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Fast Vectorization for Calculating 
a Moving Sum 

Kuo-Liang Chung, Member, IEEE, and Wen-Ming Yan 

Abstract-A simple vectorized method for calculating a moving sum is 
developed. Our proposed method is suitable for register-to-register vec- 
tor computers and entails much less redundant floating-point operations 
than the vectorized algorithm of Mossberg [3]. We demonstrate the per- 
formance of our vectorized algorithm on the CRAY X-MP EA/116se 
supercomputer. 

Index Terms-Automatic gain control, CRAY X-MP, Fortran, mov- 
ing sum, prefix sum, vectorization. 

I. INTRODUCTION 
Among many methods used for smoothing and normalization of 

seismic traces, the automatic gain control (AGC) method is the best 
known. Commonly, more than 10-20% of the total time used for a 
seismic processing sequence is spent in an AGC subroutine. An es- 
sential part of the computations involved in the AGC method is the 
calculation of a moving sum. Given an input vector A = (ai) for 
1 I i 5 n and a window of length w (6 n), a moving sum calculation 
generates an output vector B = (bj) for 1 S j I n, where 

W 

bj = z a j - f + l  (ai = 0 outside 1 I i 5 n ) .  (1) 
r=1 

By replacing the summation operator with an absolute-value sum- 
mation operator, the moving sum of absolute values can be obtained 
directly. Although in [3], the window of odd length w used to com- 
pute the jth output value is centered around the jth element of the 
input vector, by adjusting the initial index, the computation of (1) can 
be obtained exactly the same computation as in [3]. 

On a vector machine, the output vector B as defined by (1) can be 
straightforwardly computed using the sequential method called the 
scalar algorithm (SA) [3]. The number of floating-point (FP) opera- 
tions required in SA is about 2n but the SA is not a vectorization 
approach. Mossberg [3] first presented a vectorized moving sum 
algorithm for the CYBER 205 memory-to-memory supercomputer in 
which the floating-point functional units can communicate directly 
with main memory to receive and transfer data. Mossberg's vector- 
ized algorithm can be accomplished by means of s + t vector opera- 
tions, and each needs operands of vector length n, where 2" < w < 2"' 
and t is defined as the number of 1 s in the binary representation of w. 
Totally, the number of FP operations required is (s + f)n which 
ranges from (flog wl + 1)n to ( f l o g  wl - l)n, where the logarithm is 
base two and rl denotes the ceiling function. Since the concerning 
vector is of length n and with stride 1, Mossberg's algorithm is par- 
ticular for the memory-to-memory supercomputer [2]. Nowadays, 
except for the CYBER 205 and ETA 10 all other vector computers 
are register-to-register machines such as the CRAY series, Fujitsu VP 
series, Hitachi S series, and NEC SX series [l]. 

The purpose of this paper is the design of a new vectorized mov- 
ing sum algorithm for the register-to-register vector computers. The 
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number of FP operations required in our proposed method is shown 
to be (2 + (w - 4)/k)n, which ranges from 2n to 2 3 ,  where the value 
of k (2 2w) is determined according to the partition of the array. We 
show that the ratio of the number of FP operations required in our 
algorithm over Mossberg's algorithm ranges from (flog wl + 1)/2.5 
to [log wl - 1/2. For the case w > 4, our method entails much less 
redundancy than the vectorized algorithm of Mossberg [3]. To alle- 
viate the memory-bank conflicts, the value of stride in our program 
can be selected as an odd number since the number of memory banks 
is even in CRAY X-MP EN1 16se. We demonstrate the performance 
of our vectorized algorithm on this supercomputer. 

The rest of the paper is organized as follows. In Section 11, we de- 
scribe the proposed vectorized algorithm for computing a moving 
sum. It also provides the complexity analysis. In Section 111, we pres- 
ent some experimental results that examine the performance of our 
method. Section IV concludes the paper. 

