
Pergamon
Pattern Recognition, Vol. 28, No. 3, pp. 409-420, 1995

Elsevier Science Ltd
Copyright © 1995 Pattern Recognition Society

Printed in Great Britain. All rights reserved
0031 3203/95 $9.50+.00

0 0 3 1 - 3 2 0 3 (9 4) 0 0 1 0 2 - 2

FAST OPERATIONS ON BINARY IMAGES USING
INTERPOLATION-BASED BINTREES t

CHI-YEN HUANG and KUO-LIANG CHUNG:~
Department of Information Management, National Taiwan Institute of Technology, No. 43, Sec. 4, Keelung

Rd., Taipei, Taiwan 10672, R.O.C.

(Received 23 November 1993; in revised form 17 June 1994; received for publication 17 August 1994)

Abstract--The Interpolation-Based Bintree (IBB) is a new encoding scheme for representing binary images.
This encoding scheme combines the features of linear quadtrees, binary trees, and interpolation-based codes.
The implementation of the IBB is shown to be very simple and storage-saving. Based on the IBB structure,
this paper presents some fast sequential algorithms for set operations (intersection, union, and complement),
4-neighbors finding, and diagonal neighbors finding, respectively. Given two sets of bincodes, B 1 and B2,
with respect to two images, the set operations can be performed in O(n + m) time, where n is the size of B t
and m is the size of B2; the complement operation for B~(B2) can be performed in O(n)(O(m)) time; and the
4-neighbors finding and the diagonal neighbors finding for B~(B2) can be accomplished in O(n log n)(O(m log m))
time.

Bincode Image compression Interpolation-based bintree Neighbor finding
Set operation

I. INTRODUCTION

Representing and manipulating binary images are two
important issues in those fields of pattern recognition,
image processing, computer graphics, computational
geometry, geographic information systems and robo-
tics. According to the literature, {I) encoding techniques
of binary images can be classified into three categories,
namely tree, string and set of codes. The first type, tree,
represents a binary image as a tree structure and stores
it by using pointer-type data structure. For example,
quadtree belongs to this type. Quadtree is a very suc-
cessful coding scheme and its manipulations have been
studied intensively in recent years. 12-5) The second
type, string, represents a binary image as a series of
strings. For example, chain codes and run-length codes
belong to this type. Finally, the third type, set of codes,
represents binary images as a series of codes such as
linear quadtrees {s-8) and Interpolation-Based Bintrees
(IBBs). {9~

The IBB is first proposed by Ouksel and Yaagoub. <9)
The IBB has been shown to be very simple and storage-
saving (0-25% space utilization improvement over the
linear quadtrees encoding method in empirical com-
parisons{5'9'l°)). This method is based on subdividing
the binary image into two equal-sized subimages, right
and left or up and down recursively until the element
of the created subimages is either black or white, where
each subimage is represented by a node. After this
subdivision work has been done, we can convert these

t This research was supported in part by the National
Science Council of R.O.C.

~:A uthor to whom all correspondence should be addressed.

external black nodes, which represent the black blocks,
into the interpolation-based codes. These final codes
are called bincodes which are unique integers assigned
for black blocks.

Based on the IBB structure, this paper presents
some fast sequential algorithms for set operations (inter-
section, union and complement), 4-neighbors finding,
and diagonal neighbors finding, respectively. Given
two sets of bincodes, B1 and B2, with respect to two
images, the set operations can be performed in O(n + m)
time with O(n + m) memory space, where n is the size
of B 1 and m is the size of B2; the complement operation
for BI(B2) can be performed in O(n)(O(m)) time with
O(n)(O(m)) memory space; the 4-neighbors finding and
the diagonal neighbors finding for all bincodes of BI(B2)
can be accomplished in O(nlog n)(O(m log m)) time with
O(n)(O(m)) memory space.

This paper gives a review of the IBB in Section 2.
Then we describe some fast sequential algorithms for
solving the problems of set operations and neighbors
finding in Section 3 and Section 4, respectively. Finally,
some conclusions are addressed in Section 5.

2. REVIEW OF THE IBB

In this section, we first introduce the data structure
of bintree," 11 then the IBB is reviewed. The bintree is
a hierarchical data structure for storing binary images.
Given a 2 N x 2 N binary image, its bintree representation
is a binary tree structure with maximal height 2N. The
root node of the bintree represents the whole image. If
one image is totally black (white), then the root node
is labeled with 1(0). Otherwise, the root node is gray

409

410 C.-Y. HUANG and K.-L. CHUNG

and its two sons are added. Each son represents half
of the image, which is covered by his father in the sense
of spatial structure. This subdivision process is then
repeated recursively for each of the two sons. In each
recursive step, one son is corresponding to a subdivision
of his father. If a subdivision is either black or white,
then its corresponding node is an external node; other-
wise it is a gray node (internal node). A node at height
h, h < 2N, is corresponding to a 2 N- [h/21 × 2 N- [h/2] block.

When h is even, this block is square; when h is odd, this
block is rectangular. According to the data structure
of bintree, a 2 N × 2 N binary image will have at most 22N
external nodes and 22N- 1 internal nodes. Naturally,
the bintree can be implemented by pointer-type data
structure." l~

Considering a 22x 22 binary image as shown in
Fig. l(a), the corresponding example of blocks is shown
in Fig. l(b). According to the above bintree's descrip-
tion, the bintree of Fig. l(a) is illustrated in Fig. l(c).

The IBB is based on the bintree structure and rep-
resents the bintree as an ordered collection of external

(a) Binary image

J

3

2 B(a)

1 BO)
~t=x

0 B(2) B(6)

0 1 2 3

(b) Blocks example

a

coL
(c) Bintree structure

Fig. 1. A 2 2 × 2 2 binary image.

level
0

1

2

3

4

black nodes. Each external black node is described by
a numerical record converted by its location and level.

