�
2
q =

∑
x∈Cq

(x − KXq)
2

=
∑
x∈Cj

(x2 − 2x KXq + KX 2
q ) +

∑
x∈Ck

(x2 − 2x KXq + KX 2
q )

= {[n′j(�2
j + KX 2

j )]− 2n′j KXj KXq + (n′j KX
2
q )}

+{[n′k(�2
k + KX 2

k )]− 2n′k KXk KXq + (n′k KX 2
q )}

= {n′j�2
j + n′j( KXj − KXq)

2}+ {n′k�2
k + n′k( KXk − KXq)

2}

= n′j�
2
j + n′k�

2
k +

{
n′j

(
n′k KXj − n′k KXk

n′j + n′k

)2
}

+

{
n′k

(
n′j KXk − n′j KXj

n′k + n′j

)2
}

= n′j�
2
j + n′k�

2
k +

n′jn
′
k

(n′j + n′k)
( KXj − KXk)

2

= n′j�
2
j + n′k�

2
k +

n′jn
′
k

n′q
( KXj − KXk)

2; (1)

where Cq denotes the merged cluster of Cj and Ck ; KXq, KXj ,
and KXk denote the mean of Cq, Cj , and Ck , respectively;
n′q=n′j+n′k , n

′
j , and n′k denote the number pixels ofCq,Cj , and

Ck , respectively; �2
q, �

2
j , and �2

k denote the variance of Cq Cj ,
and Ck , respectively. The third term (n′jn

′
k =n

′
q)( KXj − KXk)2 at

the right-hand side of Eq. (1) can be viewed as the distance
caused by merging clusters Cj and Ck and the distance is
denoted by

d(Cj; Ck) =
n′jn

′
k

n′q
( KXj − KXk)

2: (2)

The distance is symmetric because of d(Cj; Ck)=d(Ck; Cj)
and it can be calculated in O(1) time. The smaller the dis-
tance (see Eq. (2)) is, the stronger the correlation between
Cj and Ck is. For all cluster-pairs, suppose the distance be-
tween any two clusters is known. The next merging process
is to 4nd the minimal distance among all the distances in all
the cluster-pairs.

According to Fig. 2, the simulation of the 4rst merging
process is illustrated in Fig. 3. Initially, each nonzero gray
level ij is viewed as a cluster with index j. As shown in
Fig. 3(a), the 4rst cluster C0 with index 0 contains i0 = 10
and n10 = n′0 = 10. The second cluster C1 with index 1 con-
tains i1 = 25 and n25 = n′1 = 20. By Eq. (2), for any clus-
ter, we compute the minimum distance between that cluster
and the other cluster, then retain the smallest distance. As
shown in Fig. 3(b), the minimum distance for each cluster
is highlighted by the one-way arrow. For example, the min-
imum distance for C0 is 1500 (=10×20

10+20 (10− 25)2) denoting
the distance between C0 and C1 and the minimum distance
for C1 is 278 (=20×25

20+25 (25− 30)2) denoting the distance be-
tween C1 and C2. Then, we 4nd the minimal one among
these seven minimum distances. In our example, the dis-
tance 94 between C4 and C5 is the minimal one as shown in
Fig. 3(c), where the two gray nodes denote the nearest pair.
Then, as shown in Fig. 3(d), we merge C4 and C5 into a new
cluster with smaller index, i.e. C4, where the updated mean
is 83:5 (=5×80+15×85

5+15 ) and the size of the merged cluster
becomes 20 (=5 + 15) which denotes the number of pix-
els in the merged cluster. We further update the minimum
distance of the merged cluster C4. By Eq. (2), the distance
between the new cluster C4 (merging the old C4 and C5) and
the cluster C6 is equal to 260 (= 2010

20+10 (83:75 − 90)2). So,
we assign the distance 260 to the arrow line connecting the
merged cluster C4 and the cluster C6. We repeat the above
three manipulations: (1) 4nding the minimal one among the
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Fig. 3. The simulation of the 4rst merging process for Fig. 2: (a) initial step; (b) calculating the distance; (c) 4nding the minimal distance;
(d) merging and updating.

current di8erent distances, (2) merging the nearest pair, and
(3) updating the merged cluster and the related distance, un-
til the desired k + 1 merged clusters, i.e. the k thresholds,
are obtained.

