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Abstract--The Interpolation-Based Bintree (IBB) is a new encoding scheme for representing binary images. 
This encoding scheme combines the features of linear quadtrees, binary trees, and interpolation-based codes. 
The implementation of the IBB is shown to be very simple and storage-saving. Based on the IBB structure, 
this paper presents some fast sequential algorithms for set operations (intersection, union, and complement), 
4-neighbors finding, and diagonal neighbors finding, respectively. Given two sets of bincodes, B 1 and B2, 
with respect to two images, the set operations can be performed in O(n + m) time, where n is the size of B t 
and m is the size of B2; the complement operation for B~(B2) can be performed in O(n)(O(m)) time; and the 
4-neighbors finding and the diagonal neighbors finding for B~(B2) can be accomplished in O(n log n)(O(m log m)) 
time. 

Bincode Image compression Interpolation-based bintree Neighbor finding 
Set operation 

I. INTRODUCTION 

Representing and manipulating binary images are two 
important issues in those fields of pattern recognition, 
image processing, computer graphics, computational 
geometry, geographic information systems and robo- 
tics. According to the literature, {I) encoding techniques 
of binary images can be classified into three categories, 
namely tree, string and set of codes. The first type, tree, 
represents a binary image as a tree structure and stores 
it by using pointer-type data structure. For  example, 
quadtree belongs to this type. Quadtree is a very suc- 
cessful coding scheme and its manipulations have been 
studied intensively in recent years. 12-5) The second 
type, string, represents a binary image as a series of 
strings. For  example, chain codes and run-length codes 
belong to this type. Finally, the third type, set of codes, 
represents binary images as a series of codes such as 
linear quadtrees {s-8) and Interpolation-Based Bintrees 
(IBBs).  {9~ 

The IBB is first proposed by Ouksel and Yaagoub. <9) 
The IBB has been shown to be very simple and storage- 
saving (0-25% space utilization improvement over the 
linear quadtrees encoding method in empirical com- 
parisons{5'9'l°)). This method is based on subdividing 
the binary image into two equal-sized subimages, right 
and left or up and down recursively until the element 
of the created subimages is either black or white, where 
each subimage is represented by a node. After this 
subdivision work has been done, we can convert these 
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external black nodes, which represent the black blocks, 
into the interpolation-based codes. These final codes 
are called bincodes which are unique integers assigned 
for black blocks. 

Based on the IBB structure, this paper presents 
some fast sequential algorithms for set operations (inter- 
section, union and complement), 4-neighbors finding, 
and diagonal neighbors finding, respectively. Given 
two sets of bincodes, B1 and B2, with respect to two 
images, the set operations can be performed in O(n + m) 
time with O(n + m) memory space, where n is the size 
of B 1 and m is the size of B2; the complement operation 
for BI(B2) can be performed in O(n)(O(m)) time with 
O(n)(O(m)) memory space; the 4-neighbors finding and 
the diagonal neighbors finding for all bincodes of BI(B2) 
can be accomplished in O(nlog n)(O(m log m)) time with 
O(n)(O(m)) memory space. 

This paper gives a review of the IBB in Section 2. 
Then we describe some fast sequential algorithms for 
solving the problems of set operations and neighbors 
finding in Section 3 and Section 4, respectively. Finally, 
some conclusions are addressed in Section 5. 

2. REVIEW OF THE IBB 

In this section, we first introduce the data structure 
of bintree," 11 then the IBB is reviewed. The bintree is 
a hierarchical data structure for storing binary images. 
Given a 2 N x 2 N binary image, its bintree representation 
is a binary tree structure with maximal height 2N. The 
root node of the bintree represents the whole image. If 
one image is totally black (white), then the root node 
is labeled with 1(0). Otherwise, the root node is gray 
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and its two sons are added. Each son represents half 
of the image, which is covered by his father in the sense 
of spatial structure. This subdivision process is then 
repeated recursively for each of the two sons. In each 
recursive step, one son is corresponding to a subdivision 
of his father. If a subdivision is either black or white, 
then its corresponding node is an external node; other- 
wise it is a gray node (internal node). A node at height 
h, h < 2N, is corresponding to a 2 N- [h/21 × 2 N- [h/2] block. 

When h is even, this block is square; when h is odd, this 
block is rectangular. According to the data structure 
of bintree, a 2 N × 2 N binary image will have at most 22N 
external nodes and 22N-  1 internal nodes. Naturally, 
the bintree can be implemented by pointer-type data 
structure." l~ 

Considering a 22x 22 binary image as shown in 
Fig. l(a), the corresponding example of blocks is shown 
in Fig. l(b). According to the above bintree's descrip- 
tion, the bintree of Fig. l(a) is illustrated in Fig. l(c). 

The IBB is based on the bintree structure and rep- 
resents the bintree as an ordered collection of external 

(a) Binary image 
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Fig. 1. A 2 2 × 2 2 binary image. 

level 
0 

1 

2 

3 

4 

black nodes. Each external black node is described by 
a numerical record converted by its location and level. 