Given a 2 N × 2 N binary image, if the node at level l
of a bintree corresponds to a black block in the binary
image at location (i, j) , then the bincode b is derived
by the following bincode conversion scheme:

(1) convert i a n d j to binary strings iN_t iN_2. . . io
and JN - I JN - 2 " ' " io, respectively, where i = Y'.~¢__-o 1 (i k × 2 k)

and j - N - 1 . - ~ k : o (Jk x 2k);
(2) compute s = 2 2N -- 2 2N-t and then convert s to

a binary string s2u_ l s2N_ 2...So, where s = Z2~o l(sk x
2k); and

(3) The bincode b is given by ~k=0U-10k" X 2 4k+a) +
U 1 • 2 4 k + l) . 4 _ s ~ 2 N - I t S 22k). Zk: o (A x - , - k = o , k x

Return to Fig. l(a). The block B(1) is at location (0, 1)
and at level 4. According to the above bincode conver-
sion scheme, we obtain that i = 0 = (ilio) 2 = (00)2, j = 1 =

(JlJo)2 ----- (01)2, and s = 15 = ($3s2s1s0) 2 = (1111)2 , then
the bincode of B(1) can be represented by (01010111)2 =
87. Consider block B(4) which is at location (1,2) and
at level 3. Similarly, we obtain that i = 1 =(itio) 2 =(01)2,

j = 2(j lJo) 2 = (10)2 , and s = 14 = ($3s2s1s0) 2 = (1110)2.
Further, the bincode of block B(4) is represented by
(01111100)2 = 124.

We traverse black nodes of the bintree in a pre-
ordered way and calculate their bincodes simulta-
neously, then the bincodes of Fig. l(a) are represented
by the ordered sequence of numerical records (87, 93,
l l7 , 124,212,221). Throughout this paper, the IBB
and bincodes represent the same thing and can be used
exchangeably.

3. SET O P E R A T I O N S

Based on the representation of bincodes described
above, some fast sequential algorithms for set opera-
tions (intersection, union and complement) are presen-
ted in this section. We assume that all related binary
images have been translated into bincodes and the
associated level of each bincode is known.

3.1. Intersection union

We start with analyzing some special properties of
bincodes.

Lemma 1.(9) Given a 2 N x 2 N binary image, if q is the

bincode of an internal node in the bintree and b and c
are bincodes of the left son and right son of q, then
b = q + 2 2 (2 N - t - 1) and c = q + 3 x 2 2 (2 N - / - 1), where 1

is the level of node q.
Let b be the left son of q and c be the right son of q,

by Lemma 1, it is observed that q < b < c. Similarly,
suppose e is the left son of b, f is the right son of
b, 9 is the left son of c, and h is the right son of c.
By Lemma 1, we obtain that e = q + 2 2(2N l - l) _]_
22(2N-(1+ t) - l), f = q + 2 2 (2 N - t - 1) + 3 × 2 2 (2 N - (t + 1) - x),

9 = q + 3 x 2 2(2N l - I) + 2 2 (2 N - 0 + l) - l) ' and h = q + 3 ×
22(2N l 1) + 3 × 22(2N (l+ 1) 1). After comparing these

Fast operations on binary images 411

(a) Binary image

(b) Blocks example

Fig. 2. The covering example.

seven bincodes, we have q < b < e < f < c < 9 < h .
Informally, we have the following lemma.

Lemma 2. (Increasing property.) The bincodes of a
binary image form a strictly increasing sequence.

Lemma 3. (Covering property.) Let q be a bincode at
level I, i fsome bincodes fall in [q, q + (42N-~- l)] then
these bincodes are covered by bincode q in a sense of
spatial structure.

Proof By Lemma 1, we begin with the subdivision
process for q, then this process is repeated downward
level by level. By Lemma 2, finally we obtain an in-
creasing sequence (q, q + 22~2N- t - D, q + 2 2 (2 N - t - 1 ~ q_

2 2(2N-(5+D-I q+~22N;-l(3 X 2 2(2N k 1)). Since
~-~kZN[ti3 X 22(2N k-1)) = 42N-1 __ 1, the sequence can
be rewritten as (q,q + 2212N-5- 11,q + 22(2N-1 - 11 +
22(2N ,+5~ 51 ,q+(42N 5 1)). We complete the
proof. Q.E.D.

For convenience, q + (42N t 1) is said to be the right-
most coverage of q.

For example, consider a 22 x 22 binary images as
shown in Fig. 2(a) and the corresponding blocks are
shown in Fig. 2(b). By the previous conversion scheme,
the bincode of q is 208. By Lemma 1 and Lemma 2,
the bincodes of blocks q, b, e, J~ c, 9 and h are represented
by the increasing sequence (208, 212, 213, 215, 220,
221,223). Since N -= 2 and the level of black block q is
l = 2, we have q + (42~v - i l) = 223. By Lemma 3, all
blocks q, b, e , f c, # and h are covered by the block q.

According to the description of image subdivision
process for the construction of bintree, it is not hard
to obtain the following lemma.

Lemma 4. In the representation of IBBs, any two sub-
images of the binary image do not exist partially cover-
ing relationship.

We sketch our basic concept for performing the
intersection and union by the following example (see
Fig. 3). Given an image I(B 0 of Fig. 3(a), the bin-
codes of the first image are represented by B~ --- (BI(1),
B~(2) , Bt(5)) = (92, 119 253), and the related
levels of the bincodes are given by 11 = (/a(1),/a(2)
/~(5)) = (3,4 4). First, it takes O(1) time to com-
pute the rightmost coverage for each bincode by using
Lemma 3. For example, the rightmost coverage of 92
is 95 which is derived by 92 + (44- 3 _ 1). As a result,
the computed rightmost coverages are denoted by
Z 1 = (Zt(1),Z1(2) Z~(5)) = (95, 119 253). In

general, it takes O(n) time to compute the rightmost
coverages for all bincodes of Bj if the size of B 1 is n. In
Fig. 3(bl, the bincodes of the second image are represen-
ted by B z = (B2(1), B2(2) Bz(6)) = (87, 93 221)
and the related levels are given by l: = (/2(1),/2(2) ,
12(6)) = (4,4 4). By the same arguments on the
first image, we have Z 2 = (Z2(1), Z2(2) Z2(6)) =
(87, 93 221). Similarly, it takes O(m) time to com-
pute the rightmost coverages for all bincodes of B 2 if
the size of B z is m.