We now describe how to adopt the table data structure
[15] to maintain the above manipulations. Fig. 4(a) depicts

the initial table. In this table, the index denotes the clus-
ter’s identi4cation. Speci4cally, in order to determine the
best threshold, the maximal gray value in the cluster is still
kept in the “Maximal gray level ” 4eld. From the “Nearest
distance” 4eld (denoting the minimum distance), we merge
the two clusters C4 and C5. The updated table is illustrated
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Fig. 4. The array data structure: (a) initial step; and (b) 4rst merging
step.

in Fig. 4(b). In fact, using the linked list data structure [16]
is another eCcient alternate to implement the above manip-
ulations.

According to the above description, the proposed 4rst
algorithm for thresholding is listed below:

Algorithm 1. Find k thresholds.

Input: Compact image histogram and the number of
thresholds, k.

Output: The determined k thresholds.
/? Let m be the size of the compact image histogram. ?/
Construct the initial table (ref. Fig. 4(a)).
Repeat

Phase 1: Find two nearest clusters Cj and Ck

to be merged.
Phase 2: Merge the selected two clusters; m← m− 1.
Phase 3: Update the table (ref. Fig. 2(b)).

Until m= k + 1.
The k thresholds are determined by selecting the
maximal gray level in each cluster.

Following the analysis technique used in Ref. [15], we
now analyze the complexity required in the proposed 4rst
algorithm. Suppose we have had the compact image his-
togram. It takes O(m2) time to construct the initial table
since for each cluster, computing its own nearest distance
must consider all the remaining m clusters.

In phase 1, we want to 4nd the two nearest clusters. This
is equal to a minimum–4nding problem and it takes O(m)
time.

Table 1
Time complexity comparison

Time complexity

Otsu’s algorithm (OT) O(mk)
Kittler and Illingworth’s algorithm (KI) O(mk)
Kapur et al.’s algorithm (KA) O(mk)
Proposed Algorithm 1 (OURS1) O((m − k)m�)

In phase 2, suppose the merged cluster is denoted by Cq

and the corresponding nearest pair are Cj and Ck . The size
of the merged cluster is set to be n′q = n′j + n′k . The mean
of the merged cluster is set to be KXq = (n′j KXj + n′k KXk)=n′q.
The maximal gray level of the merged cluster Cq is set to
be max{MGj;MGk}, where MGj (MGk) denotes the “Max-
imal gray level” in Cj (Ck). The above calculations can be
performed in O(1) time.

In phase 3, only the clusters connecting Cj and Ck (before
merging) and the merged cluster Cq are needed to update
their “Nearest distance” and “Index of the nearest cluster”
4elds. Except the merged cluster itself, suppose there are
� − 1 (� − 16m) clusters connecting Cj and Ck . Among
the merged cluster and these �− 1 clusters, for each cluster,
it takes O(m) time to update the nearest distance and the
corresponding index of the nearest cluster. So, it takesO(m�)
time in Phase 3.

Totally, there are (m− k − 1) iterations to be performed
in the proposed 4rst algorithm, Algorithm 1. For each
iteration, there are three phases to be performed and each
iteration takes O(m + 1 + m�) = O(m�) time. Considering
the time to construct the initial table, Algorithm 1 takes
O((m − k)m�) (=O((m − k)m� + m2)) time totally for
obtaining the k thresholds.

In summary, the time complexity comparison among the
previous three mentioned algorithms (named OT, KI, and
KA) and our proposed 4rst Algorithm (named OURS1) is
listed in Table 1.

From the above time complexity comparison, it reveals
that for k=1, i.e. the binary segmentation, all the three pre-
vious algorithms are faster to our proposed 4rst algorithm,
but for k¿ 3, our proposed 4rst algorithm is the fastest. In
fact, for k =2, the proposed 4rst algorithm, OURS1, is still
the fastest due to the small leading constant factor in the
complexity required in our proposed algorithm. In the next
section, some experiments will be carried out to con4rm the
theoretical analysis. Besides the computational advantage,
our proposed algorithm, OURS1, has the similar thresholded
images as in the previous three algorithms.

