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a b s t r a c t

Recently, Cauchie et al. presented an adaptive Hough transform-based algorithm to successfully solve

the center-detection problem which is an important issue in many real-world problems. This paper

presents a fast randomized algorithm to solve the same problem. With similar memory requirement

and accuracy, the computational complexity analysis and comparison show that our proposed

algorithm performs much better in terms of efficiency. We have tested our algorithm on 13 real images.

Experimental results indicated that our algorithm has 38% execution-time improvement over Cauchie

et al.’s algorithm. The extension of the proposed algorithm to detect multiple centers is also addressed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the field of pattern recognition, line-detection, circle-
detection, and ellipse-detection [1–4] have been extensively
studied in the past decades. These issues are still important
because they are all fundamental issues in pattern recognition.
Besides the detection of the above three geometric features,
center-detection is also an important research issue. It can be
applied to many real-world problems, such as detecting centers
from digital images of Debye–scherrer rings, a spiral galaxy, a
solar eclipse, a car wheel, a concentric circle, an X-ray diffraction
pattern, and a cell. The detected centers can provide important
information to astronomers, car designers, medical doctors, and
so on.

Based on the Hough transform technique proposed in [5,6],
Dammer et al. [7] presented an efficient algorithm to determine
the center from digitized X-ray diffraction patterns. Recently, a
ll rights reserved.
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number of algorithms have been proposed to detect the center of
pupils from facial images [8–10]. In [11], Wong and Yip presented
a motion information-based algorithm for detecting the center of
circulating and spiraling objects from video sequences. Note that
the above mentioned algorithms work well in some special cases,
such as X-ray images, facial images, and video sequences. To
perform center-detection from general still images, Cauchie et al.
[12] presented an efficient algorithm which uses the adaptive
Hough transform and the coarse-to-fine approach together.

In this paper, we propose a fast randomized center-detection
algorithm. With similar memory requirement and detected
centers as in [12], the computational complexity analysis
indicates that our algorithm significantly outperforms Cauchie
et al.’s algorithm in terms of efficiency. Using the same set of test
images as in [12] and several other test images, our algorithm
significantly saves 38% computation on time on average when
compared with Cauchie et al.’s algorithm. Precisely speaking, the
improvement ratio is always in the approximative range 20–50%.
To show the powerfulness of our algorithm, we also extend the
proposed algorithm to detect multiple centers.

The rest of this paper is organized as follows. Cauchie et al.’s
algorithm and its computational complexity analysis will be
introduced in Section 2. The proposed algorithm and its
computational complexity analysis will be presented in Section
3. Experimental results for detecting single and multiple centers
will be shown in Section 4. Concluding remarks will be drawn in
Section 5.

www.elsevier.com/pr
dx.doi.org/10.1016/j.patcog.2010.03.010
mailto:yonghuai@ms28.hinet.net
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Fig. 1. (a) Debye-scherrer rings and (b) Edge map of Debye-scherrer rings.
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2. The past work by Cauchie et al. and its complexity analysis

In Cauchie et al.’s center-detection algorithm [12], for the input
image I0, the edge pixels are first detected by using Canny’s edge
detector [13]. At the same time, a 2-D array A whose size is much
smaller than that of the input image is used as the accumulator
array. For each edge pixel, its gradient direction is used to draw a
digital gradient line L on I0 which is realized by A where each
entry of A, say A(i,j), represents a subimage, i.e. a block. If the
digital gradient line L crosses the block covered by A(i,j), we add
the gradient magnitude of the edge pixel to the accumulated
gradient magnitude (AGM) of A(i,j).

