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Abstract

Based on the recently published point symmetry distance (PSD) measure, this paper presents a novel PSD measure, namely symmetry
similarity level (SSL) operator for K-means algorithm. Our proposed modified point symmetry-based K-means (MPSK) algorithm is
more robust than the previous PSK algorithm by Su and Chou. Not only the proposed MPSK algorithm is suitable for the symmetrical
intra-clusters as the PSK algorithm does, the proposed MPSK algorithm is also suitable for the symmetrical inter-clusters. In addition,
two speedup strategies are presented to reduce the time required in the proposed MPSK algorithm. Experimental results demonstrate
the significant execution-time improvement and the extension to the symmetrical inter-clusters of the proposed MPSK algorithm when
compared to the previous PSK algorithm.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Clustering plays an important role in data analysis and
pattern classification. It has many applications in codebook
design [1,2], data compression [3], data mining [4], image
segmentation [5], and so on. Clustering aims to partition
a set of data points into some nonoverlapping subsets [6].
In the past three decades, many efficient clustering algo-
rithms [1,7–15] have been developed. Among these devel-
oped clustering algorithms, the K-means algorithm is the
oldest and the most popular one due to its simplicity and
effectiveness.

In order to improve the performance of the K-means al-
gorithm, several improved K-means algorithms have been
developed in the past several years. In Ref. [1], instead of
initially assigning each point to the closest center, Kövesi
et al. presented a stochastic K-means algorithm to improve
the clustering result. Based on the kd-tree data structure
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[16], Kanungo et al. [11] presented an improved K-means
algorithm which can speed up the time performance while
preserving the same clustering result as in the K-means al-
gorithm. Based on code vector activity detection approach,
Kaukoranta et al. [17] presented a faster K-means algorithm,
which can be used to speed up the codebook construction
by using the generalized Lloyd algorithm, and has the same
clustering result as in the K-means algorithm. Considering
the distribution of points for the case of symmetrical inter-
clusters, Su and Chou [14] adopted the idea of symmetry
feature [18–21] and presented an efficient point symmetry-
based K-means (PSK) algorithm based on their proposed
point symmetry distance (PSD) measure. Simulation re-
sults show that their proposed PSK algorithm has a better
clustering result when compared to the K-means algorithm
for symmetrical intra-cluster case. The motivation of this
research are twofold: (1) presenting speedup strategies to re-
duce the execution time required in the previous PSK algo-
rithm significantly and (2) presenting a new symmetry sim-
ilarity level (SSL) operator to handle both the intra-cluster
case and the inter-cluster case.

This paper first surveys the previous PSD measure [14]
and explains why the PSD measure cannot handle the case
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of symmetrical inter-clusters well. Next, a novel SSL oper-
ator is presented to calculate the symmetry level between
the data point pi and the data point pj relative to the clus-
ter centroid ck . When compared to the previous PSD mea-
sure, the proposed SSL operator not only can measure the
orientation symmetry between pi and pj with respect to ck

as in the PSD measure, but also can measure the distance
symmetry between the line segment pick and the line seg-
ment ckpj . In addition, a simple constraint is suggested to
enhance in the proposed SSL operator to handle both the
case of symmetrical intra-clusters and the case of symmet-
rical inter-clusters. Further, two speedup strategies are pre-
sented to reduce the computation time required in the pro-
posed modified PSK (MPSK) algorithm. In order to speed up
the computation of the proposed SSL operator, a two-phase
speedup strategy is presented. Since the proposed MPSK
clustering algorithm includes the coarse-tuning step, which
is realized by the K-means algorithm, a speedup strategy is
also presented to improve the code vector activity detection
approach [17] such that the coarse-tuning step can be per-
formed in a faster way. Experimental results demonstrate the
significant execution-time improvement and the extension
to the symmetrical inter-clusters of the proposed MPSK al-
gorithm when compared to the previous PSK algorithm by
Su and Chou.

The remainder of this paper is organized as follows: In
Section 2, the previous PSD measure is surveyed. In ad-
dition, one example is given to demonstrate the clustering
power of the previous PSD measure for the case of symmet-
rical intra-clusters. In Section 3, the related problems that
the PSD measure may occur are pointed out. In Section 4,
the proposed SSL operator and the two-phase speedup strat-
egy are presented. In Section 5, the proposed whole MPSK
clustering algorithm is presented. In addition, a speedup
strategy is described to speed up the coarse-tuning step in
the MPSK algorithm. In Section 6, some experimental re-
sults are demonstrated to show the computational and robust
advantages of the proposed MPSK clustering algorithm. In
Section 7, some concluding remarks are addressed.

2. The past PSD measure

In this section, first the PSD measure by Su and Chou
[14] is surveyed. Next, an example of symmetrical intra-
clusters demonstrates the excellent applicability of the PSD
measure.

In natural scenes, symmetry is an important feature
[21,22]. Since the K-means algorithm cannot handle the
case of intra-clusters well, recently, Su and Chou [14]
presents a PSD measure and plugs it into the K-means
algorithm to handle the case of intra-clusters efficiently.