From B1(1) = 92, Zl(1) = 95, B2(1) = 87, and Z2(1) =
87, we know that I(92) and 1(87) are disjoint, where
•(92) and •(87) denote the black blocks with respect to
the bincodes 92 and 87, so the smaller bincode 87 is
put into the union set. Next, from B 1(1) = 92, Z 1(1) = 95,
B2(2) = 93, and Z2(2) = 93, by Lemma 3, we have that
/(93) is covered by I(92), so bincode 93 is put into the
intersection set and bincode 92 is put into the union
set. From B1(2)= 119, Z l (2) = 119, B2{3)= 117, and
Z2(3) = 117, we have that I(Bx(2))(= 1(t 19)) and I(B2(3))
(= 1(117)) are disjoint, then the smaller bincode 117 is
included in the union set. Later, the bincode 119 is also
included in the union set because I(B1(2))(=I(119))
and I(B2(4))(-~ I(124)) are disjoint too and 119 is smal-
ler than 24. Next, since Bt(3) = B2(4) = 124 and ZI{3) =
Z2(4) = 127, the bincode 124 is copied to the intersec-
tion set and the union set. Next, from B1(4) = 208,
Z 1(4) = 223, B2(5) = 212, and Z2(5) = 215, bincode 212
(= B2(5)) is put into the intersection set because bincode
212 is covered by bincode 208. In addition, by Lemma
3, we know that I(B2(6)) is also covered by I(B5[4)), so
221(= B2(6)) is put into the intersection set too. Further,
208(=-B1(4)) is included in the union set. Finally, the
remaining bincode of the first image, 253, is included
in the union set directly. As a result, the intersection
set is (93, 124, 212, 221) [see Fig. 3(c~] and the union
setis (87, 92, 117, 119, 124, 208,245). Suppose the size
ofB t is n and the size ofB 2 is m, it needs O(n + m) time
to obtain the intersection set and the union set.

Furthermore, we want to use less number of bincodes
to represent the union set. By Lemma 1, the first
bincode 87 in the union set is equal to 84 + 3 x (44- 3 l)
and the second bincode 92 in the union set is equal to
8 0 + 3 x(44-2 5 I. Bincodes 87 and 92 cannot be com-
pressed into a single bincode because they have no
brother-relationship each other. Similarly, the second
bincode 92 and the third bincode 117 cannot be com-
pressed into a single bincode too. By Lemma 1, the

412 C.-Y. HUANG and K.-L. CHUNG

B1 92 119 124 208 253

11 3 4 3 2 4

Z1 95 119 127 223 253

(a) I(Bl(i))

B2 87 93 117 124 212 221

12 4 4 4 3 3 4

Z2 87 93 117 127 215 221

(b) I(B2(j))

bincodes =

(93, 124, 212, 221)

(c) The intersection of (a) and (b)

b incodes=

(87, 92, 112, 208, 253)

(d) The union of (a) and (b)

Fig. 3. An intersection/union example.

third bincode 117 and the fourth bincode 119 are
brothers each other since 117 = 116+(44- 3-1) and
119 = 116 + 3 x (44- 3 - ~). Therefore, these two bincodes
are compressed into a single bincode 116. Further, the
bincode 116 and the fifth bincode 124 are compressed
into a bincode 112 since they are brothers each other
too. Finally, the compact union set equals (87, 92, 112,
208, 245). During the compression process, each of the
external nodes and internal nodes in the bintree will
be traversed at most twice, so the time complexity
required is O(n + m).

Based on the previous description, our algorithm for
performing the intersection and union operations is
illustrated in Fig. 4. We have the following theorem.

Theorem 5. Our intersection/union algorithm can be
accomplished in O(n + m) time with O(n + m) memory
space.

3.2. Complement

Given a binary image I, the complement of I is an
image which converts white (black) pixels in I into
black (white) pixels. In this subsection, we present a
linear time algorithm to perform the complement of
the bincodes of I.

For bincode b, we define the highest ancestor of
bincode b to be a bincode which corresponds to the
largest subimage which covers the subimage represen-

Fast operations on binary images 413

Algor i thm : Intersection and Union

Input: B1 = (B1(1), B1(2) Bl(n)) , B2 = (B2(1), Be(2) ,Be(m)),
and the associated levels.

Output: The intersection set and the compact union set.

Step_l. * Calculate the rightmost coverage of each bineode for B1 and Be. *\
F o r i * - l t o n d o

Zl(i) (--- Bl (i) + (4 2N-h(i) - 1)
end
F o r j ~ l t o m d o

Z2(j) *- Be(j) + (4 2N-le(j) - 1)
end

Step_2. \ , Find the intersection set and the union set. *\
* T denotes the intersection set and U denotes the union set. , \
T (- - C ; U ~-¢; i+-- 1 ; j ~ - 1
While i _< n and j <_ m do

Case
:e l (i) < Be(j) or B l (i) > Ze(j):

\ * l (B l (i)) and l (B e (j)) are disjoint. , \
If Be(i) < Be(j)
then

Y ~ - U t e { B a (i) } ; i ~ i + l
else

U ~ - U U { B e (j) } ; j ~ j + I
:BI(i) = Be(i): \ • I (B i (i)) and I (B e (j)) are equivalent. , \

T ~- T O {BI(i)}; U ~ U O {BI(i)}; i ~ i + 1; j +-- j + 1
:B1(i) > Be(j) and Zl(i) <_ Ze(j): \ * I (B l (i)) ¢ I (Be (j)) . *\