After performing the above AGM-accumulation process for
gradient lines of all edge pixels, we select the set A(i

0

, j
0

)’s when
each AGM value of A(i

0

,j
0

)’s is larger than a pre-defined threshold
T. Further, we determine the connected components for these
A(i

0

,j
0

)’s. For each connected component, we find a smallest
rectangle to cover it and compute its mean AGM. The rectangle
that has the maximum mean AGM is considered as the area with
the highest probability containing the center. New center-
detection task changes from finding the center (Xc,Yc) in the
original input image I0 to finding the center (Xc,Yc) in the
subimage I1 covered by the rectangle with the maximum mean
AGM. The array A is used as the accumulator array again for
finding the center in I1. Generally speaking, in the k th iteration,
the cardinality of voting set considered in the accumulator array A

is not greater than that in the (k�1)th iteration. On the other
hand, the precision of the detected center considered in the k th
iteration is higher than that in the (k�1)th iteration. We continue
the above coarse-to-fine center-finding process until a satisfac-
tory precision is achieved. Cauchie et al.’s iterative algorithm
consists of the following six steps:
Step 1.
 Given an input image I0 with size WI0
� HI0

, run Canny’s
edge detector [13] on I to obtain the edge map with m

edge pixels; insert these m edge pixels into the linked-list
data structure LE. The variable k is set to 0 and it is used to
indicate the iteration round.
Step 2.
 The N�N array A is used as the accumulator array to
realize the center-finding task in the subimage Ik where
N5WIk

,HIk
. All entries in A are initialized to 0’s.

Corresponding to A, all entries in B with size N�N are
initialized to 0’s, and B will be used in Step 4.
Step 3.
 For each edge pixel Ei in LE, its corresponding gradient line
is generated. If the generated gradient line of Ei does not
cross the image Ik, remove Ei from the list LE; otherwise,
using Bresenham’s line-drawing algorithm [14], the
gradient line is drawn along the digital line on Ik. For
each A(i,j) crossed by the gradient line, we add the
gradient magnitude of the relevant gradient line to the
AGM of A(i,j).
Step 4.
 If the AGM of A(i,j) is larger than T, 1r i,jrN, where T is a
specified threshold, we set B(i,j) to 1. Further, we apply
the connected component operator [15] to B. For each
connected component Ci with 1’s, 1r irc, where c is the
number of the connected components, we determine the
smallest rectangle Ri containing Ci. For each Ri, 1r irc,
calculate the mean AGM of Aði�,j�Þ’s included in Ri. Select
the rectangle R from all Ri’s such that R has the maximal
mean AGM.
Step 5.
 Perform k¼k+1. If k is larger than the allowable iteration
round Tk, go to Step 6. Otherwise, remove p edge pixels
from LE if these p edge pixels are also in LD. Let Ik denote
the subimage which is bounded by the rectangle R. Go to
Step 2.
Step 6.
 The final detected center (Xc,Yc) for the input image I0 is
determined by calculating the center of the rectangle R.
We now provide the time and the storage complexity analysis
for Cauchie et al.’s algorithm. Since Canny’s edge detector in Step
1 is a preprocessing step, we do not consider it in the complexity
analysis. In fact, besides the Canny’s edge detector, any edge
detectors can be adopted, for example, both the Sobel edge
detector and the Prewitt edge detector are good for executing
edge detection. The definition of the complexity notation O is
suggested to cite the book [16]. The memory complexity of
Cauchie et al.’s algorithm is bounded by MCauchie ¼OðmÞþOðN2Þ

where O(m) denotes the memory size required in the link-list LE;
O(N2) denotes the memory size required in the accumulator array
A and the binary array B. Because of mbN2, the total memory
requirement MCauchie can therefore be simplified to
MCauchie¼O(m). For example, the number of edge pixels in the
edge map of Fig. 1(a) is m¼6808. According to the source code
of Cauchie et al.’s algorithm [17], we have N2

¼25, so
the condition mbN2 does hold. It is easy to verify that
Step 2 takes O(N2) time to initialize the accumulator array A;
Step 3 takes O(m�N) time since for each edge pixel, it needs
O(N) time to perform Bresenham’s line-drawing algorithm
on A and accumulate the gradient magnitudes to the AGM
of each touched A(i,j). For Step 4, it takes O(N2) time to
determine whether B(i,j)’s are set to 1 or not and it needs O(N2)
time to perform the connected component operation. Step 5 only
takes O(1) time to determine a bounding box to construct the
subimage Ik. Since Steps 2–6 are performed Tk times, the time
complexity of Cauchie et al.’s algorithm is bounded by
TCauchie ¼OðTkÞ � ½OðN

2ÞþOðm� NÞ� ¼OðTkÞ � Oðm� NÞ.

