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Binarization is an important basic operation in image processing community. Based on the
thresholded value, the gray image can be segmented into a binary image, usually consisting
of background and foreground. Given the histogram of input gray image, based on mini-
mizing the within-variance (or maximizing the between-variance), the Otsu method can
obtain a satisfactory binary image. In this paper, we first transfer the within-variance cri-
terion into a new mathematical formulation, which is very suitable to be implemented in a
fast incremental way, and it leads to the same thresholded value. Following our proposed
incremental computation scheme, an efficient heap- and quantization-based (HQ-based)
data structure is presented to realize its implementation. Under eight real gray images,
experimental results show that our proposed HQ-based incremental algorithm for binari-
zation has 36% execution-time improvement ratio in average when compared to the Otsu
method. Besides this significant speedup, our proposed HQ-based incremental algorithm
can also be applied to speed up the Kittler and Illingworth method for binarization.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Binarization is a very important preprocessing operation in image processing and computer vision [1–3]. Based on the
thresholded value, the gray image can be segmented into a binary image, containing background and foreground. In addition,
combining the thresholded value and the Sobel edge detector, the gray image can be transferred to the edge map which has
many applications, such as the shape detection [4,5]. How to determine a suitable thresholded value to partition the input
gray image into two parts is the key in binarization and has a long history. Usually binarization is also called the threshold
selection problem.

In the past years, many efficient threshold selection methods and their applications [6–16] have been developed. Among
these developed threshold selection methods, Otsu’s 1979 result is a very important pioneering work, which will be sur-
veyed in Section 2, and it is sometimes used as the kernel in the other methods and applications. The motivations of this
paper are twofold: (1) present a novel computational platform to speed up the Otsu method significantly and obtain the
same thresholded value and (2) apply our proposed computational scheme to speed up the other binarization methods, such
as the Kittler and Illingworth method [7] which is based on the mixture of normal distributions.

In this paper, we first transfer the within-variance criterion used in the Otsu method into a new mathematical formula-
tion and this new formula is very suitable to be implemented in a fast incremental way, and it leads to the same thresholded
. All rights reserved.
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value. Following our proposed novel incremental computation scheme, an efficient heap- and quantization-based (HQ-
based) data structure is presented to realize its implementation. Under eight real gray images, experimental results show
that our proposed HQ-based incremental algorithm for binarization has 36% execution-time improvement ratio in average
when compared to the Otsu method. Besides this significant speedup, our proposed HQ-based incremental algorithm can
also be applied to speedup some other binarization methods such as the Kittler and Illingworth method. Further, experimen-
tal results also show that our proposed binarization algorithm is much faster than the previous lookup table-based approach
by Liao et al. [17] for binarizing gray images.

The rest of this paper is organized as follows: Section 2 first surveys the Otsu method, then presents our proposed HQ-
based incremental algorithm for binarization. Section 3 demonstrates the experimental results. Some concluding remarks
are addressed in Section 4.
2. Fast binarization of gray images

In this section, there are three subsections. In Section 2.1, the Otsu method is surveyed. In Section 2.2, we transfer the
within-variance criterion used in the Otsu method into a new mathematical formulation, which is very suitable to be imple-
mented in a fast incremental way. Further, an efficient HQ-based data structure is presented to realize its implementation. In
Section 2.3, our proposed whole HQ-based incremental algorithm for binarization is presented.

2.1. The Otsu method

In this subsection, the Otsu method for binarizing gray images is surveyed. Let N denote the number of pixels in the input
gray image and the gray level is ranged from 0 to L� 1. For the input gray image I, the number of pixels with gray level i is
denoted by ni and the probability of gray level i is defined by Pi ¼ ni

N .
For binarizing the input image I, suppose t is a possible threshold candidate, then the image I can be divided into two

classes/parts, namely, C1 ¼ f0;1; . . . ; tg and C2 ¼ ft þ 1; t þ 2; . . . ; L� 1g. Before introducing the Otsu method, the follow-
ing useful notations are defined first. The ratios of the first class C1 and the second class C2 over the whole image I are
given by
x1ðtÞ ¼
Xt

i¼0

Pi ð1Þ
and
x2ðtÞ ¼
XL�1

i¼tþ1

Pi; ð2Þ
respectively, where
x1ðtÞ þx2ðtÞ ¼ 1: ð3Þ
By Eqs. (1) and (2), the two means of classes C1 and C2 are defined by
l1ðtÞ ¼
Xt

i¼0

iPi=x1ðtÞ ð4Þ
and
l2ðtÞ ¼
XL�1

i¼tþ1

iPi=x2ðtÞ; ð5Þ
respectively. By Eqs. (1)–(5), the two variances of classes C1 and C2 are defined by
r2
1ðtÞ ¼