Given N data points, say {pi | for1� i�N}, using the K-
means algorithm, let the temporary obtained K cluster cen-
troids be denoted by {ck | for1�k�K}. The PSD measure
between the data point pi and the data point pj relative to

the cluster centroid ck is defined as

ds(pj , ck) = min
∀i �=j and 1� i �N

‖(pj−ck)+(pi−ck)‖
‖pj−ck‖+‖pi−ck‖ , (1)

where ‖ · ‖ denotes the 2-norm distance.
An example is used to demonstrate how the PSD mea-

sure works well for the case of symmetrical intra-clusters.
Fig. 1(a) illustrates two symmetrical intra-clusters, C1 and
C2, where the data points are denoted by black dots and c1
and c2 are two centroids of the cluster C1 and the cluster C2,
respectively. The positions of c1 and c2 are c1 = (5, 8) and
c2 = (9.5, 8). p1, p2, and p3 are three data points and their
positions are p1 = (8, 7), p2 = (2, 9), and p3 = (12.5, 9.5),
respectively. After running the K-means algorithm in
Fig. 1(a), the data point p1 in Fig. 1(a) would be assigned
to the cluster C2 because the data point p1 is closer to c2
than c1. Fig. 1(b) shows the unsatisfactory clustering result
by running the K-means algorithm in Fig. 1(a). In Fig. 1(b),
the first unsatisfactory clustering result C1 is denoted by
squares and the second unsatisfactory clustering result C2
is denoted by triangles. According to the visual inspection,
the data point p1 should be assigned to the cluster C1 due
to the symmetrical distribution of data points in C1. The ef-
ficient PSD measure proposed by Su and Chou can indeed
handle the case of symmetrical intra-clusters. By Eq. (1),
for the data point p1, it yields

ds(p1, c1) = ‖(p1 − c1) + (p2 − c1)‖
‖(p1 − c1)‖ + ‖(p2 − c1)‖

= 0√
10 + √

10
= 0

and

ds(p1, c2) = ‖(p1 − c2) + (p3 − c2)‖
‖(p1 − c2)‖ + ‖(p3 − c2)‖

=
√

2.5√
3.25 + √

11.25
= 0.31.

Because ds(p1, c1) < ds(p1, c2) and ds(p1, c1) is less than
the specified threshold �, e.g. � = 0.18 [14], the data point
p2 is said to be the most symmetrical point of p1 relative to
c1, thus we have

p2 = Arg ds(p1, c1).

Consequently, assigning the data point p1 to the cluster C1 is
a good decision. Fig. 1(c) depicts two satisfactory resulting
clusters when applying the PSD measure to Fig. 1(a).

3. Possible problems occurred in the PSD measure

In this section, three observations are given to point out the
three problems that the PSD measure may occur. The three
possible problems existed in the PSD measure are (1) lacking
the distance difference symmetry property, (2) leading to an
unsatisfactory clustering result for the case of symmetrical
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Fig. 1. An example to show the power of PSD measure for the case of intra-clusters. (a) Two symmetrical intra-clusters, C1 and C2; (b) two unsatisfactory
resulting clusters after running the K-means algorithm in (a); (c) two satisfactory resulting clusters when applying the PSD measure to (a).

Fig. 2. An example for indicating the distance difference symmetry
problem.

inter-clusters, and (3) lacking the closure property. The first
and third properties will degrade the symmetrical robustness
of PSD measure.

An example is given to illustrate the first possible prob-
lem. In Fig. 2, there are four data points, namely the cen-
troid ck and the three data points pi , pj , and pj+1 at loca-
tions ck = (0, 0), pi = (−di, 0), pj = (di − l, 0), and pj+1 =
(di + l, 0), respectively. It is known that the unit vectors of−−→pick , −−→ckpj , and −−−−→ckpj+1, i.e. −−→pick/‖−−→pick‖ = −−→ckpj /‖−−→ckpj‖
= −−−−→ckpj+1/‖−−−−→ckpj+1‖, are equivalent and the two related dis-
tance differences ‖pick − ckpj‖ (=l) and ‖pick − ckpj+1‖

(=l) are equivalent too. In Fig. 2, the most symmetrical
point of pi relative to the centroid ck is the data point pj or
the data point pj+1. By Eq. (1), we have

ds(pi, ck) = min

{ ‖(pi − ck) + (pj − ck)‖
‖(pi − ck)‖ + ‖(pj − ck)‖ ,

‖(pi − ck) + (pj+1 − ck)‖
‖(pi − ck)‖ + ‖(pj+1 − ck)‖

}

= min

{
l

2di − l
,

l

2di + l

}
= l

2di + l
,

so the data point pj+1 is selected as the most symmetrical
point of pi relative to the centroid ck . This indicates that
the PSD measure favors the far data point when we have
more than two candidate data points and this may degrade
the symmetrical robustness. The first observation is given to
indicate the first problem.
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Fig. 3. An example of symmetrical intra/inter clusters.

Observation 1. The PSD measure may lack the distance
difference symmetry property, and it may degrade the sym-
metrical robustness.