While Bl(i) > Be(j) and Zl(i) <_ Ze(j) and i _< n do
T *- T U {B,(i)}; i +-- i + 1

end * end while *\
U ~ U O {Be(j)}; j ~- j + I

:Be(j) > Bl (i) and Ze(j) <_ ZI(i): \ * I (B e (j)) C l (B l (i)) . *\
While Be(j) > BI(i) and Ze(j) _< ZI(i) and j _< m do

T ~ T O {Be(j)}; j ~ j + 1
end \ , end while , \
U ~ U U { B l (i) } ; i ~ - i + l

end * end case *\
end \ , end while *\

* Processing the remaining bincodes of B1 or Be. *\
' While i _< n do

U ~ V U {Bl(i)}; i +-- i + l
end
While j _< m do

U ~ U U {Be(j)}; j *-- j + 1
end

Step_3. * Compress the union set. , \
\ , The union set formed in step..2 is {U(k) lk = 1,2 q}. *\
* p(k) and s(k) represent the indices of the predecessive bincode

and the successive bincode of the k- th bincode. , \
F o r k = 1 t o q d o

p(k) ~ k - 1; s(k) *--- k + 1
end
k ~ - 2
While k _< q do

If k < q and U(s(k)) - U(k) = 2 x 4 2N-/(s(k))
then

U(k) (-- U(k) - 4eN-/(k); l(k) *-- l(k) - 1; delete U(s(k));
s(k) ~ s(k) + 1; p(s(k)) ,-- k

Fig. 4. The intersection/union algorithm.

414 C.-Y. HUANG and K.-L. CHUNG

end

else
If U(k) - U(p(k)) = 2 x 4 2N-/(k)
then

U(k) ~- U(k) - 3 x 42N-t(k); l (k) ~ l (k) - 1; delete U(p(k)) ;

p(k) ~ p(k) - 1; s (p(k)) ~ k

else
k ~ s (k) + 1

* end while *\

Fig. 4(Continued)

ted by bincode b but does not cover the subimage
represented by the successive bincode of bincode b.
Note that the highest ancestor of the last bincode is
the root. The complement of b is defined to be the
bincodes which represent the subimages of the highest
ancestor of b, excepting the subimage of b and the
subimages of the highest ancestors of all the previous
bincodes of b.

As shown in Fig. l(c), the highest ancestor of the first
black block B(1) is d. Excepting B(1), the white block e
covered by d forms the complement of B(1), so the
bincode e is assigned to be the complement of B(1).
Using the same definition, the highest ancestor of the
second black block B(2) is c. Therefore, # is assigned
to be the complement of B(2). Similarly, m is the highest
ancestor of B(3), then n is assigned to be the complement
of B(3). The highest ancestor of the fourth black block
B(4) is b. Thus, the complement of B(4) is empty, 4,. The

bincodes =

(92, 119, 124, 208, 253}

(a) A 22 x 22 binary image

(1) 92: T~ = (84)
(2) 119: T~ = (117)
(3) 124: T~ = ¢
(5) 208: ~; = ¢

(6) 253: T~ = (244, 255)

T ' = ~_J 77£ = (84, 117, 244, 255)
k = l

(b) Simulation process

bincodes =

(84, 117, 244, 255)

(c) The complement of (a)

Fig. 5. A complement example.

complement of B(5) is qb too because the highest ances-
tor of B(5) is itself. For B(6), the highest ancestor of
B(6) is a, so s and t are assigned to be the complement
of B(6). As a result, <e, #, n, s, t> constitutes the comple-
ment of all black blocks, i.e. forms the complement of
the bincodes of Fig. l(a). In addition, these five bincodes
<e,g,n ,s , t> form an increasing sequence since by
Lemma 1, we have e < g < n < s < t.

We now sketch the main concept for finding the
complement of one image by an example illustrated in
Fig. 5. In what follows, we want to find the complement
of the image of Fig. 5(a).

Consider the first two bincodes 92 and 119. By
Lemma 1, the bincode of the brother of 92 is 84
(9 2 = 8 0 + 3 x (4 4 - 2 - 1) and 84=80+44 2 - 1) , which
can be computed in 0(1) time. Since bincode 92 is the
first bincode and 84 is the left brother of bincode 92,
thus, we save 84 as the temporary complement of
bincode 92 directly, which is denoted by T' 1 = (84). In
other words, the subimage represented by bincode 80
has been traversed. Next, we check the subimage of
bincode 112 because bincode 112 is the brother of
bincode 80 (8 0 = 6 4 + 4 4 - 1 - 1 then 1 1 2 = 6 4 + 3 ×
(44-1 - 1)). The rightmost coverage of 112 is 127 (127 =
112 + (44 - z _ 1)). By Lemma 3, then we know that 112
covers the next given bincode 119, the work for finding
the complement of bincode 92 is finished. The real
complement of bincode 92 is 84 only. We also have
T' 1 = (84).

Now, we check the second bincode 119 and the third
bincode 124. By Lemma 1, the left brother of bincode
l l9 i sb incode 117(119= 116+3 x(44-3 1)then 117=
116+44-3-1). Since the subimage of 117 does not
have been checked, 117 is assigned to be the temporary
complement of bincode 119. Next, we check bincode
124(116=t12+44 2 , t h e n 1 2 4 = l 1 2 + 3 x (4 4 - 2 1))
which is the brother of bincode 116. Since the rightmost
coverage of 124 is 127 (127 = 124 + (44- 3 - - |)), we know
that it covers the next bincode 124. As a result, the real
complement of bincode 119 is determined. T' z = (1 1 7)
denotes this complement.

Next, we check the bincodes 124 and 208. Bincode
116 is the left brother of 124 (124 = 112 + 3 x {44- 2 - 1)
then 116 = 112 + 44- 2 - 1). We bypass 116 because the
subimage covered by 116 has been checked. By Lemma
1, we have that the subimage represented by bincode
112 has been checked, then we check bincode 80 (112 =
6 4 + 3 x 4 4 - 1 - 1 then 80=64+44 1-t) subsequently.
Similarly, we bypass 80 because the subimage covered

Fast operations on binary images 415

Algorithm : Complement

Input: Bincodes (B(1), B(2),..., B(n)) and the associated levels.
Output: The complement set T'.