Xt

i¼0

ði� l1ðtÞÞ
2 Pi

x1ðtÞ
ð6Þ
and
r2
2ðtÞ ¼

XL�1

i¼tþ1

ði� l2ðtÞÞ
2 Pi

x2ðtÞ
; ð7Þ
respectively.
By Eqs. (1) and (2) and Eqs. (6) and (7), the within-variance of C1 and C2 is defined by
r2
wðtÞ ¼ x1ðtÞr2

1ðtÞ þx2ðtÞr2
2ðtÞ: ð8Þ
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For two classes C1 and C2, it is known that r2
I ¼ r2

BðtÞ þ r2
wðtÞ where r2

I denotes the variance of the whole gray image I; r2
BðtÞ

denotes the between-variance of C1 and C2. According to the Otsu method, for binarizing the gray image I, it wants to choose
a gray level t to minimize the value of r2

wðtÞ, i.e. maximizing the value of r2
BðtÞ. We adopt the minimization of r2

wðtÞ as the
criterion in our proposed algorithm to binarize the gray image I. On the other hand, for binarizing the gray image I, it wants
to find the thresholded value t� satisfying
t� ¼ arg min
06t<L

r2
wðtÞ

� �
: ð9Þ
According to the determined threshold t�, the gray image I can be partitioned into two satisfactory classes C1 and C2.

2.2. The proposed incremental heap- and quantization(HQ)-based computation scheme

In the Otsu method, for each t, 0 6 t < L, it must calculate the value of r2
wðtÞ. After calculating all r2

wðtÞ’s for 0 6 t < L, the
minimal r2

wðtÞ, say r2
wðt�Þ, is selected from these L values and t� is the so called determined threshold. By Eq. (8), for each t,

the computation effort for calculating r2
wðtÞ is bounded by cL where c is constant. According to the time complexity notation

[18], let f ðtÞ be the time complexity for t to calculate r2
wðtÞ, then we have f ðtÞ 6 cL, i.e. f ðtÞ ¼ OðLÞ. For 0 6 t < L, it takes OðL2Þ

time to calculate all r2
wðtÞ’s.

In our proposed HQ-based computation scheme, initially, it takes OðLÞ time to perform the prefix computation to obtain
x1ð0Þ;x1ð1Þ; . . ., and x1ð255Þ. From Eq. (3), it can also take OðLÞ time to obtain x2ðtÞ ð¼ 1�x1ðtÞÞ for 0 6 t 6 255. In the
initial iteration, it does not need to calculate the final value of r2

wðtÞ for 0 6 t 6 255, but we just calculate the value of
r2

wðtÞ in an incremental way and the temporary value of r2
wðtÞ calculated in the initial iteration is denoted by
r2
wðt;0Þ ¼ x1ðtÞr2

1ðt;0Þ þx2ðtÞr2
2ðt;0Þ; ð10Þ
where r2
1ðt;0Þ and r2

2ðt;0Þ are defined by
r2
1ðt;0Þ ¼

Pv
i¼0
ði� l1ðtÞÞ

2 Pi
x1ðtÞ

; if t > v ;

Pt

i¼0
ði� l1ðtÞÞ

2 Pi
x1ðtÞ

; otherwise;

8>>><
>>>:

ð11Þ

r2
2ðt;0Þ ¼

0; if t > v;
Pv

i¼tþ1
ði� l2ðtÞÞ

2 Pi
x2ðtÞ

; otherwise;

8<
: ð12Þ
where ðv þ 1Þ denotes the number of data that should be included in each incremental computation iteration. Empirically,
we set ðv þ 1Þ ¼ 32.