Next, a case of symmetrical inter-clusters is considered to
explain why the PSD measure may generate an unsatisfac-
tory clustering results. In Fig. 3, we have three symmetrical
intra-clusters C1, C2 and C3 where for each symmetrical
intra-cluster, each data point relative to its own centroid ck

can find the most symmetrical data point in that cluster. In
Fig. 3, C1 and C3 are two symmetrical inter-clusters because
each data point belonging to C1 (C3) can find the most sym-
metrical data point belonging to C3 (C1) with respect to the
centroid c2.

In Fig. 3, there are 19 data points and the centroid of first
cluster C1 is c1; the centroid of second cluster C2 is c2, and
the centroid of third cluster C3 is c3. Let p1 = (−10, 4),
p2 =(−14, 1), p3 =(−14, 4), p4 =(10, −5), p5 =(14, −9),
c1 = (−12, 2), c2 = (0, 0), and c3 = (12, −7), then for the
data point p4, by Eq. (1), we have

ds(p4, c1) = min
1� i �16,i �=4

‖(p4 − c1) + (pi − c1)‖
‖p4 − c1‖ + ‖pi − c1‖

= ‖(p4 − c1) + (p3 − c1)‖
‖(p4 − c1)‖ + ‖(p3 − c1)‖

=
√

425√
533 + √

8
= 0.80,

ds(p4, c2) = min
1� i �16,i �=4

‖(p4 − c2) + (pi − c2)‖
‖p4 − c2‖ + ‖pi − c2‖

= ‖(p4 − c2) + (p1 − c2)‖
‖(p4 − c2)‖ + ‖(p1 − c2)‖

= 1√
125 + √

116
= 0.05

and

ds(p4, c3) = min
1� i �16,i �=4

‖(p4 − c3) + (pi − c3)‖
‖p4 − c3‖ + ‖pi − c3‖

= ‖(p4 − c3) + (p5 − c3)‖
‖(p4 − c3)‖ + ‖(p5 − c3)‖ = 0√

8 + √
8

= 0.

From the above three PSD values, for the data point p4, we
have ds(p4, c1) = 0.8, ds(p4, c2) = 0.05, and ds(p4, c3) = 0
corresponding to the centroids c1, c2, and c3, respectively.
Since ds(p4, c3) is the smallest, which is less than the spec-
ified threshold � (=0.18), among the three PSD values, the
data point p4 is thus assigned to the cluster C3 and it matches
our visual inspection. The above example for the data point
p4 really reflects the power of the PSD proposed by Su and
Chou [14] when handling the case of symmetrical intra-
clusters.

We now consider the data point p1, by Eq. (1), it yields

ds(p1, c1) = min
1� i �16,i �=1

‖(p1 − c1) + (pi − c1)‖
‖p1 − c1‖ + ‖pi − c1‖

= ‖(p1 − c1) + (p2 − c1)‖
‖(p1 − c1)‖ + ‖(p2 − c1)‖

= 1√
8 + √

5
= 0.20,

ds(p1, c2) = min
1� i �16,i �=1

‖(p1 − c2) + (pi − c2)‖
‖p1 − c2‖ + ‖pi − c2‖

= ‖(p1 − c2) + (p4 − c2)‖
‖(p1 − c2)‖ + ‖(p4 − c2)‖

= 1√
116 + √

125
= 0.05

and

ds(p1, c3) = min
1� i �16,i �=1

‖(p1 − c3) + (pi − c3)‖
‖p1 − c3‖ + ‖pi − c3‖

= ‖(p1 − c3) + (p5 − c3)‖
‖(p1 − c3)‖ + ‖(p5 − c3)‖

=
√

481√
605 + √

8
= 0.80.

From the above three PSD values, since ds(p1, c2) (=0.05)

is the smallest, which is less than the specified threshold
� (=0.18), among the three concerning PSD values, the
data point p1 should be assigned to the cluster C2, but it
conflicts our visual inspection. From the data distribution of
C1, instead of assigning p1 to C2, it will be better to assign
the data point p1 to the cluster C1. We thus have the second
observation.

Observation 2. The PSD measure may lead to an unsatis-
factory clustering result for the case of symmetrical inter-
clusters.

Before presenting the third problem, the closure property
is defined as follows.
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Fig. 4. An illustration for distance difference.

Property 1 (Closure property). If the data point pi is cur-
rently assigned to the cluster centroid ck in the current iter-
ation, the determined most symmetrical point pj relative to
ck must have been assigned to ck in the previous iteration.

Based on the above example, the PSD measure tells us
that the data point p1 is currently assigned to the cluster
centroid c2 and the most symmetrical point of p1 relative to
the centroid c2 is the data point p4 (=Arg ds(p1, c2)), but the
data point p4 has been assigned to the centroid c3. Since the
data point p4 has not been assigned to the centroid c2 before,
it violates Property 1. We thus have the third observation.

Observation 3. The PSD measure lacks the closure
property.

The PSD measure proposed by Su and Chou [14] is re-
ally a simple and efficient clustering algorithm for the case
of symmetrical intra-clusters. However, the above three ob-
servations indicate that the PSD measure may degrade the
symmetrical robustness, and may lead to unsatisfactory clus-
tering results for the case of symmetrical inter-clusters.

4. The proposed SSL operator

In this section, a new SSL operator is presented to over-
come the three possible problems occurred in the PSD mea-
sure. In addition, a two-phase speedup strategy is presented
to reduce the computation load required in the proposed SSL
operator.