Given a 2 N × 2 N binary image, if the node at level l 
of a bintree corresponds to a black block in the binary 
image at location (i, j) ,  then the bincode b is derived 
by the following bincode conversion scheme: 

(1) convert  i a n d j  to binary strings iN_t iN_2. . . io  
and JN - I JN - 2 " ' "  io, respectively, where i = Y'.~¢__-o 1 (i k × 2 k) 

and j -  N - 1 .  - ~ k  : o (Jk x 2k); 
(2) compute s = 2 2N -- 2 2N-t and then convert s to 

a binary string s2u_ l s2N_ 2...So, where s = Z2~o l(sk x 
2k); and 

(3) The bincode b is given by ~k=0U-10k" X 2 4k+a) + 
U 1 • 2 4 k + l ) . 4 _ s ~ 2 N - I t S  22k).  Zk: o ( A  x - , - k  = o , k x 

Return to Fig. l(a). The block B(1) is at location (0, 1) 
and at level 4. According to the above bincode conver- 
sion scheme, we obtain that i =  0 = (ilio) 2 = (00)2, j = 1 = 

(JlJo)2 ----- (01)2, and s = 15 = ($3s2s1s0)  2 = (1111)2 , then 
the bincode of B(1) can be represented by (01010111 )2 = 
87. Consider block B(4) which is at location (1,2) and 
at level 3. Similarly, we obtain that i =  1 =(itio) 2 =(01)2, 

j = 2( j lJo)  2 = (10)2 , and s = 14 = ($3s2s1s0)  2 = (1110)2. 
Further, the bincode of block B(4) is represented by 
(01111100)2 = 124. 

We traverse black nodes of the bintree in a pre- 
ordered way and calculate their bincodes simulta- 
neously, then the bincodes of Fig. l(a) are represented 
by the ordered sequence of numerical records (87, 93, 
l l7 ,  124,212,221). Throughout  this paper, the IBB 
and bincodes represent the same thing and can be used 
exchangeably. 

3. SET O P E R A T I O N S  

Based on the representation of bincodes described 
above, some fast sequential algorithms for set opera- 
tions (intersection, union and complement) are presen- 
ted in this section. We assume that all related binary 
images have been translated into bincodes and the 
associated level of each bincode is known. 

3.1. Intersection union 

We start with analyzing some special properties of 
bincodes. 

Lemma 1.(9) Given a 2 N x 2 N binary image, if q is the 

bincode of an internal node in the bintree and b and c 
are bincodes of the left son and right son of q, then 
b = q + 2 2 ( 2 N - t -  1) and c = q + 3 x 2 2 ( 2 N - / -  1), where 1 

is the level of node q. 
Let b be the left son of q and c be the right son of q, 

by Lemma 1, it is observed that q < b < c. Similarly, 
suppose e is the left son of b, f is the right son of 
b, 9 is the left son of c, and h is the right son of c. 
By Lemma 1, we obtain that e = q + 2 2(2N l -  l) _]_ 
22(2N-(1+  t ) -  l), f =  q + 2 2 ( 2 N - t  - 1) + 3 × 2 2 ( 2 N - ( t +  1) -  x), 

9 = q + 3 x 2 2(2N l -  I ) + 2 2 ( 2 N - 0 + l ) - l )  ' and h = q + 3  × 
22(2N l 1 ) +  3 × 22(2N (l+ 1) 1). After comparing these 
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(a) Binary image 

(b) Blocks example 

Fig. 2. The covering example. 

seven bincodes, we have q < b < e < f < c < 9 < h .  
Informally, we have the following lemma. 

Lemma 2. (Increasing property.) The bincodes of a 
binary image form a strictly increasing sequence. 

Lemma 3. (Covering property.) Let q be a bincode at 
level I, i fsome bincodes fall in [q, q + (42N-~- l)]  then 
these bincodes are covered by bincode q in a sense of 
spatial structure. 

Proof By Lemma 1, we begin with the subdivision 
process for q, then this process is repeated downward 
level by level. By Lemma 2, finally we obtain an in- 
creasing sequence (q, q + 22~2N- t - D, q + 2 2 ( 2 N -  t -  1 ~ q_ 

2 2(2N-(5+D-I . . . . .  q+~22N;-l(3 X 2 2(2N k 1)). Since 
~-~kZN[ ti3 X 22(2N k-1)) = 42N-1 __ 1, the sequence can 
be rewritten as (q,q + 2212N-5- 11,q + 22(2N-1 - 11 + 
22(2N ,+5~ 51 . . . .  ,q+(42N 5 1)). We complete the 
proof. Q.E.D. 

For convenience, q + (42N t 1) is said to be the right- 
most coverage of q. 

For example, consider a 22 x 22 binary images as 
shown in Fig. 2(a) and the corresponding blocks are 
shown in Fig. 2(b). By the previous conversion scheme, 
the bincode of q is 208. By Lemma 1 and Lemma 2, 
the bincodes of blocks q, b, e, J~ c, 9 and h are represented 
by the increasing sequence (208, 212, 213, 215, 220, 
221,223). Since N -= 2 and the level of black block q is 
l =  2, we have q + (42~v - i  l ) =  223. By Lemma 3, all 
blocks q, b, e , f  c, # and h are covered by the block q. 

According to the description of image subdivision 
process for the construction of bintree, it is not hard 
to obtain the following lemma. 

Lemma 4. In the representation of IBBs, any two sub- 
images of the binary image do not exist partially cover- 
ing relationship. 

We sketch our basic concept for performing the 
intersection and union by the following example (see 
Fig. 3). Given an image I(B 0 of Fig. 3(a), the bin- 
codes of the first image are represented by B~ --- (BI(1), 
B~(2) . . . .  , Bt(5)) = (92, 119 . . . . .  253), and the related 
levels of the bincodes are given by 11 = (/a(1),/a(2) . . . . .  
/~(5)) = (3,4 . . . . .  4).  First, it takes O(1) time to com- 
pute the rightmost coverage for each bincode by using 
Lemma 3. For example, the rightmost coverage of 92 
is 95 which is derived by 92 + (44- 3 _ 1). As a result, 
the computed rightmost coverages are denoted by 
Z 1 = (Zt(1),Z1(2) . . . . .  Z~(5)) = (95, 119 . . . . .  253). In 

general, it takes O(n) time to compute the rightmost 
coverages for all bincodes of Bj if the size of B 1 is n. In 
Fig. 3(bl, the bincodes of the second image are represen- 
ted by B z = (B2(1), B2(2 ) . . . . .  Bz(6) ) = (87, 93 . . . . .  221 ) 
and the related levels are given by l: = (/2(1),/2(2) . . . .  , 
12(6)) = (4,4 . . . . .  4). By the same arguments on the 
first image, we have Z 2 = (Z2(1), Z2(2) . . . . .  Z2(6)) = 
(87, 93 . . . . .  221 ). Similarly, it takes O(m) time to com- 
pute the rightmost coverages for all bincodes of B 2 if 
the size of B z is m. 