After computing Eq. (10), in the same iteration, we quantize these 256 r2
wðt;0Þ’s for 0 6 t 6 255 into 32 groups, namely

group_0= r2
wð0;0Þ;r2

wð1; 0Þ;r2
wð2;0Þ; . . . ;r2

wð7;0Þ
� �

; . . ., and group_31= r2
wð248; 0Þ;r2

wð249;0Þ; . . . ;r2
wð255; 0Þ

� �
, where each

group contains eight temporary within-variances. For the pth group, 0 6 p 6 31, we compute its own minimal temporary
within-variance which is defined by
r2�
w ðtp;0;pÞ ¼ min

8p6i<8ðpþ1Þ
r2

wði;0Þ
� �

; ð13Þ
where tp ¼ arg min8p6i<8ðpþ1Þ r2
wði; 0Þ

� �
.

For 0 6 p 6 31, after computing Eq. (13), we have 32 minimal temporary within-variances for these 32 groups and they
are denoted by the set r2�

w ðtp;0; pÞj0 6 p 6 31
� �

. We now arrange these 32 temporary within-variances to construct a binary
tree such that the root contains r2�

w ðt0;0;0Þ; the root’s left (right) son contains r2�
w ðt1;0;1Þ r2�

w ðt2;0;2Þ
� �

, and so on. As shown
in Fig. 1, the constructed binary tree is used as the initial heap which will be used in the further iteration. Note that besides
containing the minimal temporary within-variance of group_i, r2�

w ðti;0; iÞ, each node in Fig. 1 also contains eight temporary
within-variances, r2

wð8i;0Þ;r2
wð8iþ 1;0Þ; . . ., and r2

wð8ðiþ 1Þ � 1;0Þ.
After determining the minimal temporary within-variance of each group, we select the group, say p0th group, with the

minimum temporary within-variance from the initial heap by running the minimum-finding operation [18] in the initial
iteration on Fig. 1 and we have
r2�
w tp0 ;0; p0
� �

¼ min
06p<32

r2�
w ðtp;0; pÞ

� �
; ð14Þ
where t0p ¼ arg min06p<32 r2�
w ðtp;0; pÞ

� �
. In fact, the minimum-finding operation is the heapifying operation so that the heap

condition is satisfied, and thus for every node i other than the root node has the property that the minimal temporary within-
variance of the parent node is less than or equal to that of the two sons. Without losing the generality, we suppose p0 ¼ 9. For
group_9, its current own eight temporary within-variances are denoted by r2

wð72;0Þ;r2
wð73;0Þ; . . . ;r2

wð79;0Þ
� �

. After running
the minimum-finding operation on Fig. 1, group_9 is moved to the root of heap and the adjusted heap is shown in Fig. 2.
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Fig. 2. Adjusted heap after performing minimum-finding operation in the initial iteration.
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Fig. 1. Initial heap.
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In the first iteration, group_9 has eight entries for 72 6 t 6 79 and each entry considers 32 new data and performs
r2
1ðt;1Þ ¼

X63

i¼32

ði� l1ðtÞÞ
2 Pi

x1ðtÞ
; ð15Þ

r2
2ðt;1Þ ¼ 0: ð16Þ
Since in each iteration, each entry in the minimal group considers 32 new data, there are eight (=256/32) iterations in total.
From r2

wðt;1Þ ¼ x1ðtÞr2
1ðt;1Þ þx2ðtÞr2

2ðt;1Þ, the set of eight within-variances in group_9 is now changed to
r2

wð72;1Þ;r2
wð73;1Þ;r2

wð74;1Þ; . . . ;r2
wð79;1Þ

� �
while the remaining 31 groups don’t update their own temporary within-vari-

ances anymore. As shown in Fig. 3, after performing the minimum-finding operation in the first iteration, the root of the ad-
justed heap contains the minimal group, group_9.
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Fig. 3. Root node update of Fig. 2.
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In the jth iteration, 2 6 j 6 7, by the same argument as in the first iteration, suppose the minimal group is group_�p, i.e.
group_�p has minimum within-variance at present, then each entry, 8�p 6 t < 8ð�pþ 1Þ, in group_�p performs the following
operations:
r2
wðt; jÞ ¼ r2

1ðt; jÞx1ðtÞ þ r2
2ðt; jÞx2ðtÞ; ð17Þ
where
r2
1ðt; jÞ ¼

0; if t < 32j;
P32ðjþ1Þ�1

i¼32j
ði� l1ðtÞÞ

2 Pi
x1ðtÞ

; if t P ð32ðjþ 1Þ � 1Þ;

Pt

i¼32j
ði� l1ðtÞÞ

2 Pi
x1ðtÞ

; otherwise;