4.1. Distance similarity level and orientation similarity
level: DSL and OSL

From Observation 1, a new operator, which satisfies
the distance difference symmetry property, is now defined
and it is one component in the proposed SSL operator. In
Fig. 4, ck denotes the cluster centroid; pi and pj denote
two related data points. Let di = pick and dj = pjck , then
the distance similarity level (DSL) operator for measuring
the distance difference symmetry between the distance pick

and the distance pjck is defined by

DSL(pi, ck, pj ) =
⎧⎨
⎩

1 − |di − dj |
di

if 0� dj

di

�2,

0 otherwise.
(2)

Note that if we replace the interval 0�dj /di �2 to the inter-
val 0�dj /di �k, k > 2, in Eq. (2), the number of examined
symmetrical points will increase and the computational gain
might be degraded.

Proposition 1. It is true that 0�DSL(pi, ck, pj )�1.

Proof. It is enough to consider three extremal cases for
dj /di = 0, dj /di = 2 and dj /di = 1. When dj /di = 0, by
Eq. (2), we have

DSL(pi, ck, pj ) = 1 − |di − dj |
di

= 1 − |di − 0|
di

= 0.

When dj /di = 2, by Eq. (2), we have

DSL(pi, ck, pj ) = 1 − |di − dj |
di

= 1 − |di − 2 × di |
di

= 1 − 1

= 0.

When dj /di = 1, by Eq. (2), we have

DSL(pi, ck, pj ) = 1 − |di − dj |
di

= 1 − |di − di |
di

= 1 − 0

= 1.

We complete the proof. �

After proving 0�DSL(pi, ck, pj )�1, from Eq. (2), it is
clear that the larger the value of DSL(pi, ck, pj ) is, the larger
the DSL between di (=pick) and dj (=pjck) is. When
di = dj , we have DSL(pi, ck, pj ) = 1 and it means that the
distance puck and the distance pjck has the highest DSL.

When pick = di = 1.8 and pjck = dj = 2, we have
DSL(pi, ck, pj ) = 1 − 0.2

1.8 = 0.89 and it indicates that the
DSL between di and dj is rather large. The following theo-
rem confirms that the proposed DSL operator can preserve
the distance difference symmetry property.

Theorem 1. For n= 1, the DSL operator defined in Eq. (2)
preserves the distance difference symmetry property.

Proof. As shown in Fig. 2, it is known that di = pick , dj =
pjck (=di − l) and dj+1 =ckpj+1 (=di + l), then for n=1,
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Eq. (2) yields

DSL(pi, ck, pj ) = 1 − |di − dj |
di

= 1 − |di − (di − l)|
di

= 1 − l

di

.

By the same arguments, we further have

DSL(pi, ck, pj+1) = 1 − |di − dj+1|
di

= 1 − |di − (di + l)|
di

= 1 − l

di

.

Because of DSL(pi, ck, pj ) = DSL(pi, ck, pj+1), the pro-
posed DSL operator preserves the distance difference
symmetry property. We complete the proof. �

Corollary 1. For general n, the DSL operator defined in Eq.
(2) preserves the distance difference symmetry property.

Besides the DSL operator, we further present the second
component used in the proposed SSL operator, say orienta-
tion similarity level (OSL). Applying the projection concept
[23], the OSL between the two vectors, vi =−−→pick =(ck −pi)

and vj =−−→ckpj = (pj − ck), is defined by OSL′(pi, ck, pj )=
vi · vj /‖vi‖‖vj‖, −1�OSL′(pi, ck, pj )�1. The larger the
value OSL′(pi, ck, pj ) is, the larger the OSL is. For exam-
ple, given pi = (−1, 0), pj = (2, 0) and ck = (0, 0), we
have OSL′ = 2

2 = 1 and it indicates that the two vectors−−→pjck and −−→ckpj have the same orientation. In order to con-
fine the range of OSL′(pi, ck, pj ) from 0 to 1, the operator
OSL′(pi, ck, pj ) is modified to be

OSL(pi, ck, pj ) = vi · vj

2‖vi‖‖vj‖ + 0.5. (3)

It is known that −1�vi · vj /‖vi‖‖vj‖�1, from Eq. (3),
we have the following result.

Proposition 2. It is true that 0�OSL(pi, ck, pj )�1.

4.2. Symmetry similarity level: SSL

By Eqs. (2) and (3), we now combine the effect of
DSL(pi, ck, pj ) and the OSL(pi, ck, pj ) to define a sym-
metry similarity level (SSL′) between the vector −−→pick and−−→ckpj and it is defined by

SSL′(pi, ck, pj ) =
√

DSL2(pi, ck, pj ) + OSL2(pi, ck, pj )

2
(4)

for 1�k�K and 1� i�N . Because of 0�DSL(pi, ck, pj )

�1 and 0�OSL(pi, ck, pj )�1, it is easy to verify that

Fig. 5. Violation of closure property for SSL′′(pi , ck).