11. A VECTORIZED MOVING SUM ALGORITHM 

Recall that the input vector is A = (al, a 2 ,  ..., an) and the output vec- 
tor is B = (b l ,  b 2 ,  ..., bn). First we partition A into p q  groups of k ele- 
ments. (al ,  a2, ..., a k )  ( k  2 2w) constitutes the first group, ( a k + l ,  4 + 2 ,  ..., 
a%) constitutes the second group, and so on. If kpq (= m) > n, then a i  for 
i > n is assigned to zero. We partition B in the same way. For conven- 
ience, we assume that kpq = n. In order to reveal the new structure of A 
and B, let us rearrange A and B into two q x k block matrices by 

I I I . . .  ... ... ... I 

and 

B =  

b l  

bk+l 

... 

... I bn-k+l 

b 2  

bk+2 

... 

... 
bn-k+2 

... 

... 

... 

... 

... 

4 . 2  

B2.2  

Bq.2  

... 

... 

... 

... 

... 

where Ai j  and Bij ,  1 I i I q and 1 Ij I k, are p X 1 matrices, i.e., A i j  

= (a(i-I)p&+j, a(i-l)pk+j+k, . . ., a(i-I)pk+j+(pl)k)'  and B i j  = (b(i-l)pk+j,  b(i-l)pk+j+k, 

. . ., b(i-l)pk+j+(pI)k)' .  
For 1 I i I q, by (l), it follows that 

W 

Bi,j = C A i , j - r + l  for w I j I k 
1=l 

and 
j k -  

B ~ , ~  = CA~,, + C A~, ,  for 1 I j < W ,  
f = l  f=k- (w- j )+l  

- 
where A j , j  = (a( i - i )pk+j -k ,  U(i-I) , ,k+j,  . . ., U(j-1),,k+j+(,,-2)k I f .  Notice that 

ai = 0 outside I 2 i I n (see (1)). 

all partial sums 
Given a set of inputs x l ,  x2, ..., xn and a summation operator +, find 

n 

XI, X I  + x 2 ,  ..., C X i  . 
i=l 

This problem is known as the prefix sum problem. Similarly, find all 
partial sums: 
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in Mossberg's method ranges from (log wl + I)n to (f log wl - 1)n. For 
the case w > 4, our method entails much less redundant FP operations 
than the vectorized algorithm of Mossberg [3]. For example, if w = 65 
and k = low, our method needs about 2. In FP operations, but Moss- 
berg's method needs FP operations ranging from 8n to 1 5 ~ .  ne ap- 

able for either the vector computer with multiple vector elements or 
for on-line reading of the input vector. 

i=l i=Z 

This problem is known as the suffix sum problem. 
Based on some prefix-sum and suffix-sum operations in vector- 

ized Ways, Our VectoriZed moving Sum algorithm works as follows. proach of into blocks our vectorized method suit- 
Consider the first band of A 

A l , l ,  A l , Z ,  . . . ,A l,k. 

First, we compute the following suffix-sum computations by means 
of (w - 2) vector summations: 

i=k-w+2 i=k-w+3 

where the symbol '6' denotes an assignment operator. Equivalently, 
the above suffix-computations can be performed by the following 
vectorized process, where each vector summation takes operands of 
vector length p. 

cw-l &,k 

F o r i  = w-2 downto 1 do 

ci ci+l + &.k-w+i+l 

For the vectors AI, , ,  A,,,, ..., Al,k, we compute the prefix sum by 
means of (k - 1) vector summations, and each needs operands of 
vector length p. We then obtain all partial-sum vectors 

I 

i=l 

Thereafter, for i from k down to (w + l),  we do Di t Di - Di-,. It 
takes (k - w) vector subtractions, and each also needs operands of 
vector length p. For i from 1 to (w - l), we do D,+i t D,+i + C,i. 
Then, the moving sum of the first band of A is flowed from Di for 
1 I i I k. That is, the values of bj of (1) for 1 I jI kp have been de- 
termined. If q = l then we stop the algorithm; otherwise the following 
do-loop is performed. 

Forj= 2 to q do 

Step-1. Compute the suffix sum for the vectors 
- - - 
Aj ,k -w+Z,  Aj.k-w+3. " ' 3  A j , k .  