8>>>>>><
>>>>>>:

r2
2ðt; jÞ ¼

0; if t P ð32ðjþ 1Þ � 1Þ;
P32ðjþ1Þþt

i¼32kþtþ1
ði� l2ðtÞÞ

2 Pi
x2ðtÞ

; if 32ðjþ 1Þ þ t 6 255;

P255

i¼32kþtþ1
ði� l2ðtÞÞ

2 Pi
x2ðtÞ

; otherwise:

8>>>>>><
>>>>>>:
Before presenting our proposed HQ-based computation scheme to speed up the Otsu method, the following notations are
given. Let PðuÞ denote the accumulated probability whose random variable i is ranged from 0 to u for 0 6 u < L and PðuÞ is
defined by
PðuÞ ¼
Xu

i¼0

Pi:: ð18Þ
Let MðuÞ denote the first-order moment and MðuÞ is defined by
MðuÞ ¼
Xu

i¼0

iPi: ð19Þ
Eqs. (18) and (19) can be rewritten as the following recursive forms:
Pðuþ 1Þ ¼ PðuÞ þ Puþ1; ð20Þ
and
Mðuþ 1Þ ¼ MðuÞ þ ðuþ 1ÞPuþ1; ð21Þ
where the two boundary conditions are set to Pð�1Þ ¼ 0 and Mð�1Þ ¼ 0.
According to Eqs. (1), (3), and (18), the ratio of class Ck is said to xkðtÞ, 1 6 k 6 2, and can be rewritten as
x1ðtÞ ¼ PðtÞ; ð22Þ
and
x2ðtÞ ¼ 1� PðtÞ: ð23Þ
By Eqs. (4), (5), (19), (21), (22) and (23), lkðtÞ, 1 6 k 6 2, is rewritten as
l1ðtÞ ¼
MðtÞ
PðtÞ ; ð24Þ
and
l2ðtÞ ¼
MðL� 1Þ �MðtÞ

1� PðtÞ : ð25Þ
It is known r2
wðtÞ ¼ x1ðtÞr2

1ðtÞ þx2ðtÞr2
2ðtÞ. Let the symbol j denote the order of the iteration in our proposed HQ-based

incremental approach for binarization. For example, when j ¼ 2, it means that the order of the iteration is the second iter-
ation. Let the symbol k denote the number of new data considered in each entry of the group. For example, in the previous
description, k is set to 32 empirically since the quantization level is 32. The number of groups in our approach is set to dL=ge
where the group size g denotes the number of entries in the group, thus r2

1ðtÞ in Eq. (6) is rewritten as
r2
1ðtÞ ¼

Xs1

j¼0

r2
1ðt; jÞ; ð26Þ
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where s1 ¼ dðt þ 1Þ=ke � 1, r2
1ðt; jÞ ¼

Pminðd1 ;tÞ
i¼jk ði� l1ðtÞÞ

2 Pi
x1ðtÞ

, and d1 ¼ ðjþ 1Þk� 1. Similarly, r2
2ðtÞ in Eq. (7) is rewritten as
r2
2ðtÞ ¼

Xs2

j¼0

r2
2ðt; jÞ; ð27Þ
where s2 ¼ dðL� t � 1Þ=ke � 1, r2
2ðt; jÞ ¼

Pminðd2 ;L�1Þ
i¼jkþtþ1 ði� l2ðtÞÞ

2 Pi
x2ðtÞ

, and d2 ¼ ðjþ 1Þkþ t. Combining Eqs. (26) and (27), we
have
r2
wðt; jÞ ¼ r2

1ðt; jÞx1ðtÞ þ r2
2ðt; jÞx1ðtÞ: ð28Þ
Initialization

Binary Tree
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(Step1)

(Step2)
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Root Node Update (Step4)

NO
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Terminate (Step5)

7 ?j

Fig. 4. Flowchart of our proposed HQ-based incremental algorithm.
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Fig. 5. The depiction of computation-saving advantage of our proposed algorithm.
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After computing Eq. (28), we quantize these L r2
wðt; jÞ’s, 0 6 t < L, into dL=ge groups, where each group contains g temporary

within-variances. For the pth group, 0 6 p < dL=ge, we compute its own minimum by
r2�
w ðtp; j; pÞ ¼ min

gp6i<gðpþ1Þ
r2

wði; jÞ
� �

; ð29Þ
where tp ¼ arg mingp6i<gðpþ1Þ r2
wði; jÞ

� �
. After determining the minimal group in the jth iteration and performing the mini-

mum-finding operation on the heap, the root node of the heap is changed and denoted by
r2�
w tp0 ; j;p0
� �

¼ min
06p<dL=ge

r2�
w ðtp; j;pÞ

� �
; ð30Þ
where t0p ¼ arg min06p<dL=ge r2�
w ðtp; j; pÞ

� �
.