0�SSL′(pi, ck, pj )�1 is held. The larger the value
SSL′(pi, ck) is, the larger the SSL is. For the data point
pi with respect to the cluster centroid ck , the operator
SSL′′(pi, ck) (=max1� j �N SSL′(pi, ck, pj )) is used to
find the most symmetrical data point pj relative to ck such
that the value of SSL′(pi, ck, pj ) is maximal among all the
concerning data points. Naturally, the operator SSL(pi, ck)

is written by

SSL′′(pi, ck)

= max
1� j �N

SSL′(pi, ck, pj )

= max
1� j �N

√
DSL2(pi, ck, pj ) + OSL2(pi, ck, pj )

2
. (5)

Although the SSL′′(pi, ck) operator defined in Eq. (4) sat-
isfies the distance symmetry property, the SSL′′(pi, ck) still
lacks the closure property (see Property 1). For example,
in Fig. 5, suppose we have p1 = (−10, 0), p2 = (−9, −4),
p3 = (10, 0), p4 = (2, 0), c1 = (−10, −2), c2 = (0, 0), and
c3 = (8, 0). In addition, suppose p3 belongs to C3 and p2
belongs to C1. For the data point p1 relative to centroid c1,
by Eq. (5), it yields

SSL′′(p1, c1)

= max
1� j �4,j �=1

√
DSL2(p1, c1, pj ) + OSL2(p1, c1, pj )

2

=
√

DSL2(p1, c1, p2) + OSL2(p1, c1, p2))

2

=
√

0.77 + 0.9

2
= 0.91

and we have p2 = Arg SSL′′(p1, c1). For the data point p1
relative to centroid c2, Eq. (5) yields

SSL′′(p1, c2)

= max
1� j �4,j �=1

√
DSL2(p1, c2, pj ) + OSL2(p1, c2, pj )

2

=
√

DSL2(p1, c2, p3) + OSL2(p1, c2, p3))

2

=
√

1 + 1

2
= 1
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Fig. 6. An observation for cluster with closure property: (a) An incom-
plete symmetrical intra-cluster; (b) reconstructed complete symmetrical
intra-cluster.

and we have p3 = Arg SSL′′(p1, c2). For the data point p1
relative to centroid c3, Eq. (5) yields

SSL′′(p1, c3)

= max
1� j �4,j �=1

√
DSL2(p1, c3, pj ) + OSL2(p1, c3, pj )

2

=
√

DSL2(p1, c3, p3) + OSL2(p1, c3, p3))

2

=
√

0.01 + 1

2
= 0.71

and we have p3=Arg SSL′′(p1, c2). Because of SSL′′(p1, c2)

> SSL′′(p1, c1) > SSL′′(p1, c3), the data point p1 would be
assigned to the cluster C2. Unfortunately, the data point
p3 (=Arg SSL′′(p1, c2)) ∈ C3, which is the most symmet-
rical point of p1 relative to c2, does not belong to C2 orig-
inally. Assigning p1 to C2 makes the movement of the c2
some large. It indicates that the above SSL′′ operator lacks
the closure property and it would result in an unsatisfactory
clustering result. In next subsection, the SSL′′ operator in Eq.
(5) is modified to be the proposed SSL operator satisfying
the closure property.

4.3. A constraint for closure property

Our main idea is based on the observation in Fig. 6.
Fig. 6(a) illustrates an incomplete symmetrical intra-cluster.
According to the symmetry property, the data point pi in
Fig. 6(b), which is not in the cluster C1 originally, the most

symmetrical data point of pi relative to the centroid c1 is
the data point pj . Thus we assign the data point pi to the
centroid c1. Since the data point pj belongs to the cluster
C1, the assignment of pi to the cluster C1 is a reasonable as-
signment from our visual system. Therefore, for the testing
data point pi , we restrict the candidate symmetrical points
pj that must belong to the cluster centroid c1 when comput-
ing SSL(pi, c1). For the data point pi relative the centroid
c1, this restriction can help us to search more suitable sym-
metrical point pj and it leads to a computation-saving effect
because we ignore the candidate most symmetrical point pj

which is not in the cluster C1.
Following the above restriction and the operator

SSL′′(pi, ck) in Eq. (5), the SSL with closure property for
the data point pi relative to the centroid ck can be modified
as

SSL(pi, ck)

= max
pj �Ck

√
DSL2(pi, ck, pj ) + OSL2(pi, ck, pj )

2
(6)

for 1�k�K and 1� i�N . Using the proposed SSL oper-
ator in Eq. (6) for the data point p1, Fig. 5 yields

SSL(p1, c1) =
√

DSL2(p1, c1, p2) + OSL2(p1, c1, p2))

2

=
√

0.77 + 0.9

2
= 0.91,

SSL(p1, c2) =
√

DSL2(p1, c2, p4) + OSL2(p1, c2, p4))

2

=
√

0.04 + 1

2
= 0.72

and

SSL(p1, c3) =
√

DSL2(p1, c3, p4) + OSL2(p1, c2, p3))

2

=
√

0.01 + 1

2
= 0.71.

Because of SSL(p1, c1) > SSL(p1, c2) > SSL(p1, c3) and the
most symmetrical point p2 (=Arg SSL(p1, c1)) have been
assigned to C1, the data point p1 would be assigned to the
cluster C1. This clustering result meets our visual inspection.