Proposition 1. Cauchie et al.’s center-detection algorithm takes

O(m) memory and OðTk �m� NÞ time, where Tk denotes the

allowable iteration round; m denotes the number of edge pixels; N

denotes the width of the used accumulator array.

3. The proposed efficient center-detection algorithm

Based on the randomized approach, a new two-stage center-
detection algorithm is presented in this section. With similar
memory requirement and accuracy of detected centers, the
proposed algorithm can achieve a much better computation-
saving performance. The proposed algorithm consists of three
stages: (1) determining the candidate center first, (2) determining
the true center, and then (3) refining the true center.

Based on the concept of randomization, we can randomly
select a few edge pixels to determine a candidate center.
Previously, McLaughlin proposed a randomized hough trans-
form-based approach [18] for detecting ellipses. In his algorithm,
three edge pixels are randomly selected to determine the center
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and radius of a possible ellipse. Among the selected edge pixels E1,
E2, and E3, the midpoint of E1 and E2, say m1, and the intersection
point of tangent lines of E1 and E2, say t1, are calculated to

determine a line t1m1

2
. Furthermore, E2 and E3 are used to

determine the second line t2m2

2
by the same way, and then the

center of a possible ellipse can be determined by the intersection

point of t1m1

2
and t2m2

2
. However, the computation of t1m1

2
and

t2m2

2
, as well as their intersection point is computationally

expensive. To speed up the process, we propose a new candidate
center determination strategy in the following.

The first stage of our strategy is to determine the candidate
center from an edge map. First, Canny edge detector is applied to
the input gray image and the set of all obtained m edge pixels is
denoted by E. Let EiAE denote the i th edge pixel in E for 1r irm.
For each Ei ¼ ðxi,yiÞ, the gradient direction gi and the gradient
magnitude Mi are calculated by

gi ¼
Gy

i

Gx
i

and Mi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGx

i Þ
2
þðGy

i Þ
2

q

where Gi
x and Gi

y denote the gradients in x-direction and
y-direction, respectively.

In the edge set E, we randomly select three edge pixels with
different gradient directions, Ei, Ej, and Ek, for 1r i,j,krm, to
construct three gradient lines Li, Lj, and Lk by

Li : y�gix�yiþgixi ¼ 0, ð1aÞ

Lj : y�gjx�yjþgjxj ¼ 0, and ð1bÞ

Lk : y�gkx�ykþgkxk ¼ 0: ð1cÞ

Considering the two gradient lines Li and Lj, their intersection is
calculated by

Pi,j ¼
yi�yj�gixiþgjxj

gj�gi
,
gjyi�giyj�gigjxiþgigjxj

gj�gi

� �
: ð2Þ

The distance between Lk and Pi,j ¼ ðx
�,y�Þ is calculated by

DðPi,j,LkÞ ¼
jy��gkx��ykþgkxkjffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
k þ1

q : ð3Þ

If DðPi,j,LkÞoe1, where e1 is a specified threshold and is set to 1
empirically, then point Pi,j and line Lk should be very close to each
other. For this case, Pi,j is selected as the candidate center from the
randomization sense. Otherwise, if DðPi,j,LkÞ4e1, we discard Pi,j.
We continue the above randomized candidate-center determina-
tion process until ‘ candidate centers are found.

After finishing the first stage, ‘ candidate centers i.e., P1, P2, y,
and P‘ , are determined. In the second stage, we define a 1-D
accumulator array Anear such that Anear[i] records the number of
gradient lines which are close to Pi for 1r ir‘. Similar to Eq. (3),
the distance between the candidate center Pi ¼ ðx

�
i ,y�i Þ, 1r ir‘,

and the gradient line Lj, 1r jrm, is calculated by

DðPi,LjÞ ¼
jy�i�gjx

�
i�yjþgjxjjffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

j þ1
q : ð4Þ

If DðPi,LjÞoe2, where e2 is a specified threshold and is set to 10
empirically, then point Pi and line Lj should be very close to each
other and Anear[i] is incremented by one. That is, the number of
votes in the cell Anear[i] is incremented by one.