From B1(1 ) = 92, Zl(1 ) = 95, B2(1 ) = 87, and Z2(1) = 
87, we know that I(92) and 1(87) are disjoint, where 
•(92) and •(87) denote the black blocks with respect to 
the bincodes 92 and 87, so the smaller bincode 87 is 
put into the union set. Next, from B 1(1) = 92, Z 1(1) = 95, 
B2(2 ) = 93, and Z2(2 ) = 93, by Lemma 3, we have that 
/(93) is covered by I(92), so bincode 93 is put into the 
intersection set and bincode 92 is put into the union 
set. From B1(2)= 119, Z l ( 2 ) =  119, B2{3)= 117, and 
Z2(3 ) = 117, we have that I(Bx(2))(= 1(t 19)) and I(B2(3)) 
( = 1(117)) are disjoint, then the smaller bincode 117 is 
included in the union set. Later, the bincode 119 is also 
included in the union set because I(B1(2))(=I(119)) 
and I(B2(4))(-~ I(124)) are disjoint too and 119 is smal- 
ler than 24. Next, since Bt(3) = B2(4) = 124 and ZI{3) = 
Z2(4) = 127, the bincode 124 is copied to the intersec- 
tion set and the union set. Next, from B1(4 ) = 208, 
Z 1(4) = 223, B2(5 ) = 212, and Z2(5) = 215, bincode 212 
( = B2(5)) is put into the intersection set because bincode 
212 is covered by bincode 208. In addition, by Lemma 
3, we know that I(B2(6)) is also covered by I(B5[4)), so 
221(= B2(6)) is put into the intersection set too. Further, 
208(=-B1(4)) is included in the union set. Finally, the 
remaining bincode of the first image, 253, is included 
in the union set directly. As a result, the intersection 
set is (93, 124, 212, 221) [see Fig. 3(c~] and the union 
setis (87, 92, 117, 119, 124, 208,245). Suppose the size 
ofB t is n and the size ofB 2 is m, it needs O(n + m) time 
to obtain the intersection set and the union set. 

Furthermore, we want to use less number of bincodes 
to represent the union set. By Lemma 1, the first 
bincode 87 in the union set is equal to 84 + 3 x (44- 3 l) 
and the second bincode 92 in the union set is equal to 
8 0 + 3  x(44-2 5 I. Bincodes 87 and 92 cannot be com- 
pressed into a single bincode because they have no 
brother-relationship each other. Similarly, the second 
bincode 92 and the third bincode 117 cannot be com- 
pressed into a single bincode too. By Lemma 1, the 
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B1 92 119 124 208 253 

11 3 4 3 2 4 

Z1 95 119 127 223 253 

(a) I(Bl(i)) 

B2 87 93 117 124 212 221 

12 4 4 4 3 3 4 

Z2 87 93 117 127 215 221 

(b) I(B2(j)) 

bincodes = 

(93, 124, 212, 221) 

(c) The intersection of (a) and (b) 

b incodes=  

(87, 92, 112, 208, 253) 

(d) The union of (a) and (b) 

Fig. 3. An intersection/union example. 

third bincode 117 and the fourth bincode 119 are 
brothers each other since 117 = 116+(44- 3-1) and 
119 = 116 + 3 x (44- 3 - ~). Therefore, these two bincodes 
are compressed into a single bincode 116. Further, the 
bincode 116 and the fifth bincode 124 are compressed 
into a bincode 112 since they are brothers each other 
too. Finally, the compact union set equals (87, 92, 112, 
208, 245). During the compression process, each of the 
external nodes and internal nodes in the bintree will 
be traversed at most twice, so the time complexity 
required is O(n + m). 

Based on the previous description, our algorithm for 
performing the intersection and union operations is 
illustrated in Fig. 4. We have the following theorem. 

Theorem 5. Our intersection/union algorithm can be 
accomplished in O(n + m) time with O(n + m) memory 
space. 

3.2. Complement 

Given a binary image I, the complement of I is an 
image which converts white (black) pixels in I into 
black (white) pixels. In this subsection, we present a 
linear time algorithm to perform the complement of 
the bincodes of I. 

For  bincode b, we define the highest ancestor of 
bincode b to be a bincode which corresponds to the 
largest subimage which covers the subimage represen- 
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Algor i thm : Intersection and Union 

Input: B1 = (B1(1), B1(2) ..... Bl(n)) ,  B2 = (B2(1), Be(2) . . . .  ,Be(m)),  
and the associated levels. 

Output:  The intersection set and the compact union set. 