Step_l. * Initialization. *\
* T~ denotes the complement of bincode B(i). , \
\ , (H(1), H(2), ..., H(n)) denote the bincodes whose corresponding

subimages have been checked. *\
F o r i ~ l t o n d o

T~ ~ ¢; H(i) ~ - 1
end
T' ~ ¢; k*-- 1

Step_2. * Find the complement for each bincode. , \
F o r i ~ l t o n d o

b ~ B(i); v ~ l(i)
W h i l e v > 0 d o

r ~ b rood 4 2N-v+l
If r = 3 x 4 2N-v
then * b is the right brother. , \

D ~ b - 2 x 4 2N-v \ , D is the left brother of b. *\ .
If D ~ H(k)
then * D does not have been checked. *\

T~ *-- {D) + T~; b *-- b - r; v ~- v - 1
else * D has been checked. *\

H (k) ~ - l ; k * - k - 1 ; b ~ b - r ; v ~ v - 1
else * b is the left brother. , \

D ~ b + 2 x 42N-v; Z ~- D + (42N-v - 1)
* D is the right brother of b. , \

I f (i + l) > n o r B (i + l) > Z \ * i . e . , B (i + l) ~ [D , Z] . * \
then * D does not cover the next bincode. *\

T~ ~ T ~ + { n } ; b ~ b - r ; v ~ - v - 1
else * D covers the next bincode. *\

k *--k + l; H(k)~ -b ; v*--O
end * end while *\

end * end for *\

Step_3. * Union the complements. *\
F o r i * - 1 t o n d o

T' , - T' UT~
end

Fig. 6. The complement algorithm.

by 80 also has been checked. In other words, by Lemma
1, the subimage represented by bincode 64 has been
checked. Next, we check bincode 192, which is the right
brother of bincode 64 (6 4 = 0 + 4 4 . 0 - 1 then 192=0+
3 x (44- o 1)). Bincode 192 covers the next bincode 208
since the rightmost coverage of 192 is 255. The final
complement of bincode 124 is empty, ~b. T' 3 = ¢ denotes
this complement. By the same arguments, we have that
T~, = ¢ and T' 5 = (244, 255). After collecting these
complements for those bincodes, the complement of

5 1 Fig. 5(a) is T ' = Uk=lTk = (84, 117, 244, 255}, which
is shown in Fig. 5(b). Note that T' is also an increasing
sequence.

Following the above detailed simulation, the concept
for finding the complement of the bincode can be
described as follows. Given a bincode, b, let c be the
brother of b, d be the father of b and c, and e be the
brother of d. We first check bincode c. After the

bincode c has been checked, the temporary comple-
ment for the subimage represented by d is found. Then
we can check another subimage which is represented
by e subsequently. This approach can be applied itera-
tively until the highest ancestor of b is reached. Finally,
the complement of bincode b will be found. Meanwhile,
we record the highest ancestor of b since the subimage
represented by the highest ancestor of b has been
checked and it needs not be checked any longer for
finding the complement of the successive bincodes.
This concept can be generalized to find the complement
of all bincodes and we have the following theorem.

Theorem 6. The complement of an image is the union
of the complements of bincodes of the image.

Our complement algorithm is shown in Fig. 6.
According to above description, each of the external

nodes and internal nodes in the bintree will be traversed

416 C.-Y. HUANG and K.-L. CHUNG

at most twice. As a result, the complement algorithm
can be done in O(n) time, where n is the number of
bincodes in the IBB. In addition, the required memory
is O(n). Then we have the following result.

Theorem 7. Our complement algorithm can be done
in O(n) time with O(n) memory space.

4. N E I G H B O R S F I N D I N G

Neighbor finding is important in the field of mani-
pulations on binary images. Following the definition
used in reference (3), we define the black block b to be
the 4-neighbor of the black block c if blocks b and c
share a common edge and the size of block b is equal
to or larger than that of block c. The black block d is
the diagonal neighbor of block c if block d shares a
common corner with block c and it does not relate with
its size. In this section, we present two fast algorithms
for solving the problems of the 4-neighbor finding and
the diagonal neighbor finding, respectively.

4.1. 4-neighbor finding

According to the previous definition, as shown in
Fig. 2(b), block f is the north neighbor of block e;
block g is the east neighbor of block e; block c is the
east neighbor of block e too. In the following, we first
present the east neighbor finding algorithm. Further-
more, this algorithm can be modified to solve all
problems of the 4-neighbor finding.

For the purpose of finding the east neighbor of
bincode c, we first define the potential east neighbor of
bincode c. It can be white, gray, or black and shares
the east edge of bincode c and its size is equal to the
size of bincode c. For example, in Fig. 2(b), block g is
the potential east neighbor of block e but block c is not

bincodes=

(87, 93, 117, 124, 212, 221)

(a) Binary image

B(k) 87 93 117 124 212 221

i(k) o 1 o 1 2 3

j(k) 1 0 2 2 0 0

l(k) 4 4 4 3 3 4
g(k) 87 93 117 127 215 221

i*(k) 1 2 1 2 3 4
B*(k) 95 213 125 244 220 -

E(k) - 212 124 - - -

(b) East neighbors finding

Fig. 7. An east neighbors finding example.

the potential east neighbor of block e because the size
of c is greater than that of e.

After the potential east neighbor of each bincode is
determined, by Lemma 3, the binary search method
can be used to find the bincode which covers the
potential east neighbor. If the bincode exists, the east
neighbor is found; otherwise, it does not have the east
neighbor bincode.