For providing the necessary temporary information, such
as all the temporary thresholds and the means of the clus-
ters, to the proposed second algorithm, Algorithms 1, i.e.
OURS1, is modi4ed as follows, where all the temporary
thresholds and means are kept in the arrays Thresholds[]
and Cluster Means[], respectively.
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Modi4ed Algorithm 1. Find Thresholds[] and
Cluster Means[].

Input: Compact image histogram and the number of
thresholds, k.

Output: The array Thresholds[1:: (k+m−1)(m−k)
2 ]

and array Cluster Means[1:: (k+m+1)(m−k)
2 ].

/? Let m be the size of the compact image histogram. ?/
/? Let the array Thresholds[] keep all the

temporary thresholds. ?/
/? Let the array Cluster Means[] keep all the temporary

clusters’ means. ?/
Construct the initial table (ref. Fig. 4(a)).
j1 ← 0; j2 ← 0.
Repeat

i1 = j1 + 1; i2 = j2 + 1.
j1 = j1 + m− 1; j2 = j2 + m.
Thresholds[i1 : : : j1]← (m− 1) maximal gray levels,

i.e. thresholds, in the (m− 1) clusters.
Cluster Means[i2 : : : j2]← m means in the m clusters.
Phase 1: Find two nearest clusters Cj and Ck

to be merged.
Phase 2: Merge the selected two clusters; m← m− 1.
Phase 3: Update the table (ref. Fig. 2(b)).

Until m= k + 1.

In fact, the time complexity of the modi4ed version of
Algorithm 1 is the same as that of Algorithm 1, but it only
needs O(m2 − k2) extra memory.

3.2. The second algorithm satisfying the given PSNR

Given a speci4ed PSNR, following the proposed
Algorithm 1, we now present an adaptive thresholding
algorithm such that the resulting thresholded image can
satisfy the speci4ed PSNR, but the number of deter-
mined thresholds is as few as possible. Before presenting
the proposed second algorithm, the PSNR is de4ned by
PSNR=10× log10[255

2N=
∑N−1

i=0 (I1(i)− I2(i))2], where N
denotes the total pixels in the image; I1 denotes the original
image and I2 denotes the current thresholded image.

Following the modi4ed version of Algorithm 1, our
proposed second thresholding algorithm is listed below.

Algorithm 2. Find k ′ thresholds such that the thresholded
image satis4es the PSNR requirement.

Input: PNSR threshold, the input image I1, and the
compact image histogram.

Output: k ′ thresholds.
k ′ ← 1.
Find the array Thresholds[] and

array Cluster Means[] by calling
the modi4ed Algorithm 1 with k = k ′.

/? It takes O((m− k ′)m�+ �N ) time. ?/
i1 ← (k′+m−1)(m−k′)

2 ; i2 ← (k′+m+1)(m−k′)
2 .

While (True)
Replace I1 by I2 using k

′
thresholds in

Thresholds[i1 : : : (i1 − k ′ + 1)] and using
the k ′ + 1 clusters’
means in Cluster Means[i2 : : : (i2 − k ′)].

/? Obtain the thresholded image I2
takes O(N ) time. ?/

PSNR← Compute the PSNR between I1 and I2.
/? It takes O(N ) time. ?/
If (PSNR¿PSNR Threshold)
Break. /? Stop the algorithm. ?/

EndIf
k ′ ← k ′ + 1.
i1 ← i1 − k ′ and i2 ← i2 − (k

′
+ 1).

EndWhile
The k ′ thresholds are obtained from

Thresholds[i1 : : : (i1 − k ′ + 1)].

According to the complexity analysis described in
Algorithm 1, it is not hard to derive that the time complex-
ity of Algorithm 2 is O((m − k)m� + �N ), where � is the
number of iterations required in Algorithm 2. To the best
of our knowledge, this is the 4rst time that given a speci-
4ed PSNR, such an adaptive algorithm for thresholding is
presented. According to the experiments shown in Section
4, a small � can achieve a high PSNR.

4. Experimental results

In this section, three types of experiments are carried out
to evaluate the performance of the previous three threshold-
ing algorithms and the proposed two algorithms. For conve-
nience, let OURS2 denote our proposed second algorithm.
The 4rst experiment is used to evaluate the time performance
among OT, KI, KA, and OURS1. The second experiment
is used to compare the thresholded images by using OT,
KI, KA, and OURS1. The third experiment is used to jus-
tify the proposed second algorithm, OURS2. All the related
algorithms are implemented using Borland C + + Builder
4.0 language and the Pentium III 600 PC with 128 MB
RAM.