After performing the above voting process for all Pi’s and
Lj’s, 1r ir‘ and 1r jrm, a threshold Tc used to eliminate
those candidate centers with lower probability is defined as
follows:

Tc ¼
a� NV

‘
, ð5Þ
where NV denotes the number of gradient lines that are close to at
least one candidate center and a is set to 1.5 empirically.
If Anear½i�oTc , we discard Pi from the set of candidate centers
since it is a candidate center that has very low probability and it
hinders itself to become a true center; otherwise, we put Pi to the
set P

0

whose members have high probability to be a true center.
From P

0

, a true center PT is determined by

PT ¼

P
Pi AP0 Pi �WPiP

Pi AP0WPi

, ð6Þ

where

WPi
¼

Anear½Pi�P
Pj AP0Anear½Pj�

, PiAP
0

,

Because of adopting the randomized concept, the true center PT

may be biased. We further present a refinement scheme to enhance
the detected center accuracy. Given a specified bandwidth D, we
build up a ðDþ1Þ � ðDþ1Þ small squared subimage I

0

centered with
PT, and then we run Cauchie et al.’s center-detection method on I

0

to
refine the detected center. In order to eliminate unnecessary edge
pixels Ej

0

s whose gradient lines Lj
0

s are out of the subimage I
0

, by

Eq. (4), when DðPT ,LjÞr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�D2

p
is held, we add Ej into the edge

set E
0

; otherwise, the edge pixel Ej and the gradient line Lj are not
considered in the refinement process. Let the cardinality of the final
E
0

be jE0j ¼m0, m0rm. From the subimage I
0

and the set E
0

, Cauchie
et al.’s center-detection algorithm is adopted to refine the center PT

to obtain a better center PR. Since the subimage I
0

is much smaller
than the original image I0, the allowable iteration round Tk

0

used here
is smaller than that originally used in Cauchie et al.’s center-
detection algorithm.

Based on the above three-stage strategy, our proposed center-
detection algorithm consists of the following seven steps:
Step 1.
 Given an input image I, apply Canny’s edge detector to I to
obtain the edge map with m edge pixels and insert these
m edge pixels into the set E. The set P will be used to store
theses ‘ candidate centers to be determined and it is
initialized to an empty set. Here ‘ is set to 10 empirically.
Initialize the variable K to be 0 and it is used to indicate
the number of the detected candidate centers.
Step 2.
 Randomly select three edge pixels with different gradient
directions, Ei, Ej, and Ek, for 1r i,j,krm, from E to
construct three gradient lines Li, Lj, and Lk by Eqs.
(1a)–(1c). By Eqs. (2) and (3), calculate the intersection
point Pi,j between Li and Lj, and the distance DðPi,j,LkÞ

between Lk and Pi,j. If DðPi,j,LkÞoe1, insert the intersection
point Pi,j into P and perform K¼K+1; otherwise,
discard Pi,j.
Step 3.
 If K ¼ ‘, initialize the array Anear by setting Anear[i]¼0
for 1r ir‘, and then go to Step 4; otherwise, go to
Step 2.
Step 4.
 For each edge pixel Ej, 1r jrm, Eq. (4) is applied to
calculate the distance DðPi,LjÞ between each candidate
center Pi in P, 1r ir‘, and the gradient line Lj of the edge
pixel Ej. If DðPi,LjÞoe2, perform Anear½i� ¼ Anear½i�þ1.

0

Step 5.
 Initialize the set P to be an empty set. Apply Eq. (5) to
calculate Tc. For 1r ir‘, if Anear½i�oTc , we discard Pi since
it is the candidate center with lower probability to be a
true center; otherwise, Pi is added to the set P

0

to be
considered to determine the true center.
Step 6.
 Based on the candidate centers in the set P
0

, we determine
the true center PT by Eq. (6). Based on PT and a specified
bandwidth D, we construct a ðDþ1Þ � ðDþ1Þ squared
subimage I

0

in order to refine the accuracy of the detected
center. Calculate the distance DðPT ,LjÞ between the
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gradient line Lj of each edge pixel Ej in E and PT. If the con-

dition DðPT ,LjÞr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�D2

p
is held, we add Ej into the set E

0

;

otherwise the unnecessary edge pixel Ej is discarded.