We then obtain all partial-sum vectors 

Step-2. Compute the prefix sum for the vectors 
Thus, we obtain all partial-sum vectors 

Aj.2, ..., Aj,k. 

k 

Dl Aj.1, 4 + Aj.1 +Aj.Z, ..., +- x A j , i .  

Step-3. For i from k down to w + 1 ,  we perform Dj t Di - Di-,. 
Step-4. Perform the additions: DWi t D,. + C ,  for 1 I i I w - 1 
The moving sum is flowed from Di, 1 I i I k. 

i=l  

Enddo 

After completing the above vectorized algorithm for calculating a 
moving sum of A, the total number of FP operations needed in the 
suffix-sum computations of Step-1 is pq(w - 2); the number of FP 
operations needed in the prefix-sum computations of Step-2 is pq(k - 1); 
the number of FP operations needed in S t e p 3  is pq(k  - w); the num- 
ber of FP operations needed in Step-4 is pq(w - 1). So it takes 
(2 + (w - 4)/k)n (= pqw - 4pq + 2pqk) FP operations to finish com- 
puting a moving sum of A. The number of FP operations used in our 
algorithm ranges from 2n to 2 3 ,  while the number of FP operations used 

111. IMPLEMENTATIONS ON CRAY X-MP EN1 16sE 

In this section, we implement our vectorized moving sum algo- 
rithm on the Cray X-MP EN1 16se supercomputer. Before illustrat- 
ing the corresponding experimental results, let us introduce some 
features of this machine. This machine has a register-to-register 
architecture without cache memory and has one vector processor 
which contains eight 64-bit vector registers of length 64. Memory is 
divided into 16 banks and each bank contains 1M 64-bit words. 

The input vector A is generated by a random number generator, a 
function call rad(). The length of the vector A is specified to be 
10,000, 20,000, 30,000, ..., and 90,000, respectively. The Cray For- 
tran 77 source code of our vectorized algorithm called movesuml is 
listed in the Appendix. Table I shows the performance of running our 
vectorized algorithm. The operating system used here is UNICOS 6.1.6 
and the compiler is called CF77. 

TABLE I 
CRAY X-MP EN1 16se EXECUTION TIMES FOR OUR ALGORITHM 

r 7 T  
10,000 
20,000 
30,000 
40,000 
50,000 
60,000 
70,000 
80,000 
90,000 

W - 
11 
11 
21 
21 
31 
31 
41 
41 
51 - 

time 
0.483mi 
0.960mi 
1.45 h i  
1.941mi 
2.482mi 
2.849mi 
3.365mi 
3.852" 
4.223mi 

m 

10,176 
20,352 
30,400 
40,768 
50,304 
60,480 
70,272 
80,192 
90,240 

k 
53 
53 
95 
91 
131 
135 
183 
179 
235 

- 4 
3 
6 
5 
7 
6 
7 
6 
7 
6 - 

In Table I, the symbols n, w, q, and mi denote the size of A, the 
size of the window, the number of the bands in A, and millisecond, 
respectively. m and k have been defined in Section 11. To alleviate the 
memory-bank conflicts, the value of k is selected as an odd number 
and is greater than 4w. 

IV. CONCLUSIONS 
We have presented the design of a new vectorized moving sum al- 

gorithm for register-to-register vector computers. Our algorithm is 
not only more efficient than Mossberg's, but also based on a simpler 
idea which could be applied to pattern matching problems. Some 
experimental results for our method have been obtained on the 
CRAY X-MP EN116se supercomputer. In addition, due to the ap- 
proach of partitioning into blocks, our vectorized algorithm is suit- 
able for either the vector computer with multiple vector elements or 
for on-line reading of the input vector. 