4.1. Time comparison among OT, KI, KA, and OURS1

In this experiment, as shown in Figs. 5(a)–(c), three real
512×512 images, namely F16, Lena, and Text, respectively,
are used to evaluate the time performance among the men-
tioned four algorithms. Especially, the constant term in the
time complexity for each algorithm will be estimated. That
is, the asymptotic time complexity is obtained for each al-
gorithm. In our experiments, the sizes of the compact image
histograms are m = 235, m = 215, and m = 223 for F16,
Lena, and Text, respectively.
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Fig. 5. Original images: (a) F16 and (b) Lena and (c) text.

Table 2
Time comparison for F16 image

k = 1 k = 2 k = 3 k = 4

OT 0.0001 0.0216 2.1975 159.2550
KI 0.0003 0.0573 5.8970 425.9250
KA 0.0001 0.0159 1.5310 102.2250
OURS1 0.0015 0.0015 0.0015 0.0015

Table 3
Time comparison for Lena image

k = 1 k = 2 k = 3 k = 4

OT 0.0001 0.0180 1.6660 110.3100
KI 0.0003 0.0477 4.4940 296.4250
KA 0.0001 0.0130 1.1140 69.0250
OURS1 0.0010 0.0010 0.0010 0.0010

Table 4
Time comparison for Text image

k = 1 k = 2 k = 3 k = 4

OT 0.0001 0.0190 1.8990 127.3477
KI 0.0003 0.0502 5.1050 350.0550
KA 0.0001 0.0137 1.1850 82.1450
OURS1 0.0010 0.0010 0.0010 0.0010

Table 5
Determined thresholds, t1 and t2

t1, t2(F16) t1, t2(Lena) t1, t2(Text)

OT 93, 165 92, 150 130, 182
KI 182, 206 72, 119 185, 217
KA 78, 175 96, 163 118, 118
OURS1 118, 177 66, 135 122, 171

Tables 2–4 illustrate the executing time in terms of sec-
onds required in the four algorithms. From the three ta-
bles, it is observed that the proposed algorithm OURS1
is faster considerably than OT, KI, and KA when k¿ 2.
For k¿ 2, the execution time improvement ratio is close
to 1 while the thresholded images obtained by using our
proposed algorithm OURS1 are encouraging (see Section
4.2) when compared to the previous three algorithms. Af-
ter calculating the constant term in the time complexity of
each algorithm, the detailed average time complexities are
5:2× 10−8 ×mk , 1:38× 10−7 ×mk , 3:2× 10−8 ×mk , and
2:6× 10−10 × (m− k)m�, where �=m=2, for OT, KI, KA,
and OURS1, respectively. The experimental results shown
in Tables 2–4 also con4rm the theoretical analysis described
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Fig. 6. The thresholded images for F16 with k = 2: (a) OT’s thresholded image; (b) KI’s thresholded image; (c) KA’s thresholded image;
and (d) OURS1’s thresholded image.

Table 6
Feature-preserving comparison of the thresholded image for F16

OT KI KA OURS1

(1) The entrance with shape Fair Good Good Fair
(2) The F-16 mark Good Fair Good Good
(3) The star signature Good Fair Good Good
(4) The text “U.S.AIR FORCE” Good Good Good Good
(5) The belly Good Fair Good Good
(6) The cloud Good Good Good Good
(7) The ID number 01568 Fair Fair Fair Good

in Table 1. From Tables 2–4, it is observed that the poly-
nomial time bound required in OURS1 is rather stable for
di8erent k while the time bounds required in the previous

three algorithms are exponentially proportional to k. How-
ever, for k = 1, the previous three algorithms are still the
fastest.
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Fig. 7. The thresholded images for Lena with k = 2; (a) OT’s thresholded image; (b) KI’s thresholded image; (c) KA’s thresholded image;
and (d) OURS1’s thresholded image.