Step 7.
 Based on I

0

and E
0

, perform Cauchie et al.’s center-
detection algorithm with smaller allowable iteration
round Tk

0

to determine the refined center PR.
We now analyze the time and the memory complexities of
our proposed two-stage algorithm. The memory complexity of
the proposed algorithm is denoted by Mours ¼OðmÞþOðm0ÞþOð‘Þ

where O(m) and O(m
0

) is the memory required to save the sets E
Fig. 2. Thirteen
and E
0

; Oð‘Þ is the memory required for realizing Anear, P, and P
0

.
Due to the fact that mb‘ and m0rm, the memory complexity is
simplified to Mours¼O(m). Steps 2 and 3 take Oð‘ � NcÞ time to
determine ‘ candidate centers where each candidate center can
be determined after randomly selecting 3�Nc pixels. Step 4
takes Oð‘ �mÞ time to calculate all DðPi,LjÞ’s. Steps 5–6 take Oð‘Þ

time to determine the true center and O(m) time to build up the
set E

0

. Step 7 takes OðT 0k �m0 � NÞ time for performing Cauchie
et al.’s center-detection algorithm. Thus, the total time com-
plexity of our proposed algorithm is denoted by Tours ¼Oð‘ �

NcÞþOð‘ �mÞþ Oð‘ÞþOðT 0k �m0 � NÞ ¼Oð‘ �mþT 0k �m0 � NÞ due
to mbNc .
test images.



ARTICLE IN PRESS

K.-L. Chung et al. / Pattern Recognition 43 (2010) 2659–2665 2663
Proposition 2. Our proposed algorithm takes O(m) memory and

Oð‘ �mþT 0k �m0 � NÞ time, where mb‘.

We further discuss how the proposed algorithm can be extended
to handle multiple centers. For the set P

0

determined by Step 5 in
our proposed algorithm, the clustering process [19] is adopted to
separate P

0

into two subsets P1
0

and P2
0

with the center PT1 and the
center PT2, respectively. Further, we calculate the distance
between PT1 and PT2. If the distance is smaller than a specific
threshold Tm, it indicates that the input image has only one center;
otherwise, the input image contains at least two centers. To
determine the maximal number of centers existed in the image,
the above clustering process is performed again to separate P

0

into
Fig. 3. Detected centers for Fig. 3. The marks ’+’ and ’� ’ denote centers detect
three subsets P1
0

, P2
0

, and P3
0

with centers PT1, PT2, and PT3,
respectively. Computing the distance between two centers, if
one or more distances are smaller than Tm, it indicates that the
input image contains two centers and the two centers determined
in the previous clustering process are used as the final detected
centers. Otherwise, we try to examine the possibility of four
centers until the maximal number of centers has been determined.
4. Experimental results

In this section, some experimental results are demonstrated to
show the performance comparison between Cauchie et al.’s
ed by Cauchie et al.’s algorithm and the proposed algorithm, respectively.
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Table 1
Execution-time comparison in terms of millisecond.

Cauchie et al.’s algorithm Our proposed algorithm Execution-time improvement ratio