Step_l. \* Calculate the rightmost coverage of each bineode for B1 and Be. *\ 
F o r i * -  l t o n d o  

Zl( i )  (--- Bl ( i )  + (4 2N-h(i) - 1) 
end 
F o r j ~  l t o m d o  

Z2(j) *- Be( j )  + (4 2N-le(j) - 1) 
end 

Step_2. \ ,  Find the intersection set and the union set. *\ 
\* T denotes the intersection set and U denotes the union set. , \  
T ( - - C ;  U ~-¢;  i+-- 1 ; j ~ -  1 
While i _< n and j <_ m do 

Case 
:e l ( i )  < Be( j )  or B l ( i )  > Ze(j): 

\ * l ( B l ( i ) )  and l ( B e ( j ) )  are disjoint. , \  
If Be(i) < Be(j)  
then 

Y ~ -  U t e { B a ( i ) } ; i ~ i + l  
else 

U ~ -  U U { B e ( j ) } ; j ~ j + I  
:BI(i) = Be(i):  \ • I (B i ( i ) )  and I ( B e ( j ) )  are equivalent. , \  

T ~- T O {BI(i)}; U ~ U O {BI(i)}; i ~ i + 1; j +-- j + 1 
:B1(i) > Be( j )  and Zl( i )  <_ Ze(j): \ * I (B l ( i ) )  ¢ I (Be ( j ) ) .  *\ 

While Bl( i )  > Be(j)  and Zl( i )  <_ Ze(j) and i _< n do 
T *- T U {B,(i)}; i +-- i + 1 

end \* end while *\ 
U ~ U O {Be(j)};  j ~- j + I 

:Be(j)  > Bl ( i )  and Ze(j )  <_ ZI(i): \ * I ( B e ( j ) )  C l (B l ( i ) ) .  *\ 
While Be( j )  > BI(i) and Ze(j) _< ZI(i) and j _< m do 

T ~ T O {Be(j)};  j ~ j + 1 
end \ ,  end while , \  
U ~  U U { B l ( i ) } ; i ~ - i + l  

end \* end case *\ 
end \ ,  end while *\ 

\* Processing the remaining bincodes of B1 or Be. *\ 
' While i _< n do 

U ~ V U {Bl( i )};  i +-- i + l 
end 
While j _< m do 

U ~ U U {Be(j)}; j *-- j + 1 
end 

Step_3. \* Compress the union set. , \  
\ ,  The union set formed in step..2 is {U(k) lk  = 1,2 ..... q}. *\ 
\* p(k) and s(k) represent the indices of the predecessive bincode 

and the successive bincode of the k- th  bincode. , \  
F o r k =  1 t o q d o  

p(k) ~ k - 1; s(k) *--- k + 1 
end 
k ~ - 2  
While k _< q do 

If k < q and U(s(k))  - U(k) = 2 x 4 2N-/(s(k)) 
then 

U(k) (-- U(k) - 4eN-/(k); l(k) *-- l(k) - 1; delete U(s(k)); 
s(k)  ~ s(k)  + 1; p(s(k))  ,-- k 

Fig. 4. The intersection/union algorithm. 
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end 

else 
If U(k)  - U(p(k ) )  = 2 x 4 2N-/(k) 
then 

U(k)  ~- U(k)  - 3 x 42N-t(k); l (k )  ~ l (k)  - 1; delete U(p(k)) ;  

p(k)  ~ p(k)  - 1; s (p(k ) )  ~ k 

else 
k ~ s (k)  + 1 

\* end while *\ 

Fig. 4(Continued) 

ted by bincode b but does not cover the subimage 
represented by the successive bincode of bincode b. 
Note that the highest ancestor of the last bincode is 
the root. The complement of b is defined to be the 
bincodes which represent the subimages of the highest 
ancestor of b, excepting the subimage of b and the 
subimages of the highest ancestors of all the previous 
bincodes of b. 

As shown in Fig. l(c), the highest ancestor of the first 
black block B(1) is d. Excepting B(1), the white block e 
covered by d forms the complement of B(1), so the 
bincode e is assigned to be the complement of B(1). 
Using the same definition, the highest ancestor of the 
second black block B(2) is c. Therefore, # is assigned 
to be the complement of B(2). Similarly, m is the highest 
ancestor of B(3), then n is assigned to be the complement 
of B(3). The highest ancestor of the fourth black block 
B(4) is b. Thus, the complement of B(4) is empty, 4,. The 

bincodes = 

(92, 119, 124, 208, 253} 

(a) A 22 x 22 binary image 

(1) 92: T~ = (84) 
(2) 119: T~ = (117) 
(3) 124: T~ = ¢ 
(5) 208: ~; = ¢ 

(6) 253: T~ = (244, 255) 

T ' =  ~_J 77£ = (84, 117, 244, 255) 
k = l  

(b) Simulation process 

bincodes = 

(84, 117, 244, 255) 

(c) The complement of (a) 

Fig. 5. A complement example. 

complement of B(5) is qb too because the highest ances- 
tor of B(5) is itself. For  B(6), the highest ancestor of 
B(6) is a, so s and t are assigned to be the complement 
of B(6). As a result, <e, #, n, s, t> constitutes the comple- 
ment of all black blocks, i.e. forms the complement of 
the bincodes of Fig. l(a). In addition, these five bincodes 
<e,g,n ,s , t> form an increasing sequence since by 
Lemma 1, we have e < g < n < s < t. 

We now sketch the main concept for finding the 
complement of one image by an example illustrated in 
Fig. 5. In what follows, we want to find the complement 
of the image of Fig. 5(a). 

Consider the first two bincodes 92 and 119. By 
Lemma 1, the bincode of the brother of 92 is 84 
( 9 2 = 8 0 + 3 x ( 4 4 - 2 - 1 )  and 84=80+44 2 - 1 ) ,  which 
can be computed in 0(1) time. Since bincode 92 is the 
first bincode and 84 is the left brother of bincode 92, 
thus, we save 84 as the temporary complement of 
bincode 92 directly, which is denoted by T'  1 = (84). In 
other words, the subimage represented by bincode 80 
has been traversed. Next, we check the subimage of 
bincode 112 because bincode 112 is the brother of 
bincode 80 ( 8 0 = 6 4 + 4 4 - 1 - 1  then 1 1 2 = 6 4 + 3 ×  
(44-1 - 1)). The rightmost coverage of 112 is 127 (127 = 
112 + (44 - z _ 1)). By Lemma 3, then we know that 112 
covers the next given bincode 119, the work for finding 
the complement of bincode 92 is finished. The real 
complement of bincode 92 is 84 only. We also have 
T' 1 = (84). 