As shown in Fig. l(b), the bincodes (B(1), B(2), B(3),
B(4), B(5), B(6)> represent the binary image of Fig. l(a).
The lower half of B(4) can be defined as the potential
east neighbor of B(3) since it shares the east edge of
B(3) and its size equals that of B(3). Further, it must be
checked that which one of these six bincodes covers
the lower half of B(4). B(4) covers this subimage, so B(4)
is the east neighbor of B(3).

The example of the east neighbor finding is illustrated
in Fig. 7. In Fig. 7(b), the bincodes of Fig. 7(a) are
represented by (B(1), n(2), B(3), B(4), B(5), B(6)> = (87,
93, 117, 124, 212, 221>, the associated locations are
represented by (column_index, row_index)'s, where
the column_indexes are denoted by (i(1), i(2), i(3), i(4),
i(5), i(6)> = (0, 1, 0, 2, 3> and the row_indexes are
denoted by (j(1), j(2), j(3), j(4), j(5), j(6)> = (1, 0, 2, 2,
0, 0>, respectively; the corresponding levels are repre-
sented by (l(1), l(2), l(3), /(4), l(5), l(6)> = (4, 4, 4, 3,
3, 4>. By Lemma 3, it needs 0(1) time to compute the
rightmost coverage for each bincode. These bincodes'
rightmost coverages are written as (Z(1), Z(2), Z(3),
Z(4), Z(5), Z(6)> = <87, 93, 117, 127, 215, 221). Next,
the potential east neighbor of bincode B(k) which is at
location (i(k), j(k)) and at level l(k) can be defined at
location (i*(k),j(k)) and at level l(k), where i*(k) = i(k) +
2 N- f'-~ 1. For example, the first bincode 87 is at location
(0, 1) and at level 4, so the potential east neighbor of
bincode 87 can be defined at location (1, 1) and at level
4 since i*(1) = i(1)+2N-t'~th= 0+22- I~1=0+ 1 = 1.
It needs O(1) time to compute the new column_index
i*(k) for each bincode. Then the new column_indexes
of the potential east neighbors of Fig. 7(a) are specified
by (i*(1), i*(2), i*(3), i*(4), i*(5), i*(6)> = (1, 2, 1, 2,
3, 4>. Therefore, by the bincode conversion scheme
which is introduced in Section 2, the potential east
neighbor of each bincode can be calculated easily. For
example, for the first bincode 87, B (1)=(ils3jls2i o s 1

__ ' * . , joSo)2 = (01011111)2 = 95 since i*(1) = 1 - (tlZo) 2 =
(01)2, j (1)= 1 = (j j o)2= (01)2 , and s = 2 4 - 2 4 - a =
15 = (s:2S:o)2 = (1111)2. The potential east neighbors
are written as (B*(1), B*(2), n*(3), B*(4), n*(5), B*(6)> =
(95, 213, 125, 244, 220, - > . Totally, it takes O(n)
time for finding all the potential east neighbors of
the IBB.

For each potential east neighbor among the succes-
sive sequence of bincodes by using the binary search
algorithm, ~2~ we need O(logn) time for finding its
covering bincode whose subimage covers this potential
east neighbor. For example, for the first bincode 87,
the potential east neighbor of 87 is 95 (= B*(1)). It has
five successive bincodes, i.e. B(2), B(3), B(4), B(5), and
B(6). From B(4)= 124 and Z(4)= 127 (4= I-~2+6rl),

Fast operations on binary images 417

by Lemma 3, we know that the subimage represented
by B(4) does not cover 95 and 95 is smaller than B(4).
Next, from B(2)=93 and Z(2)=93 (2=[(z+!~!/~]),
the subimage represented by B(2) does not cover 95 and
95 is larger than B(2). Finally, from B(3) = 117 and Z(3) =
117, we have that the subimage represented by B(3)
does not cover 95 too. Therefore, the first bincode 87
does not have the east neighbor. For the second bincode
93, the potential east neighbor of 93 is 213. It has four
successive bincodes, i.e. B(3), B(4), B(5) and B(6). From
B(4)= 124 and Z(4)= 127 (4= [~3~6)]), by Lemma
3, we know that the subimage represented by B(4) does
not cover 213 and 213 is larger than B(4). Next, we try
B(5)=212 and Z(5)=215 (5 = [~ ± 6)]) , then we
have that the subimage represented by B(4) covers 213
since B(5)<213 and Z(5)>213. As a result, we have
that bincode 212 is the east neighbor of bincode 93. By
the same arguments, all the east neighbors of bincodes

can be found. The east neighbors of bincodes (NIL
B(2), B(3), B(4), B(5), B(6)) are represented by (E(1),
E(2), E(3), E(4), E(5), E(6))= < - , 212, 124, - , - , - > .
We conclude that the second bincode 87 and the third
bincode 117 have the east neighbor and the others do
not have.

According to the above description, each bincode
needs O(log n) time for finding its east neighbor bincode,
where n is the number of the given bincodes. Totally,
for all bincodes, it needs O(n log n) time. Our algorithm
is presented in Fig. 8.

In fact, our algorithm for finding east neighbors can
be modified to find the 4-neighbors easily and we have
the following theorem.

Theorem 8. For all bincodes, the 4-neighbors finding
algorithm can be done in 0011ogn) time with O(n)
memory space.

Algorithm : East neighbors finding

Input: Bincodes (B(1), B(2) B(n)) and the associated locations and levels.
Output: The east neighbors (E(1),E(2) E(n)).