APPENDIX 
C--Our vectorized algorithm for moving sum-- 

C--b:initially save seismic vector; eventually 

C--bb: save one copy of seismic vector used for 

Program movesuml 

save the moving-sum vector- 

the brute force method - 
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C--bbb: save the moving-sum vector of bb by 

c--c: temporary array for boundary processing- 
brute force method - 

real b(100000), bb(100000). bbb(100000), 

real starttime,totaltime 

integer i,j,k,n,m,p,ww,w 
integer q, nt, kk, 1 

tween two consecutive bands- 
real wt(1000) 
write(*,*) ‘INPUT N:’ 
read(*,*) n 
write(*,*) ‘INPUT w: ‘ 
read(*,*) w 

c(100000), sum 

c--w: window size; n: length of seismic vector-- 

C--array wt is used for boundary processing be- 

c--the vector length is 64-- 

C--generate random seismic vector- 
p=64 

do 5 i=l,n 
b (i) =range*ranf ( ) 
bb (i) =b ( i) 

5 continue 
C--start timing- 

starttime=SECOND() 
k=4*w+l 
kk=k*p 

q=(n+kk-1) /kk 
if (q.gt.1) then 

C--q=ceiling function of (n/kk)-- 

q=q-1 
k= (n+64*q-l) / (64*q) 
k=2*(k/2)+1 
kk=k*p 

endi f 
m=kk*q 
ww=( (w+l) /2) *2-1 
do 8 i=n+l,m 
b(i) =O. 0 

8 continue 
wt (1 : w-1) =o . 0 
nt=O 
do 200 l=l,q 

do 10 i=l,p 
C--calculate array c- 

c( (i-1) *ww+w-l)=b(i*k+nt) 
10 continue 

cdir $ ivdep 
do 20 j=w-2,1,-1 

do 30 i=l,p 
c ( (i-1) *w+j ) =c ( (i-1) *ww+ j +1) +b(i*k+ j+nt- 
w+l) 

30 continue 
20 continue, 
C--prefix sum for one band- 

cdir $ ivdep 
do 40 j=2,k 

do 50 i=l,p 
b( (i-1) *k+j+nt)=b( (i-1) *k+j+nt)+b( (i-1) *k+j- 
l+nt) 

50 continue 
40 continue 
C--calculate partial moving sums- 

cdir $ ivdep 
do 60 j=k,w+l,-1 

do 70 i=l,p 
b((i-l)*k+nt+j)=b((i-l)*k+nt+j 
1) *k+nt+j-w) 

70 continue 
60 continue 
C--boundary processing for (p-1) pa 

secutive rows- 
do 71 j=l,w-1 
b (j+nt) =b(j+nt) +wt ( j ) 

71 continue 

cdir $ ivdep 
do 80 j=l,w-1 

-b( (i- 

r of con- 

do 90 i=2,p 
b( (i-l)*k+nt+j)=b( (i-l)*k+nt+j)+c((i- 
2)*ww+j) 

90 continue 
80 continue 
do 72 j=l,w-1 
wt (j) =c ( (p-1) *ww+j) 

72 continue 
nt=nt+kk 

200 continue 
C--end of timing- 

totaltime=SECOND()-starttime 
print *,  ‘OUTPUT FOR MOVSUM1.F’ 
print *,‘n=,’n,’ m=,‘m 
print *,‘CPU TIME FOR OURS=,’totaltime 
print *,‘w=,‘w.‘ k=,‘k,’ q=,‘q 

C--calculate moving sums by brute force method- 
C--which takes (w-l)n FP operations and is used 

to verify the result- 
bbb ( 1) =bb ( 1) 
do 100 i=2,w 
bbb (i) =bbb (i-1) +bb (i) 

100 continue 
do 110 i=w+l,m 

sum=o. 0 
do 120 j=i-w+l,i 
sum=sum+bb ( j ) 

120 continue 

110 continue 
C--calculate the difference between our method 

C--by sup-norm measurement-- 

bbb(i)=sum 

and the brute force method- 

sum=o. 0 
do 130 i=l,m 
if (sum.lt.abs(bbb(i)-b(i))) then 

endi f 
130 continue 

sum=abs (bbb (i ) -b (i ) ) 

write(*,*) ‘The difference is , ’  sum 
end 
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