After running the seventh iteration and performing the minimum-finding operation, if the same minimal group is
retained in the root node of the heap, we can find this group’s minimal temporary within-variance from eight temporary
Fig. 6. The eight testing gray images. (a) Lena; (b) F16 Jet; (c) Peppers; (d) House; (e) Baboon; (f) Cakes; (g) Coins and (h) Culvert.



Fig. 7. The eight binarized images of Fig. 6. (a) The binarized Lena; (b) the binarized F16 Jet; (c) the binarized Peppers; (d) the binarized House; (e) the
binarized Baboon; (f) the binarized Cakes; (g) the binarized Coins and (h) the binarized Culvert.

Table 1
The execution-time performance comparison between the Otsu method and our proposed method by running each one 1000 times.

Otsu method (ms) Proposed method (ms) Improvement ratio (%)

Lena 2422 1562 35
F16 Jet 2406 1547 33
Peppers 2422 1547 36
House 2437 1593 34
Baboon 2422 1640 32
Cakes 2281 1281 43
Coins 2391 1422 40
Culvert 2328 1531 34

Average 2367 1509 36

K.-L. Chung, C.-L. Tsai / Applied Mathematics and Computation 212 (2009) 396–408 403
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within-variances and the found minimal temporary within-variance is the finally determined optimal threshold which is ex-
actly the same as the threshold determined by the Otsu method.

2.3. The proposed HQ-based incremental algorithm

According to the above description, our proposed HQ-based incremental algorithm for binarizing gray images is pre-
sented in this subsection. For exposition, for a gray image with 256 levels, assume there are 32 groups and each group
has eight entries. Totally there are eight iterations to be performed. Our proposed HQ-based algorithm consists of the follow-
ing eight steps:

Input: A gray image with 256 levels.
Output: The optimal threshold.
Step 1 (Initialization). By Eq. (10), we compute the initial temporary within-variances r2

2ðt;0Þ’s for all 0 6 t 6 255. Then
we quantize these 256 r2

wðt;0Þ’s for 0 6 t 6 255 into 32 groups, namely group_0= r2
wð0;0Þ;r2

wð1;0Þ;r2
wð2;0Þ; . . . ;

�
r2

wð7;0Þ�; . . ., and group_31= r2
wð248;0Þ;r2

wð249;0Þ; . . . ;r2
wð255;0Þ

� �
, where each group contains eight temporary

within-variances. For the pth group, 0 6 p 6 31, by Eq. (13), we compute its own minimal temporary within-variance
and these 32 minimal temporary within-variances are denoted by r2�

w ðtp;0; pÞj0 6 p 6 31
� �

.
Step 2 (Binary Tree Construction). We organize these obtained 32 minimal temporary within-variances obtained in Step 1
as a binary tree such that the root node contains r2�

w ðt0;0;0Þ; the root’s left (right) son contains r2�
w ðt1;0;1Þ r2�

w ðt2;0;2Þ
� �

,
and so on.
Step 3 (Heap Adjustment). We perform the minimum-finding operation on the tree. After heapifying the tree structure, the
heap condition is satisfied and the root node saves the minimal group. Consequently, the smallest group is located at the
root node of the heap.
Step 4 (Root Node Update). If the iteration number j is not greater than 7, for the current minimal group, say group_�p, its
eight temporary within-variances r2

wðt; jÞ’s, 8�p 6 t < 8ð�pþ 1Þ, will be updated by Eq. (28). Perform the assignment
j ¼ jþ 1 and then go to Step 3; otherwise, go to Step 5.
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Fig. 8. The illustration of computation-saving advantage of our proposed algorithm. (a) Lena; (b) F16 Jet; (c) Peppers; (d) House; (e) Baboon; (f) Cakes;
(g) Coins and (h) Culvert.



Table 2
The execution-time performance comparison between Liao et al.’s method and our proposed method by running each one 1000 times.