Now, we check the second bincode 119 and the third 
bincode 124. By Lemma 1, the left brother of bincode 
l l9 i sb incode  117(119= 116+3 x(44-3 1)then 117= 
116+44-3-1).  Since the subimage of 117 does not 
have been checked, 117 is assigned to be the temporary 
complement of bincode 119. Next, we check bincode 
124(116=t12+44 2 , t h e n 1 2 4 = l 1 2 + 3 x ( 4 4 - 2  1)) 
which is the brother of bincode 116. Since the rightmost 
coverage of 124 is 127 (127 = 124 + (44- 3 - -  |)), we know 
that it covers the next bincode 124. As a result, the real 
complement of bincode 119 is determined. T' z = ( 1 1 7 )  
denotes this complement. 

Next, we check the bincodes 124 and 208. Bincode 
116 is the left brother of 124 (124 = 112 + 3 x {44- 2 - 1) 
then 116 = 112 + 44- 2 - 1). We bypass 116 because the 
subimage covered by 116 has been checked. By Lemma 
1, we have that the subimage represented by bincode 
112 has been checked, then we check bincode 80 (112 = 
6 4 + 3 x 4 4 - 1 - 1  then 80=64+44  1-t)  subsequently. 
Similarly, we bypass 80 because the subimage covered 
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Algorithm : Complement 

Input: Bincodes (B(1), B(2),..., B(n)) and the associated levels. 
Output: The complement set T'. 

Step_l. \* Initialization. *\ 
\* T~ denotes the complement of bincode B(i). , \  
\ ,  (H(1), H(2), ..., H(n)) denote the bincodes whose corresponding 

subimages have been checked. *\ 
F o r i ~ l t o n d o  

T~ ~ ¢; H(i) ~ - 1  
end 
T' ~ ¢; k*-- 1 

Step_2. \* Find the complement for each bincode. , \  
F o r i ~  l t o n d o  

b ~ B(i); v ~ l(i) 
W h i l e v > 0 d o  

r ~ b rood 4 2N-v+l 
If r = 3 x 4 2N-v 
then \* b is the right brother. , \  

D ~ b - 2 x 4 2N-v \ ,  D is the left brother of b. *\ . 
If D ~ H(k) 
then \* D does not have been checked. *\ 

T~ *-- {D) + T~; b *-- b -  r; v ~- v -  1 
else \* D has been checked. *\ 

H ( k ) ~ - l ; k * - k - 1 ; b ~ b - r ; v ~ v - 1  
else \* b is the left brother. , \  

D ~ b + 2 x 42N-v; Z ~- D + (42N-v - 1) 
\* D is the right brother of b. , \  

I f ( i + l ) > n o r B ( i + l ) > Z  \ * i . e . , B ( i + l ) ~ [ D , Z ] . * \  
then \* D does not cover the next bincode. *\ 

T~ ~ T ~ + { n } ; b ~ b - r ; v ~ - v -  1 
else \* D covers the next bincode. *\ 

k *--k + l; H(k )~ -b ;  v*--O 
end \* end while *\ 

end \* end for *\ 

Step_3. \* Union the complements. *\ 
F o r i * -  1 t o n d o  

T' , -  T' UT~ 
end 

Fig. 6. The complement algorithm. 

by 80 also has been checked. In other words, by Lemma 
1, the subimage represented by bincode 64 has been 
checked. Next, we check bincode 192, which is the right 
brother of bincode 64 ( 6 4 = 0 + 4 4 . 0 - 1  then 192=0+  
3 x (44- o 1)). Bincode 192 covers the next bincode 208 
since the rightmost coverage of 192 is 255. The final 
complement of bincode 124 is empty, ~b. T' 3 = ¢ denotes 
this complement. By the same arguments, we have that 
T~, = ¢ and T' 5 = (244, 255). After collecting these 
complements for those bincodes, the complement of 

5 1 Fig. 5(a) is T ' =  Uk=lTk = (84, 117, 244, 255}, which 
is shown in Fig. 5(b). Note that T' is also an increasing 
sequence. 

Following the above detailed simulation, the concept 
for finding the complement of the bincode can be 
described as follows. Given a bincode, b, let c be the 
brother of b, d be the father of b and c, and e be the 
brother of d. We first check bincode c. After the 

bincode c has been checked, the temporary comple- 
ment for the subimage represented by d is found. Then 
we can check another subimage which is represented 
by e subsequently. This approach can be applied itera- 
tively until the highest ancestor of b is reached. Finally, 
the complement of bincode b will be found. Meanwhile, 
we record the highest ancestor of b since the subimage 
represented by the highest ancestor of b has been 
checked and it needs not be checked any longer for 
finding the complement of the successive bincodes. 
This concept can be generalized to find the complement 
of all bincodes and we have the following theorem. 

Theorem 6. The complement of an image is the union 
of the complements of bincodes of the image. 

Our complement algorithm is shown in Fig. 6. 
According to above description, each of the external 

nodes and internal nodes in the bintree will be traversed 
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at most twice. As a result, the complement algorithm 
can be done in O(n) time, where n is the number of 
bincodes in the IBB. In addition, the required memory 
is O(n). Then we have the following result. 

Theorem 7. Our complement algorithm can be done 
in O(n) time with O(n) memory space. 

4.  N E I G H B O R S  F I N D I N G  

Neighbor finding is important in the field of mani- 
pulations on binary images. Following the definition 
used in reference (3), we define the black block b to be 
the 4-neighbor of the black block c if blocks b and c 
share a common edge and the size of block b is equal 
to or larger than that of block c. The black block d is 
the diagonal neighbor of block c if block d shares a 
common corner with block c and it does not relate with 
its size. In this section, we present two fast algorithms 
for solving the problems of the 4-neighbor finding and 
the diagonal neighbor finding, respectively. 