4.4. Two-phase approach to speed up the computation of
SSL

After presenting the proposed SSL operator to measure
the SSL, it is known that the proposed SSL operator has
some good properties such as the closure property and the
robustness property. Checking Eq. (6) again, since the SSL
operator contains two components, i.e. the DSL operator and
the OSL operator, two thresholds, namely � and �, must be
specified to speed up the computation of the proposed SSL
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operator. The main idea of the first speedup strategy is that if
the candidate symmetrical data point violates the threshold �
or the threshold �, the candidate symmetrical data point can
be discarded in the early stage; otherwise, Eq. (6) is com-
puted further. On the other hand, if the calculated value of
DSL(pi, ck, pj ) is less than the threshold � or the calculated
value of OSL(pi, ck, pj ) is less than the threshold �, we do
not need to compute Eq. (6) further, i.e. the computations
of one squared root operation, one addition, one division,
and one maximal selection can be discarded. Plugging the
above speedup strategy into the whole clustering algorithm
can lead to a significant computation-saving effect.

Now the threshold � is defined. Let us return to Fig. 4
again. Suppose we confine the tolerance rate of the distance
difference to be less than 40% between the two line segments
di and dj , i.e. |di − dj |/di �0.4, and confine the tolerance
rate of the angle orientation to be less than 20◦ between the
two vectors v1 (=ck −pi) and v2 (=pj − ck). According to
the definition of DSL(pi, ck, pj ) (see Eq. (2)), the threshold
� can be defined by

� = 1 − |di − dj |
di

= 1 − 0.4

= 0.6.

According to the definition of OSL(pi, ck, pj ) (see Eq. (3)),
the threshold � can be defined by

� = vi · vj

2‖vi‖‖vj‖ + 0.5

= ‖vi‖‖vj‖ cos �

2‖vi‖‖vj‖ + 0.5

= cos �

2
+ 0.5

= cos 20◦

2
+ 0.5

= 0.94

2
+ 0.5

= 0.97.

For this case, in the first phase, if the calculated value
of DSL(pi, ck, pj ) is less than the threshold � (=0.6) or
the calculated value of OSL(pi, ck, pj ) is less than the
threshold � (=0.97), the computation of the final value for
SSL(pi, ck, pj ) can be discarded in the second phase.

5. The proposed MPSK algorithm

Based on the proposed two-phase SSL operator described
in Section 4, this section presents the proposed MPSK
algorithm. Besides being suitable for the symmetrical

intra-clusters as the PSK algorithm [14] does, the pro-
posed MPSK algorithm is also suitable for the symmetrical
inter-clusters.

5.1. The proposed MPSK algorithm

The proposed five-step MPSK algorithm is listed below.
Specifically, in order to speed up the coarse-tuning step
in the MPSK algorithm, a modified version of the code
vector activity detection approach [17] is presented in next
subsection. The complete MPSK algorithm is presented as
follows.

Step 1: (Initialization). Give N data points, we choose K
data points randomly as the initial cluster centroids.

Step 2: (Coarse-tuning). Apply the K-means algorithm to
update the selected K cluster centroids until the K cluster
centroids are converged to fixed points or the terminating
criteria is satisfied.

Step 3: (Fine-tuning).
Step 3.1: (Pruning impossible candidate symmetrical

data points). For each data point pi , find out the set Sbik

of all possible candidate symmetrical data points pj ’s rel-
ative to each ck such that DSL(pi, ck, pj )�� ( = 0.6) and
OSL(pi, ck, pj )�� ( = 0.97) are held, 1� i, j �N and
1�k�K , where pj belongs to the kth cluster already.

Step 3.2: (Searching the most symmetrical data points).
For the data point pi , find out the cluster centroid ck∗ such
that the value of SSL(pi, ck∗) is the largest and the most
symmetrical point pj relative to ck∗ belongs to Sbik∗ . If
such a cluster centroid ck∗ does not exist, then the data point
pi would be assigned to the k∗∗th cluster with the shortest
Euclidean distance; otherwise the data point pi is assigned
to the k∗th cluster.

Step 4: (Updating the cluster centers). After assigning
these data points pi’s to the corresponding clusters, the cen-
troids of these corresponding clusters are updated by

cnew
k = 1

|Ck|
∑

pi∈Ck

pi ,

where Ck is the set containing the data points which have
been assigned to the cluster centroid ck and |Ck| is the num-
ber of data points in Ck .

Step 5: (Continuation or termination). If all the centroids
are converged to some fixed points or the number of itera-
tions is larger than the allowable bound, stop the algorithm;
otherwise go to Step 3.

Besides the two-phase speedup strategy in Step 3.1, in
next subsection, a modified version of the code activity de-
tection approach [17] is presented to speed up the computa-
tion of Step 2, i.e. the coarse-tuning step.

5.2. The speedup strategy for coarse-tuning step

According to the activity of the centroids investigated by
Kaukoranta et al. [17], the centroids in each iteration are
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classified into two types—active centroid and static cen-
troid. When one current centroid in iteration i is different
from the previous centroid in iteration i − 1, the current
centroid is called an active centroid; otherwise, the centroid
is called a static centroid. The data points relative to its own
current centroid is classified into four types—static data
point, balanced data point, farther data point, and closer
data point. The formal definitions of the four types are given
below.