Fig. 2(a) 11.8 6.4
46% ¼

11:8�6:4

11:8
� 100%

� �

Fig. 2(b) 2.7 2.1
22% ¼

2:7�2:1

2:7
� 100%

� �

Fig. 2(c) 1.9 1.4
26% ¼

1:9�1:4

1:9
� 100%

� �

Fig. 2(d) 3.7 2.7
27% ¼

3:7�2:7

3:7
� 100%

� �

Fig. 2(e) 4.8 3.5
29% ¼

4:8�3:5

4:8
� 100%

� �

Fig. 2(f) 1.3 1.0
23% ¼

1:3�1:0

1:3
� 100%

� �

Fig. 2(g) 1.5 1.1
27% ¼

1:5�1:1

1:5
� 100%

� �

Fig. 2(h) 2.3 1.3
43% ¼

2:3�1:3

2:3
� 100%

� �

Fig. 2(i) 4.4 3.3
25% ¼

4:4�3:3

4:4
� 100%

� �

Fig. 2(j) 3.0 2.1
30% ¼

3:0�2:1

3:0
� 100%

� �

Fig. 2(k) 19.1 10.5
45% ¼

19:1�10:5

19:1
� 100%

� �

Fig. 2(l) 2.9 1.6
45% ¼

2:9�1:6

2:9
� 100%

� �

Fig. 2(m) 20.3 12.5
38% ¼

20:3�12:5

20:3
� 100%

� �

Average 6.1 3.8
38% ¼

6:1�3:8

6:1
� 100%

� �

Table 2
Average distance between centers detected by Cauchie et al.’s algorithm and the

proposed algorithm for Figs. 2(a)–(m) in terms of the number of pixels.

Figure (a) (b) (c) (d) (e) (f) (g)

Distance between centers 1.7 2.6 1.9 1.4 1.0 0.9 1.0

Figure (h) (i) (j) (k) (l) (m) Average

Difference between centers 1.2 0.8 0.6 1.3 1.7 2.5 1.4

Fig. 4. Detected centers for the image with two centers.

Fig. 5. Detected centers for the image with three centers.

K.-L. Chung et al. / Pattern Recognition 43 (2010) 2659–26652664
algorithm and our proposed randomized algorithm. All the
concerned experiments are performed on the Intel Core 2 Quad
Q6600 Processor with 2.4 GHz and 2 GB RAM. The operating
system adopted is MS-Windows XP and the programming
environment is Borland C++ Builder 6.0.

From Cauchie et al.’s source code [17], it is know that Tk¼10
and N¼5. In our implementation, ‘ and Tk

0

are set to 10 and 2,
respectively, and we thus have ‘oTk � N and T 0koTk. In our
experiments, the above parameter settings can achieve satisfac-
tory precision. Proposition 1 and 2 clearly indicate the computa-
tion-saving effect of our proposed algorithm with
Oð‘ �mþT 0k �m0 � NÞ time which is much faster than that in
Cauchie et al.’s algorithm whose time bound is OðTk �m� NÞ.

As shown in Figs. 2(a)–(m), 13 test images with sizes
590�588, 400�330, 350�312, 350�260, 228�228, 141�
146, 400�250, 350�328, 300�341, 270�270, 388�288,
400�413, and 1549�1037, respectively, are used to compare
the computation time requirement of the two algorithms. After
running the two concerned algorithms on thirteen test images,
the detected centers are shown in Fig. 3. It is observed that
the detected centers by the two algorithms are quite similar.
The execution-time requirement needed in the two algorithms
is shown in Table 1 and it indicates that the execution-time
improvement ratio of our proposed algorithm over the Cauchie
et al.’s algorithm is 38% on average. The improvement ratio
always ranges from 20% to 50% depending on the images taken.
Further, to demonstrate the accuracy of the proposed algorithm,
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Table 2 shows the average distance between the center detected
by Cauchie et al.’s algorithm and the center detected by our
proposed algorithm for Figs. 2(a)–(m) in terms of the number of
pixels. It is observed that the accuracy of the proposed algorithm
is very close to that of Cauchie et al.’s algorithm.

In order to demonstrate the applicability of the proposed
multiple-center algorithm mentioned at the end of Section 3, two
test images, one with size 337�154 and two centers; the other with
size 720�450 and three centers, are used. The detected results are
illustrated in Figs. 4 and 5; the resultant centers are satisfactory.
5. Conclusions

We have proposed a two-stage randomized algorithm to speed
up the center-detection task significantly while keeping the similar
detection accuracy and memory requirement when compared with
Cauchie et al.’s algorithm. Under 13 test images, experimental
results demonstrated that the average execution-time improvement
ratio of the proposed algorithm over the Cauchie et al.’s algorithm is
38%. We further extend the proposed algorithm to detect multiple
centers and experimental results illustrated that it also works well
for images with multiple centers.
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