4.1. 4-neighbor finding 

According to the previous definition, as shown in 
Fig. 2(b), block f is the north neighbor of block e; 
block g is the east neighbor of block e; block c is the 
east neighbor of block e too. In the following, we first 
present the east neighbor finding algorithm. Further- 
more, this algorithm can be modified to solve all 
problems of the 4-neighbor finding. 

For  the purpose of finding the east neighbor of 
bincode c, we first define the potential east neighbor of 
bincode c. It can be white, gray, or black and shares 
the east edge of bincode c and its size is equal to the 
size of bincode c. For  example, in Fig. 2(b), block g is 
the potential east neighbor of block e but block c is not 

bincodes= 

(87, 93, 117, 124, 212, 221) 

(a) Binary image 

B(k) 87 93 117 124 212 221 

i(k) o 1 o 1 2 3 

j(k) 1 0 2 2 0 0 

l(k) 4 4 4 3 3 4 
g(k) 87 93 117 127 215 221 

i*(k) 1 2 1 2 3 4 
B*(k) 95 213 125 244 220 - 

E(k) - 212 124 - - - 

(b) East neighbors finding 

Fig. 7. An east neighbors finding example. 

the potential east neighbor of block e because the size 
of c is greater than that of e. 

After the potential east neighbor of each bincode is 
determined, by Lemma 3, the binary search method 
can be used to find the bincode which covers the 
potential east neighbor. If the bincode exists, the east 
neighbor is found; otherwise, it does not have the east 
neighbor bincode. 

As shown in Fig. l(b), the bincodes (B(1), B(2), B(3), 
B(4), B(5), B(6)> represent the binary image of Fig. l(a). 
The lower half of B(4) can be defined as the potential 
east neighbor of B(3) since it shares the east edge of 
B(3) and its size equals that of B(3). Further, it must be 
checked that which one of these six bincodes covers 
the lower half of B(4). B(4) covers this subimage, so B(4) 
is the east neighbor of B(3). 

The example of the east neighbor finding is illustrated 
in Fig. 7. In Fig. 7(b), the bincodes of Fig. 7(a) are 
represented by (B(1), n(2), B(3), B(4), B(5), B(6)> = (87, 
93, 117, 124, 212, 221>, the associated locations are 
represented by (column_index, row_index)'s, where 
the column_indexes are denoted by (i(1), i(2), i(3), i(4), 
i(5), i(6)> = (0, 1, 0, 2, 3> and the row_indexes are 
denoted by (j(1), j(2), j(3), j(4), j(5), j(6)> = (1, 0, 2, 2, 
0, 0>, respectively; the corresponding levels are repre- 
sented by (l(1), l(2), l(3), /(4), l(5), l(6)> = (4, 4, 4, 3, 
3, 4>. By Lemma 3, it needs 0(1) time to compute the 
rightmost coverage for each bincode. These bincodes' 
rightmost coverages are written as (Z(1), Z(2), Z(3), 
Z(4), Z(5), Z(6)> = <87, 93, 117, 127, 215, 221). Next, 
the potential east neighbor of bincode B(k) which is at 
location (i(k), j(k)) and at level l(k) can be defined at 
location (i*(k),j(k) ) and at level l(k), where i*(k) = i(k) + 
2 N- f'-~ 1. For  example, the first bincode 87 is at location 
(0, 1) and at level 4, so the potential east neighbor of 
bincode 87 can be defined at location (1, 1) and at level 
4 since i*(1) = i(1)+2N-t'~th= 0+22- I~1=0+  1 = 1. 
It needs O(1) time to compute the new column_index 
i*(k) for each bincode. Then the new column_indexes 
of the potential east neighbors of Fig. 7(a) are specified 
by (i*(1), i*(2), i*(3), i*(4), i*(5), i*(6)> = (1, 2, 1, 2, 
3, 4>. Therefore, by the bincode conversion scheme 
which is introduced in Section 2, the potential east 
neighbor of each bincode can be calculated easily. For  
example, for the first bincode 87, B (1)=(ils3jls2i o s 1 

__ ' * . ,  joSo)2 = (01011111)2 = 95 since i*(1) = 1 - (tlZo) 2 = 
(01)2, j (1 )=  1 = ( j j o )2= (01 )2  , and s = 2 4 - 2 4 - a =  
15 = (s:2S:o)2 = (1111)2. The potential east neighbors 
are written as (B*(1), B*(2), n*(3), B*(4), n*(5), B*(6)> = 
(95, 213, 125, 244, 220, - > .  Totally, it takes O(n) 
time for finding all the potential east neighbors of 
the IBB. 

For each potential east neighbor among the succes- 
sive sequence of bincodes by using the binary search 
algorithm, ~2~ we need O(logn) time for finding its 
covering bincode whose subimage covers this potential 
east neighbor. For  example, for the first bincode 87, 
the potential east neighbor of 87 is 95 (=  B*(1)). It has 
five successive bincodes, i.e. B(2), B(3), B(4), B(5), and 
B(6). From B(4)= 124 and Z(4)= 127 (4= I-~2+6rl), 
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by Lemma 3, we know that the subimage represented 
by B(4) does not cover 95 and 95 is smaller than B(4). 
Next, from B(2)=93 and Z(2)=93 (2=[(z+!~!/~]),  
the subimage represented by B(2) does not cover 95 and 
95 is larger than B(2). Finally, from B(3) = 117 and Z(3) = 
117, we have that the subimage represented by B(3) 
does not cover 95 too. Therefore, the first bincode 87 
does not have the east neighbor. For the second bincode 
93, the potential east neighbor of 93 is 213. It has four 
successive bincodes, i.e. B(3), B(4), B(5) and B(6). From 
B(4)= 124 and Z(4)= 127 (4= [~3~6)]), by Lemma 
3, we know that the subimage represented by B(4) does 
not cover 213 and 213 is larger than B(4). Next, we try 
B(5)=212 and Z(5)=215 ( 5 = [ ~ ± 6 ) ] ) ,  then we 
have that the subimage represented by B(4) covers 213 
since B(5)<213 and Z(5)>213. As a result, we have 
that bincode 212 is the east neighbor of bincode 93. By 
the same arguments, all the east neighbors of bincodes 

can be found. The east neighbors of bincodes (NIL  
B(2), B(3), B(4), B(5), B(6)) are represented by (E(1), 
E(2), E(3), E(4), E(5), E(6))= < - ,  212, 124, - ,  - ,  - > .  
We conclude that the second bincode 87 and the third 
bincode 117 have the east neighbor and the others do 
not have. 