Step_l. \ , Calculate the rightmost coverage and the potential east
neighbor for each bincode. , \

* Z(k) denotes the rightmost coverage of the k-th bincode and
B*(k) denotes the potential east neighbor of the k-th bincode. , \

F o r k + - l t o n d o
Z(k) ~- B(k) + (4 ~N-t(k) - l); i*(k) ~- i (k)+ 2N-[~@]
If 0 < i*(k) and i*(k) <_ 2 N - 1
then

~ N - l / , B*(k) 4-- Xy=~l(i * X 2 4r+3) + r=0 I,~r X 24r+l)
~2N-1 22~) + ~ = 0 (St X

* i*(k) = (i*N_,i~_ 2 i;i;)2,
j (k) ~- (J N - I j N - 2 jljo)2, and
2 2 N _ 22N- l (k) = (8 2 N _ I 8 2 N _ 2 8180) 2. *\

else
B*(k) ~- - 1

end

Step_2. \ , Find the east neighbor for each bincode. , \
F o r k ~ 1 t o n d o

E(k) +-- - 1
end
F o r k ~ l t o n - 1 do

If B*(k) # -1
then * binary search algorithm is used to find

the east neighbor. , \
a * - - k + l ; b ~ n
While E(k) = - 1 and a _< b do

If B*(k) >_ B(k') and B*(k) <_ Z(k')
then

Z(k) +- B(k')
else

If B*(k) < B(k') the,, b *- k' - l
else a *-- k' + 1

end
end

Fig. 8. The east neighbors finding algorithm.

418 C.-Y. HUANG and K.-L. CHUNG

bincodes=

(87, 93, 117, 124, 212, 221)

(a) Binary image

B(k) 87 93 117 124 212 221

i(k) 0 1 0 1 2 3

j (k) 1 o 2 2 o o

l(k) 4 4 4 3 3 4

Z(k) 87 93 117 127 215 221

i'(k) 1 2 1 2 3 4

j*(k) 2 1 3 4 2 1

B'(k) 125 215 127 - 252 -

N~(k) 124

(b) Northeast neighbors finding

Fig. 9. A northeast neighbors finding example.

4.2. Diagonal neighbor finding

According to the definition of the diagonal neighbor,
as shown in Fig. l(b), block B(4) is the northeast
neighbor of block B(1) and is the northwest neighbor
of block B(5). On the other hand, block B(1) is the
southwest neighbor of block B(4) and block B(5) is the
southeast neighbor of block B(4). For a bincode, it has
at most four diagonal neighbors, namely the northeast
neighbor, the southeast neighbor, the southwest neigh-
bor, and the northwest neighbor. The diagonal neigh-
bor finding algorithm can be obtained from the modi-
fication of the 4-neighbor finding algorithm because
the key idea and the approach for finding diagonal
neighbor are same as the 4-neighbor algorithm. In this
subsection, we mainly describe the northeast neighbor
finding algorithm. However, this algorithm also can be
modified to solve the problem of all diagonal neighbors
finding.

For a given bincode p, we define q to be the potential
northeast neighbor of bincode p when the size of q is
I x 1 and it can be white or black and q shares the
northeast corner of bincode p. For example, in Fig.
2(b), the subimage represented by block h can be defined
as the potential northeast neighbor of block e since
block h shares the northeast corner of block e and its
size is I x 1. By Lemma 3, the binary search method is
used to find the bincode which covers q and shares the
northeast corner of p. If the bincode exists, the north-
east neighbor ofp is found. Otherwise, p does not have
the northeast neighbor bincode.

As shown in Fig. 2(b), the subimage represented by
block h can be defined as the potential northeast neigh-
bor of block e. Blocks h and c cover this subimage, h
is connected by the northeast corner of e but c is not,
so h is the northeast neighbor of e but c is not.

For detailed description, we take an example of
Fig. 9 to demonstrate our concept. As shown in Fig.
9(b), the bincodes of Fig. 9(a) are represented by (B(1),
B(2), B(3), B(4), B(5), B(6))=(87, 93, 117, 124, 212,
221), the associated (column_index, row_index)'s are
(i(1), i(2), i(3), i(4), i(5),/(6)) = (0, 1, 0, 1, 2, 3) and (j(1),
j(2),j(3),j(4),j(5),j(6)) = (1, 0, 2, 2, 0, 0), respectively,
and the associated levels are (1(1), 1(2), l(3), l(4), 1(5),
/(6)) = (4, 4, 4, 3, 3, 4). The bincodes' rightmost cover-
ages are (Z(1), Z(2), Z(3), Z(4), Z(5), Z(6)) = (87, 93,
117, 127, 215, 221), by Lemma 3, it takes O(1) time to
compute the rightmost coverage for each bincode.

Next, for bincode B(k), which is at location (i(k),j(k))
and at level l(k), the potential northeast neighbor of the
bincode B(k) can be defined at location (i*(k),j*(k)) and
at level 2N, where i*(k)= i (k)+2 N-t '~l and j*(k)=

j(k) + 2 N-f'~l. For example, the first bincode 87 is at
location (0, 1) and at level 4. The potential northeast
neighbor of bincode 87 can be defined at location (1, 2)
and at level 4 since i*(1) = i(1) + 2 N-tt~ I = 0 + 1 = 1,

j*(1) + 2 N-f~-~ 1 = 1 + 1 = 2, and 2N = 4. It takes O(1)
time for computing the new column_index and the
new row_index for each bincode. The new column_
indexes of the potential northeast neighbors of Fig. 9(a)
are specified by (i*(1), i*(2), i*(3), i*(4), i*(5), i*(6))=
(1, 2, 1, 2, 3, 4) and the new row_indexes of the
potential northeast neighbors of Fig. 9(a) are specified
by (j*(1),j*(2),j*(3),j*(4),j*(5),j*(6)) = (2, 1, 3, 4, 2,
1).

Based on the parameters of (i*(k), j*(k)) and 2N, the
potential northeast neighbor of bincode B(k), denoted
by B*(k), can be calculated by O(1) time by using the
bincode conversion scheme. The potential northeast
neighbors are written as (B*(1), B*(2), B*(3), B*(4),
B*(5), B*(6)) = (125, 215, 127, - , 252, -) . Finally,
the binary search algorithm is used. By the same argu-
ments described in Section 4.1, the northeast neighbor
of each bincode can be found in O(log n) time. The
northeast neighbors of (B(1), B(2), B(3), B(4), B(5),
B(6)) are represented by (Ne(1), S~(2), Se(3), Ne(4),
Se(5), Se(6)) = (124 ~. As shown in
Fig. 9(b), the first bincode 87 has a northeast neighbor
124.