Definition 1 (Static data point). When the current centroid
is static, the data point belonging to that centroid is called a
static data point.

Definition 2 (Balanced data point). Let the distance be-
tween the data point and its own current centroid be denoted
by dc and let the distance between the data point and its own
previous centroid be denoted by dp, then the data point is
called a static data point when its own current centroid is
active and dc = dp is held.

Definition 3 (Farther data point). The data point is called
a farther data point when its own current centroid is active
and dc > dp is held.

Definition 4 (Closer data point). The data point is called a
closer data point when its own current centroid is active and
dc < dp is held.

If the data point belonging to the centroid ck∗ is static
or balanced, it is unnecessary to consider the other static
centroids in the current iteration since only the other active
centroids may move closer to that data point than the cen-
troid ck∗ does. If the data point belonging to the centroid
ck∗ is farther, it has to consider all centroids in the current
iteration. If the data point belonging to the centroid ck∗
is closer, it only needs to consider the active centroids in
the current iteration since only the active centroids may
move closer to the data point. According to the type of the
data point pi and the activity information of all centroids,
the data point pi can determine its own nearest centroid
efficiently.

Definition 5 (Moving distance of centroid). Let the centroid
ck be denoted by c

p
k in the previous iteration and be denoted

by cc
k in the current iteration, the moving distance from c

p
k

to cc
k is defined as dc

p
k →cc

k
.

After describing the efficient method by Kaukoranta et
al. [17], in what follows, the proposed modified method,
which can be used to speed up Step 2, i.e. the coarse-tuning
step in the proposed MPSK algorithm, is presented now.
We focus on the closer data point pi belonging to the cen-
troid ck∗ . In Ref. [17], when the type of data point is closer,
all the active centroids must be considered. As shown in
Fig. 7, the six white circles, c1, c2, c3, c4, c5 and c6, denote

Fig. 7. An example for the closer data point p1.

the six centroids in the previous iteration. A Voronoi dia-
gram is depicted to separate the six clusters where within
each cluster, the squares denote the related data points.
In the current iteration, suppose each previous centroid is
moved from the white circle to the dash-white circle and by
Definition 5, the moving distance is dc

p
k →cc

k
. For the cluster

C1, the type of data point p1 is closer because the current
centroid moves closer to p1 and the moving distance is
dc

p
1 →cc

1
= d1. In the cluster C1, the while (black) squares

indicate that these data points are closer (farther) types. The
main contribution of this subsection is that for the closer
data point pi relative to the centroid ck , instead of searching
the nearest centroid from all current active centroids [17],
the proposed search strategy only considers the current ac-
tive centroid whose moving distance between the current
centroid and the previous centroid is larger than the distance
dc

p
k →cc

k
.

According to the above search strategy, in Fig. 7, for the
closer data point p1, instead of considering the current cen-
troids, cc

1, cc
2, cc

3, cc
4, cc

5 and cc
6, the proposed search strat-

egy only consider the current centroids, cc
1, cc

2, cc
3, cc

6, since
dc

p
4 →cc

4
< dc

p
1 →cc

1
and dc

p

5 →cc
5
< dc

p
1 →cc

1
.

6. Experimental results

All experiments are performed on a Pentium 4 personal
computer with 2G MHz and the Windows 2000 environ-
ment. The programming language is the Borland C + +
Builder version 5. Based on four sets of testing data points,
the clustering effect and the execution-time performance be-
tween the previous PSK algorithm and the proposed MPSK
algorithm are demonstrated.

The first data set contains ring-shaped, compact circle, and
linear clusters, as shown in Fig. 8(a). This data set contains
612 data points. After running the K-means algorithm, the
clustering result is shown in Fig. 8(b). Fig. 8(c) illustrates
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the clustering result by using the PSK algorithm. Fig. 8(d)
shows the clustering result by using the proposed MPSK
algorithm. From Fig. 8(b)–(d), it is observed that for the first

Fig. 8. Clustering performance comparison for the first data set. (a)
The data set contains a combination of ring-shaped, compact circle, and
linear clusters. (b) The clustering result obtained by using the K-means
algorithm. (c) The clustering result obtained by using the PSK algorithm.
(d) The clustering result obtained by using the proposed MPSK algorithm.

Fig. 9. Clustering performance comparison for the second data set. (a) The data set contains two ellipsoidal shells. (b) The clustering result obtained by
using the K-means algorithm. (c) The clustering result obtained by using the PSK algorithm. (d) The clustering result obtained by using the proposed
MPSK algorithm.

data set, the clustering performance of the K-means algo-
rithm is the worst because some data points in the compact
circle cluster are assigned to the ring-shaped cluster. The
PSK algorithm and the proposed MPSK algorithm have the
same clustering results. The second data set is shown in Fig.
9(a) which contains two crossed ellipsoidal shells. There are
628 data points in Fig. 9(a). Fig. 9(b)–(d) show the cluster-
ing result of the K-means algorithm, the PSK algorithm, and
the proposed MPSK algorithm, respectively. In this exam-
ple, the K-means algorithm has the worst clustering perfor-
mance. The PSK algorithm and the MPSK algorithm also
have the same clustering performance.