According to the above description, each bincode 
needs O(log n) time for finding its east neighbor bincode, 
where n is the number of the given bincodes. Totally, 
for all bincodes, it needs O(n log n) time. Our algorithm 
is presented in Fig. 8. 

In fact, our algorithm for finding east neighbors can 
be modified to find the 4-neighbors easily and we have 
the following theorem. 

Theorem 8. For all bincodes, the 4-neighbors finding 
algorithm can be done in 0011ogn) time with O(n) 
memory space. 

Algorithm : East neighbors finding 

Input: Bincodes (B(1), B(2) ..... B(n)) and the associated locations and levels. 
Output: The east neighbors (E(1),E(2) ..... E(n)). 

Step_l. \ ,  Calculate the rightmost coverage and the potential east 
neighbor for each bincode. , \  

\* Z(k) denotes the rightmost coverage of the k-th bincode and 
B*(k) denotes the potential east neighbor of the k-th bincode. , \  

F o r k + -  l t o n d o  
Z(k) ~- B(k) + (4 ~N-t(k) - l); i*(k) ~- i (k)+ 2N-[~@] 
If 0 < i*(k) and i*(k) <_ 2 N - 1 
then 

~ N - l /  , B*(k) 4-- Xy=~l(i * X 2 4r+3) + r=0 I,~r X 24r+l) 
~2N-1 22~) + ~ = 0  (St X 

\* i*(k) = (i*N_,i~_ 2 .... i;i;)2, 
j ( k )  ~- ( J N - I j N - 2  . . . .  jljo)2, and 
2 2 N _  22N- l ( k )  = ( 8 2 N _ I 8 2 N _  2 ....  8180) 2. *\ 

else 
B*(k)  ~- - 1  

end 

Step_2. \ ,  Find the east neighbor for each bincode. , \  
F o r k ~  1 t o n d o  

E(k) +-- - 1  
end 
F o r k ~  l t o n - 1  do 

If B*(k) # -1  
then \* binary search algorithm is used to find 

the east neighbor. , \  
a * - - k + l ; b ~ n  
While E(k) = - 1  and a _< b do 

If B*(k) >_ B(k') and B*(k) <_ Z(k') 
then 

Z(k) +- B(k')  
else 

If B*(k) < B(k') the,, b *- k' - l 
else a *-- k' + 1 

end 
end 

Fig. 8. The east neighbors finding algorithm. 
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bincodes= 

(87, 93, 117, 124, 212, 221) 

(a) Binary image 

B(k) 87 93 117 124 212 221 

i(k) 0 1 0 1 2 3 

j ( k )  1 o 2 2 o o 

l(k) 4 4 4 3 3 4 

Z(k) 87 93 117 127 215 221 

i'(k) 1 2 1 2 3 4 

j*(k) 2 1 3 4 2 1 

B'(k) 125 215 127 - 252 - 

N~(k) 124 . . . . .  

(b) Northeast neighbors finding 

Fig. 9. A northeast neighbors finding example. 

4.2. Diagonal neighbor finding 

According to the definition of the diagonal neighbor, 
as shown in Fig. l(b), block B(4) is the northeast 
neighbor of block B(1) and is the northwest neighbor 
of block B(5). On the other hand, block B(1) is the 
southwest neighbor of block B(4) and block B(5) is the 
southeast neighbor of block B(4). For a bincode, it has 
at most four diagonal neighbors, namely the northeast 
neighbor, the southeast neighbor, the southwest neigh- 
bor, and the northwest neighbor. The diagonal neigh- 
bor finding algorithm can be obtained from the modi- 
fication of the 4-neighbor finding algorithm because 
the key idea and the approach for finding diagonal 
neighbor are same as the 4-neighbor algorithm. In this 
subsection, we mainly describe the northeast neighbor 
finding algorithm. However, this algorithm also can be 
modified to solve the problem of all diagonal neighbors 
finding. 

For a given bincode p, we define q to be the potential 
northeast neighbor of bincode p when the size of q is 
I x 1 and it can be white or black and q shares the 
northeast corner of bincode p. For example, in Fig. 
2(b), the subimage represented by block h can be defined 
as the potential northeast neighbor of block e since 
block h shares the northeast corner of block e and its 
size is I x 1. By Lemma 3, the binary search method is 
used to find the bincode which covers q and shares the 
northeast corner of p. If the bincode exists, the north- 
east neighbor ofp is found. Otherwise, p does not have 
the northeast neighbor bincode. 

As shown in Fig. 2(b), the subimage represented by 
block h can be defined as the potential northeast neigh- 
bor of block e. Blocks h and c cover this subimage, h 
is connected by the northeast corner of e but c is not, 
so h is the northeast neighbor of e but c is not. 