Liao et al.’s method (ms) Proposed method (ms) Improvement ratio (%)

Lena 52,188 1562 96
F16 Jet 51,906 1547 96
Peppers 52,078 1547 96
House 52,219 1593 96
Baboon 52,718 1640 96
Cakes 42,281 1297 96
Coins 44,125 1422 96
Culvert 43,563 1500 96

Average 44,297 1531 96

Table 3
The execution-time performance comparison between Kittler and Illingworth’s method and our proposed method by running each one 1000 times.

Kittler et al.’s method (ms) Proposed method (ms) Improvement ratio (%)

Lena 14,297 12,828 10
F16 Jet 14,344 12,750 11
Peppers 14,203 12,204 14
House 14,938 11,813 20
Baboon 15,218 12,046 20
Cakes 13,828 11,047 20
Coins 13,453 10,890 19
Culvert 13,531 11,109 17

Average 13,839 11,556 16
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Fig. 8 (continued)

K.-L. Chung, C.-L. Tsai / Applied Mathematics and Computation 212 (2009) 396–408 405



406 K.-L. Chung, C.-L. Tsai / Applied Mathematics and Computation 212 (2009) 396–408
Step 5 (Termination). Find the smallest within-variance of the eight within-variances in the minimal group and the
threshold is thus determined.

Fig. 4 illustrates the flowchart of our proposed HQ-based incremental algorithm. For one gray image with 256 gray levels,
assume the symbol t� is the determined threshold. In the Otsu method, each possible threshold candidate takes the similar
computational load for computing Eq. (8). However, all possible threshold candidates considered in our proposed HQ-based
incremental algorithm may take different computational loads and for each possible threshold candidate, its own computa-
tional load is less than or equal to that of the corresponding possible threshold candidate in the Otsu method. In Fig. 5, the
horizontal axis denotes the gray level; the vertical axis denotes the number of data used; the index inside the rectangular bar
denotes the total number of iterations needed by the corresponding group. Empirically, in the initial iteration, we compute
Eq. (10) and quantize these 256 r2

wðt;0Þ’s, 0 6 t 6 255, into 32 groups, namely r2
wð0;0Þ;r2

wð1;0Þ;r2
wð2;0Þ; . . . ;r2

wð7;0Þ
� �

; . . .,
and r2

wð248;0Þ;r2
wð249;0Þ; . . . ;r2

wð255;0Þ
� �

, where each group contains eight temporary within-variances. In Fig. 5, for
example, for the rectangular bar with index 4 and with gray levels 80–87, the corresponding group, group_10, needs only
four iterations and its computation load should take 159 data into consideration after we find the final thresholded value
t� in group_14 at the eighth iteration. The white area in Fig. 5 denotes the computational load of our proposed algorithm;
the white area and the gray area denote the computational load of the Otsu method. The gray area in Fig. 5 denotes the com-
putation-saving advantage of our proposed algorithm.

3. Experimental results

In this section, some experiments are demonstrated to show that under the same determined threshold, our proposed
HQ-based incremental algorithm has better execution-time performance when compared to the Otsu method. The used
eight testing gray images, Lena, F16 Jet, Peppers, House, and Baboon are shown in Fig. 6 and they are used to evaluate
the performance comparison. All the concerned experiments are performed on the IBM compatible computer with Pentium
IV CPU 3.2 GHz and 1 GB RAM. The operating system used is MS-Windows XP and the program developing environment is
Borland C++ Builder 6.0.
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Fig. 9. The illustration of computation-saving advantage of our proposed algorithm. (a) Lena; (b) F16 Jet; (c) Peppers; (d) House; (e) Baboon; (f) Cakes; (g)
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K.-L. Chung, C.-L. Tsai / Applied Mathematics and Computation 212 (2009) 396–408 407
After running the Otsu method and our proposed HQ-based incremental algorithm on the eight testing images, both algo-
rithms have the same thresholded values, 116, 152, 119, 146, 127, 110, 114 and 123. The eight binarized images are shown in
Fig. 7.

In this paragraph, the execution-time performance comparison between the Otsu algorithm and our proposed algorithm
is shown in Table 1. The execution-time requirement is measured by running the relevant algorithm 1000 times and the time
unit used is millisecond (ms). From Table 1, for any testing image, the execution-time required in our proposed algorithm is
much less than that required in the Otsu algorithm. The average execution-time improvement ratio is 36%. According to the
computation-saving depiction in Fig. 5, for any testing image in Fig. 6, the computation-saving advantage of our proposed
HQ-based incremental algorithm when compared to the Otsu method is illustrated in the gray area of Fig. 8.