Fig. 10(a) illustrates the third data set which contains
three compact circles. Among the three clustering results,
the K-means algorithm and the proposed MPSK algo-
rithm have the same clustering results (see Fig. 10(b)
and (d)) which meet our visual inspection. For the PSK
algorithm, some data points denoted by triangles in the
leftmost compact circle have been assigned to the second
compact circle (see Fig. 10(c)) and it violates our visual
inspection.

The final data set contains 521 data points which are dis-
tributed on two compact circles and two crossed ellipsoidal
shells as shown in Fig. 11(a). After running the K-means
algorithm in Fig. 11(a), there are several misclassified data
points on the crossed ellipsoidal shells, which are denoted
by those triangles on the lower part of one ellipsoidal shell
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Fig. 10. Clustering performance comparison for the third data set. (a) The data set contains three compact circles. (b) The clustering result obtained by
using the K-means algorithm. (c) The clustering result obtained by using the PSK algorithm. (d) The clustering result obtained by using the proposed
MPSK algorithm.

Fig. 11. Clustering performance comparison for the fourth data set. (a) The data set contains two compact circles and two crossed ellipsoidal shells.
(b) The clustering result obtained by using the K-means algorithm. (c) The clustering result obtained by using the PSK algorithm. (d) The clustering
result obtained by using the proposed MPSK algorithm.

Table 1
Execution-time performance comparison between the PSK algorithm and the proposed MPSK algorithm

Data set Image size Number of data points Execution-time (10−3 s) Improvement ratio (%)

PSK MPSK

First data set 150 × 97 612 5386 210 92
Second data set 154 × 113 628 4411 216 95
Third data set 150 × 97 863 7744 340 96
Fourth data set 150 × 96 521 10627 731 93

Average 94

(see Fig. 11(b)). Fig. 11(c) shows the clustering result by
using the PSK algorithm. Obviously, several misclassified
data points which are denoted by ‘+’ symbols over the two
compact circles, are assigned to the bottom ellipsoidal shell
and it violates our visual inspection. For the same data set,
the proposed MPSK algorithm does get a satisfactory clus-
tering result.

Based on the same four artificial data sets, Table 1
demonstrates the time performance comparison between

the PSK algorithm and the proposed MPSK algorithm.
Let the execution-time improvement ratio be measured by
(TPSK − TMPSK)/TPSK where TPSK and TMPSK denoted
the execution-time required in the PSK algorithm and the
proposed MPSK algorithm, respectively. Table 1 indicates
that the execution-time improvement ratio of the proposed
MPSK algorithm over the PSK algorithm is 94% in average.

Besides the above experiments, three more complicated
data sets are used to illustrate the effect of our proposed
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algorithm. Fig. 12(a) depicts an input real image. Fig. 12(b)
depicts two crossed rubber bands. After running the K-
means algorithm, Fig. 12(c) demonstrates two unsatisfactory
clusters and the corresponding two centroids. After running

Fig. 12. Clustering performance for the fifth data set. (a) The input
real image. (b) The data set contains two crossed rubber bands. (c)
The clustering result obtained by using the K-means algorithm. (d) The
clustering result obtained by using the proposed MPSK algorithm.

Fig. 13. Clustering performance for the sixth data set. (a) The input real image. (b) The data set contains two crossed rubber bands and two separated
rubber bands. (c) The clustering result obtained by using the K-means algorithm. (d) The clustering result obtained by using the proposed MPSK
algorithm.

our proposed MPSK algorithm, Fig. 12(d) demonstrates the
satisfactory clustering result.

As shown in Figs. 13 and 14, finally the sixth data set and
the seventh data set are used to evaluate the relevant perfor-
mance. Figs. 13(a) and 14(b) depict two input real images.
Fig. 13(b) (Fig. 14(b)) contains two crossed rubber bands
and two separated rubber bands (two separated rubber bands
and two sets of two crossed rubber bands). After running
the K-means algorithm, Figs. 13(c) and 14(c) demonstrate
the unsatisfactory clustering results and the corresponding
centroids. After running our proposed MPSK algorithm,
Figs. 13(d) and 14(d) demonstrate the relevant satisfactory
clustering results.

From the above seven data sets, four artificial data sets and
three real data sets, experimental clustering results indicate
that our proposed MPSK algorithm works well to generate
satisfactory clustering results.

7. Conclusions

The proposed MPSK algorithm has been presented. In
the proposed MPSK algorithm, a new SSL operator is
presented to measure the symmetry similarity level and
it satisfies closure property and robustness property. In
addition, two speedup strategies are presented. Plugging
the proposed SSL operator and the two speedup strate-
gies into the proposed clustering algorithm, it leads to a
faster and more robust clustering algorithm to handle the
intra/inter symmetrical clusters when compared the pre-
vious PSK algorithm. Experimental results confirm the
computational and robust effects of the proposed MPSK
algorithm.
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Fig. 14. Clustering performance for the seventh data set. (a) The input real image. (b) The data set contains two separated rubber bands and two sets of
two crossed rubber bands. (c) The clustering result obtained by using the K-means algorithm. (d) The clustering result obtained by using the proposed
MPSK algorithm.
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