For detailed description, we take an example of 
Fig. 9 to demonstrate our concept. As shown in Fig. 
9(b), the bincodes of Fig. 9(a) are represented by (B(1), 
B(2), B(3), B(4), B(5), B(6))=(87, 93, 117, 124, 212, 
221), the associated (column_index, row_index)'s are 
(i(1), i(2), i(3), i(4), i(5),/(6)) = (0, 1, 0, 1, 2, 3) and (j(1), 
j(2),j(3),j(4),j(5),j(6)) = (1, 0, 2, 2, 0, 0), respectively, 
and the associated levels are (1(1), 1(2), l(3), l(4), 1(5), 
/(6)) = (4, 4, 4, 3, 3, 4). The bincodes' rightmost cover- 
ages are (Z(1), Z(2), Z(3), Z(4), Z(5), Z(6)) = (87, 93, 
117, 127, 215, 221), by Lemma 3, it takes O(1) time to 
compute the rightmost coverage for each bincode. 

Next, for bincode B(k), which is at location (i(k),j(k)) 
and at level l(k), the potential northeast neighbor of the 
bincode B(k) can be defined at location (i*(k),j*(k)) and 
at level 2N, where i*(k)= i (k)+2 N-t '~l and j*(k)= 

j(k) + 2 N-f'~l. For example, the first bincode 87 is at 
location (0, 1) and at level 4. The potential northeast 
neighbor of bincode 87 can be defined at location (1, 2) 
and at level 4 since i*(1) = i(1) + 2 N-tt~ I = 0 + 1 = 1, 

j*(1) + 2 N-f~-~ 1 = 1 + 1 = 2, and 2N = 4. It takes O(1) 
time for computing the new column_index and the 
new row_index for each bincode. The new column_ 
indexes of the potential northeast neighbors of Fig. 9(a) 
are specified by (i*(1), i*(2), i*(3), i*(4), i*(5), i*(6))= 
(1, 2, 1, 2, 3, 4) and the new row_indexes of the 
potential northeast neighbors of Fig. 9(a) are specified 
by (j*(1),j*(2),j*(3),j*(4),j*(5),j*(6)) = (2, 1, 3, 4, 2, 
1). 

Based on the parameters of (i*(k), j*(k)) and 2N, the 
potential northeast neighbor of bincode B(k), denoted 
by B*(k), can be calculated by O(1) time by using the 
bincode conversion scheme. The potential northeast 
neighbors are written as (B*(1), B*(2), B*(3), B*(4), 
B*(5), B*(6)) = (125, 215, 127, - ,  252, - ) .  Finally, 
the binary search algorithm is used. By the same argu- 
ments described in Section 4.1, the northeast neighbor 
of each bincode can be found in O(log n) time. The 
northeast neighbors of (B(1), B(2), B(3), B(4), B(5), 
B(6)) are represented by (Ne(1), S~(2), Se(3 ), Ne(4), 
Se(5), Se(6)) = (124 . . . . .  ~. As shown in 
Fig. 9(b), the first bincode 87 has a northeast neighbor 
124. 

The northeast neighbor finding algorithm is shown 
in Fig. 10. Extending this algorithm directly, we have 
the following result. 

Theorem 9. For all bincodes, the diagonal neighbors 
finding algorithm can be done in O(n log n) time with 
O(n) memory space. 
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Algori thm : Northeast neighbors finding 

Input: Bincodes (B(1), B(2),. . . ,  B(n))  and the associated locations and levels. 
Output:  The northeast neighbors (N~(1), N~(2), ..., N,(n)) .  

Step_l. \* Calculate the rightmost coverage and the potential east 
neighbor for each bincode. *\  

\* Z(k)  denotes the rightmost coverage of the k-th bincode and 
B*(k) denotes the potential northeast neighbor of the 
k- th  bincode. , \  

F o r k ~  l t o n d o  
Z(k)  +-- B(k)  + (4 2N-l(k) - 1); 

i*(k) *-- i(k)+ T ' -  -Z-'l; j ' ( k )  ~ j ( k )+  2 N - L ~  l 

If 0 < i*(k) and i*(k) _< 2 N - 1 and 0 < j*(k) and j*(k) <_ 2 N - 1 
then 

~ N - I ~  .* 24r+1) B*(k) ~-- ~N__~I(i* × 2 4r+3) + Lr= 0 Ur × 
2N-1 22r) + Y'r=o (1×  

\ ,  i*(k) = (i~_1i~_2 .... i V ; h  and 

j*(k)  = (J~v-aJ~v-2 .... J;J~)2. *\ 
else 

B*(k) ~- - 1  
end 

Step_2. \* Find the northeast neighbor for each bincode. *\  
F o r k ~ -  l t o n d o  

N,(k)  ~ - 1  
end 
F o r k * - - l t o n - l d o  

If B*(k) # - 1  
then \* binary search algorithm is used to find 

the northeast neighbor. , \  
a ~ k + l ; b o - - n  
While N~(k) = - 1  and a _< b do 

k'~ t~@J 
If B*(k) >_ B(k ' )  and B*(k) <_ Z(k ' )  
then 

If i(k') : i*(k) and j (k ' )  = j*(h) then N¢(k) ~ B(k ' )  
else a ~ b + 1 

else 
If B*(k) < B(k ' )  then b ~ k' - 1 

else a ,--- k' + 1 
end 

end 

Fig. 10. The northeast neighbors finding algorithm. 

5. CONCLUSIONS 

Space minimization is an important  consideration 
in image representation. According to the studies, ~9' l o) 
the IBB (bintree) is shown to be space utilization 
improvement from 0 to 25~o over the linear quadtrees 
encoding method. Therefore, the IBB can be viewed as 
a competitive encoding structure. In this paper, some 
fast sequential algorithms for set operations, 4-neigh- 
bors finding, and diagonal neighbors finding of the 
IBB are presented. These algorithms are designed by 
using some important  properties of bincodes, namely 
the increasing property and the covering property. 
More complicated image manipulations such as pattern 
matching on IBB's are our future research topics. 
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