Besides demonstrating the computational advantage of our proposed algorithm when compared to the Otsu method, we
now compare the execution-time performance between Liao et al.’s method [17] and our proposed method. For binarizing
gray images, Liao et al. build up two lookup tables for saving the u� v interval zeroth-order moment Pðu;vÞ for all intensities
u to v, u 6 v and the u� v interval first-order moment Sðu;vÞ for all intensities u to v, u 6 v . Based on the hashing approach,
the above two constructed lookup tables are used to speed up the multilevel thresholding. In this research, we only consider
the bilevel thresholding of Liao et al.’s method. Table 2 demonstrates that the average execution-time improvement ratio of
our proposed method over Liao et al.’s method is 96% because Liao et al.’s method needs to spend considerable time on build-
ing up two lookup tables in advance. However, for general k-level thresholding, k P 3, Liao et al.’s method is quite effective
and is much faster than the Otsu method. Our proposed HQ-based incremental algorithm for binarization is not easy to be
extended for multilevel thresholding and the main contribution of this paper is to present an HQ-based incremental algo-
rithm to speed up the Otsu method for binarizing gray images.

Besides demonstrating the computational advantage of our proposed algorithm when compared to Liao et al.’s method,
we finally compare the execution-time performance between Kittler and Illingworth’s method [7] and our proposed algo-
rithm for binarization. In this research, we only consider the bilevel thresholding of Kittler and Illingworth’s method. For
binarizing gray images, Kittler and Illingworth’s method used Bayes minimum error criterion to find the optimal threshold.
Table 3 demonstrates that the average execution-time improvement ratio of our proposed HQ-based incremental algorithm
over Kittler and Illingworth’s method is 16%. For any testing image of Fig. 6, the computation-saving advantage of our
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Table 4
The execution-time performance comparison between Kittler and Illingworth’s method and our proposed method by running each one 1000 times when using
the incremental data sequence (128, 64, 32, 16, 8, 4, 2, 2).

Kittler et al.’s method (ms) Proposed method (ms) Improvement ratio (%)

Lena 14,297 12,488 12
F16 Jet 14,344 12,492 12
Peppers 14,203 12,063 15
House 14,938 11,546 22
Baboon 15,218 11,890 21
Cakes 13,828 11,046 20
Coins 13,453 10,875 19
Culvert 13,531 11,093 18

Average 13,839 11,554 17
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proposed HQ-based incremental algorithm when compared to Kittler and Illingworth’s method is depicted in the gray area of
Fig. 9.

If we consider the incremental data sequence (128, 64, 32, 16, 8, 4, 2, 2) where we consider 128 data in the initial iter-
ation; 64 data in the first iteration; . . .; 2 data in the sixth iteration; 2 data in the seventh iteration. Table 4 shows that the
average execution-time improvement ratio of our proposed HQ-based incremental algorithm over Kittler and Illingworth’s
method is 17% when using the incremental data sequence (128, 64, 32, 16, 8, 4, 2, 2). How to determine the optimal incre-
mental data sequence is a rather hard problem and we put it as an open problem.

4. Conclusions

Our proposed fast heap- and quantization-based (HQ-based) incremental algorithm for binarizing gray images has been
presented. The main two ideas of the proposed HQ-based incremental algorithm are two fold: (1) we first transfer the with-
in-variance criterion used in the Otsu method into a new mathematical formulation, which is very suitable to be imple-
mented in a fast incremental way, and it leads to the same thresholded value and (2) following the proposed incremental
computation scheme, an efficient HQ-based data structure is presented to realize its implementation. Under eight real gray
images, experimental results show that our proposed HQ-based incremental algorithm for binarization has 36% execution-
time improvement ratio in average when compared to the Otsu method. In addition, our proposed HQ-based incremental
algorithm can also be applied to speed up the Kittler and Illingworth method for binarization. Maybe the quantization tech-
nique used in the proposed HQ-based incremental binarization algorithm can be used in the nearest neighbor and motion
estimation applications [19–21]. How to determine the optimal number of data considered in each incremental iteration,
i.e. the optimal incremental data sequence, is an interesting open problem. In addition, how to apply the result of this paper
to speed up the other computation applications, e.g. global optimization with one parameter, is another interesting research
issue.
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