Table 7
Feature-preserving comparison of the thresholded image for Lena

OT KI KA OURS1

(1) The nose Good Fair Good Good
(2) The lip Good Good Fair Good
(3) The cheek Fair Good Fair Fair
(4) The stumps Fair Good Fair Good
(5) The shoulder Good Fair Fair Fair

4.2. Comparison of thresholded images among OT, KI,
KA, and OURS1

In the second experiment, we only consider k = 2 to
compare the thresholded images among the related four

algorithms although it is applicable for k ¿ 2. Since the cri-
terion used in each algorithm is di8erent, the determined
thresholds are somewhat di8erent from each other. Here, the
main features of the thresholded images are investigated for
the four algorithms.
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Fig. 8. The thresholded images for Text with k = 2; (a) OT’s thresholded image; (b) KI’s thresholded image; (c) KA’s thresholded image;
and (d) OURS1’s thresholded image.

Table 8
Feature-preserving comparison of the thresholded image for Text

OT KI KA OURS1

(1) The background Good Good Good Good
(2) The words’ clearness Good Fair Good Good

Table 5 demonstrates the two determined thresholds, t1
and t2, by using the four related algorithms for the same
three images as in Section 4.1. From Table 5, it is observed
that our proposed algorithm OURS1 has the middle t1 and
t2 when compared to the previous three algorithms. We now
investigate the feature-preserving capability in the resulting
thresholded images.

For the thresholded image of F16, we mainly compare
seven features: (1) the entrance with shape , (2) the
F–16 mark, (3) the star signature, (4) the text “U.S.AIR
FORCE”, (5) the belly, (6) the cloud, and (7) the ID num-
ber 01568. After comparing the four related thresholded
images as shown in Figs. 6(a)–(d) with Fig. 5(a), the
above seven features comparison is illustrated in Table 6.
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Fig. 9. The thresholded image after applying OURS2.

Here, for each feature, we use “fair” or “good” to grade its
feature-preserving capability. From Table 6, for F16, it is
observed that the thresholded images of OURS1, OT, and
KA have the relatively better quality exhibition.

For the thresholded image of Lena, we mainly compare
4ve features: (1) the nose, (2) the lip, (3) the cheek, (4)
the stumps, and (5) the shoulder. After comparing the four
related thresholded images as shown in Figs. 7(a)–(d) with
Fig. 5(b), the above 4ve features comparison is illustrated
in Table 7. From Table 7, for Lena, it is observed that the
thresholded images of OURS1, OT, and KI have the rela-
tively better quality exhibition.

For the thresholded image of Text, we compare two fea-
tures: (1) the background and (2) the words’ clearness. Af-
ter comparing the four related thresholded images as shown
in Figs. 8(a)–(d), with Fig. 5(c), the above two features
comparison is illustrated in Table 8. From Table 8, for Text,
it is observed that the thresholded images of OURS1, OT,
and KA have the relatively better quality exhibition.

Combining the above feature-preserving comparison,
it comes to a conclusion that the thresholded images
of our proposed algorithm OURS1 has an encouraging
feature-preserving capability.

4.3. Performance of the proposed second algorithm

For human visual system, the thresholded image has
PSNR = 30, the image quality is rather satisfactory. Our
proposed second algorithm OURS2 can determine the least
number of thresholds satisfying the given PSNR quality.
For F16, when the PSNR is equal to 30.15, the determined
least number of thresholds is k=6 using OURS2. For Lena,
when the PSNR is equal to 30.32, the determined least
number of thresholds is k = 6 too. It implies that OURS2

has the compression e8ect. From Figs. 9(a) and (b), the
thresholded two images are encouraging.

5. Conclusions

Thresholding is a very important operator in image pre-
processing. This theme has presented a new PNN-based
thresholding algorithm, OURS1, which is quite di8erent
from the previous three algorithms [1–3]. For k¿ 2, i.e.
4nding at least two thresholds, our proposed OURS1 has a
satisfactory feature-preserving capability, but is the fastest
when compared to the previous three algorithms. Experi-
mental results con4rm the theoretical analysis. According to
the modi4ed version of OURS1, we also present an adaptive
thresholding algorithm, OURS2, to determine the thresholds
as few as possible to satisfy the speci4ed PSNR. Experimen-
tal results reveal that the thresholded images are encourag-
ing.
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