The northeast neighbor finding algorithm is shown
in Fig. 10. Extending this algorithm directly, we have
the following result.

Theorem 9. For all bincodes, the diagonal neighbors
finding algorithm can be done in O(n log n) time with
O(n) memory space.

Fast operations on binary images 419

Algori thm : Northeast neighbors finding

Input: Bincodes (B(1), B(2),. . . , B(n)) and the associated locations and levels.
Output: The northeast neighbors (N~(1), N~(2), ..., N,(n)) .

Step_l. * Calculate the rightmost coverage and the potential east
neighbor for each bincode. *\

* Z(k) denotes the rightmost coverage of the k-th bincode and
B*(k) denotes the potential northeast neighbor of the
k- th bincode. , \

F o r k ~ l t o n d o
Z(k) +-- B(k) + (4 2N-l(k) - 1);

i*(k) *-- i(k)+ T ' - -Z-'l; j ' (k) ~ j (k)+ 2 N - L ~ l

If 0 < i*(k) and i*(k) _< 2 N - 1 and 0 < j*(k) and j*(k) <_ 2 N - 1
then

~ N - I ~ .* 24r+1) B*(k) ~-- ~N__~I(i* × 2 4r+3) + Lr= 0 Ur ×
2N-1 22r) + Y'r=o (1×

\ , i*(k) = (i~_1i~_2 i V ; h and

j*(k) = (J~v-aJ~v-2 J;J~)2. *\
else

B*(k) ~- - 1
end

Step_2. * Find the northeast neighbor for each bincode. *\
F o r k ~ - l t o n d o

N,(k) ~ - 1
end
F o r k * - - l t o n - l d o

If B*(k) # - 1
then * binary search algorithm is used to find

the northeast neighbor. , \
a ~ k + l ; b o - - n
While N~(k) = - 1 and a _< b do

k'~ t~@J
If B*(k) >_ B(k ') and B*(k) <_ Z(k ')
then

If i(k') : i*(k) and j (k ') = j*(h) then N¢(k) ~ B(k ')
else a ~ b + 1

else
If B*(k) < B(k ') then b ~ k' - 1

else a ,--- k' + 1
end

end

Fig. 10. The northeast neighbors finding algorithm.

5. CONCLUSIONS

Space minimization is an important consideration
in image representation. According to the studies, ~9' l o)
the IBB (bintree) is shown to be space utilization
improvement from 0 to 25~o over the linear quadtrees
encoding method. Therefore, the IBB can be viewed as
a competitive encoding structure. In this paper, some
fast sequential algorithms for set operations, 4-neigh-
bors finding, and diagonal neighbors finding of the
IBB are presented. These algorithms are designed by
using some important properties of bincodes, namely
the increasing property and the covering property.
More complicated image manipulations such as pattern
matching on IBB's are our future research topics.

Acknowledgments--The authors would like to thank the re-
viewers for their valuable comments and thank Mr Yu-Wei
Chen for his help for testing all the algorithms of this paper.

REFERENCES

1. H. Samet, Applications of Spatial Data Structures. Addison
Wesley, New York (1990).

2. G. M. Hunter and K. Steiglitz, Operations on images
using quad trees, IEEE Trans. on Pattern Analysis and
Machine Intelligence 1(2), 145-153 (1979).

3. H. Samet and M. Tamminen, Computing geometric pro-
perties of images represented by linear quadtrees, IEEE
Trans. on Pattern Analysis and Machine Intelligence 7,
229-240 (1985).

4. G. Schrack, Finding neighbors of equal size in linear

420 C.-Y. HUANG and K.-L CHUNG

quadtrees and octrees in constant time, CFGIP: Image
Understanding 55(3), 221-230 (1992).

5. M. Tamminen, Comment on Quad- and Octrees', Commu.
ACM 27(3), 248-249 (1984).

6. C. Dyer, The space efficiency ofquadtrees, Comput. Gra-
phics Image Process 19(4), 335-348 (1982).

7. I. Gargantini, An effective way to represent quadtrees,
Comm. of ACM 25(12), 905-910 (1982).

8. H. Samet, The quadtree and related hierarchical data
structures, Computing Survey 16(2), 187-260 (1984).

9. M. A. Ouksel and A. Yaagoub, The interpolation-based

bintree and encoding of binary images, C VGIP: Graphical
Models and Image Processing 54(1), 75-81 (1992).

10. C. A. Shaffer, R. Juvvadi and L. S. Health, Generalized
comparison of quadtree and bintree storage requirements,
Image and Vision Computing 11(7), 402-412 (1993).

11. K. Knowlton, Progressive transmission of gray-scale and
binary pictures by simple, efficient and lossless encoding
schemes, Proc. IEEE 68, 885-896 (1990).

12. G. Brassard and P. Bratley, Algorithmics: Theory and
Practice, Prentice-Hall, Englewood Cliffs, New Jersey
(1988).

About the Autbor -CHI-YEN HUANG received the B.S. degree in industrial engineering from Chung Yuan
Christian University and the M.S. degree in industrial management from the National Taiwan Institute of
Technology. He now is a Ph.D. candidate in the Department of Information Management of the National
Taiwan Institute of Technology. His current research interests include computer vision and parallel
processing. He is a student member of the IEEE Computer Society.

About the Author--KUO-LIANG CHUNG received the B.S., M.S. and Ph.D. degrees in computer science
and information engineering from National Taiwan University. He now is an Associate Professor in the
Department of Information Management of the National Taiwan Institute of Technology. His current
research interests include parallel and distributed computing, image and vision processing, matrix computa-
tions and computer graphics. He obtained the 1990 Outstanding Paper Award from the Computer Society
of the Republic of China and the 1992 Outstanding Research Award from the National Science Council of
the Republic of China. Dr Chung is a member of the IEEE Computer Society and the SIAM Society.

