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Abstract--The Interpolation-Based Bintree (IBB) is a new encoding scheme for representing binary images 
and is storage-saving. In the IBB only the black leaves are saved, called bincodes, as the compressed codes for 
the image. In this paper a fast neighbor finding algorithm is presented on bincodes. Given a sequence of 
bincodes with size n, our algorithm is performed in O((Imax -/rain + 1) × n) time with the same memory 
complexity, where l ~  and/rain are the maximal level and the minimal level, respectively, at which the given 
bincodes reside. Our algorithm is faster than the previous one [C.-Y. Huang and K.-L. Chung, Pattern 
Recognition 28(3), 409-420 (1995)]. Experimental results for a practical version are included. The experimen- 
tal values confirm our theoretical results. Copyright © 1996 Pattern Recognition Society. Published by 
Elsevier Science Ltd. 
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Linear bintree Neighbor finding 

I. INTRODUCTION 

Neighbor finding is one of the key problems in image 
processing and pattern analysis. Based on the result of 
neighbor finding, many applications thus can be easily 
performed, e.g. connected component labeling, per- 
imeter, Euler number, and so on. Given quadtrees or 
linear quadtrees, some efficient neighbor finding algo- 
rithms have been presented. A thorough survey is 
provided in reference (2). 

The linear bintree is an alternate encoding scheme 
for representing images. It has been shown to be very 
simple and to save storage, t3'4~ The Interpolation- 
Based Bintree (IBB) was first proposed by Ouksel and 
Yaagoub ta) by combining the features of some existing 
representations such as linear quadtrees, binary trees 
and interpolation-based codes. It is one of the linear 
bintree. The IBB is based on subdividing recursively 
the image into two equal-sized subimages, right and 
left or top and down, until the elements of the created 
subimages are either black or white, where each sub- 
image is represented by a node. Following the sub- 
division process, the nodes corresponding to black 
subimages are converted into IBB codes. The final 
codes are called bincodes, which are unique integers 
assigned for black blocks. 

Recently, Huang and Chung m presented fast algo- 
rithms such as intersection, union, complement and 
neighbor finding on bincodes. Given two sets of bin- 

t Corresponding author. Email: klchung@cs.ntit, edu.tw. 
This research was supported in part by the National Science 
Council of R.O.C. under contracts NSC85-2213-E011-099 
and NSC85-2121-M011-002. 

codes, B1 and B2, the intersection and union operation 
algorithms is performed in O(n 1 + n2) time, where n I is 
the size of Ba and n 2 is the size of B2; the complement 
operation for B~ is performed in O(nl) time; the four- 
neighbor finding and the diagonal neighbor finding for 
B 1 is accomplished in O(n 1 logn 0 time. 

In this paper we present a faster algorithm for 
neighbor finding on bincodes. Given a sequence of 
bincodes with size n, our algorithm is performed in 
O((lmax--lmin + 1)x n) time with the same memory 
complexity, where/max and/rain are the maximal level 
and the minimal level, respectively, at which the given 
bincodes reside. Our algorithm is faster than the previ- 
ous one. t~) Our algorithm can he applied to handle the 
three-dimensional (3-D) case. Experimental results for 
a practical version are included. The experimental 
values confirm our theoretical results. 

2. PRELIMINARIES 

Given a 2 N x 2 N image, the root node of the bintree 
represents the whole image. If the root node is gray, 
two sons are added. Each son represents half of the 
image which is covered by his father. This process is 
repeated recursively for each son until a son is white or 
black. If a subdivision is either black or white, its 
corresponding node is an external node; otherwise, it is 
an internal node. A node at height h corresponds to 
a 2 N-I'h/2j × 2 N-[h/2] block. When h is even, the block is 
square; when h is odd, this block is rectangular. Due to 
the structure of bintrees, a 2 N × 2 N image will have 
maximal height 2N, 22N external nodes and 22N - 1 
internal nodes at most. Naturally, the bintree can be 
easily implemented by a pointer-type data structure35~ 
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Fig. 1. A 22 × 22 binary image. (a) Binary image. (b) Blocks example. (c) Bintree and bincodes of (a). 

Considering the 22 × 22 binary image as shown in 
Fig. l(a), the corresponding blocks are shown in 
Fig. l(b) and the bintree is illustrated in Fig. l(c). 

The IBB is based on the bintree structure and 
represents the image as an ordered collection of exter- 
nal black nodes. Each external black node is described 
by a numerical record. Given a 2 N x 2 N binary image, 

let a node at level I of a bintree correspond to a black 
block in the binary image at location (i, j ) ,  then the 
bincode Q is derived as follows: (3) 

(1) Convert  i and j to binary strings i N_ 1iN_2 . . . . .  
i l l  o and J N - t J N - 2  . . . . .  J~Jo, where i - - x ~ N - l t i  - -~k=0~ k X 2 k) 
and " N- ~ . . /=  ~k=o (A x 2k). 
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(2) Compute s=22N-22N- t  and convert it to 

a binary string S2N_ISzN_ 2 . . . . .  S1So, where s =  
2 N -  ~k = 0 l(Sk × 2% 
(3) The bincode is given by Q=Y~kU--0~(ik x 

2 4 k +  3 ,  q_ v ~ N -  1 ,  • 24k+l )~_~ZN- lgS  2 2 k ) .  
) 2-.k= 0 [Jk × - -  -~..,k=0 ~ k X 

Here, i is termed the column_index and j is called the 
row_index. 

For example, block A in Fig. 1 is at location 
(0, 1) and at level 4. According to the above bin- 
code conversion scheme, we obtain i = 0  =(il i0) 2 = 
( 0 0 ) 2  , j= l=( j l jo )2=(O1)2  and s = 2 4 - 2 ° = 1 5 =  
(S3SzSlSo)2=(llll)2, then the bincode of block A is 
(ilsaJlszioSlJoSo) 2 = (01010111)2 = 87. We traverse 
black nodes of the bintree in preorder and simulta- 
neously calculate its bincodes, then bincodes of 
Fig. 1 (a) are represented by an ordered and increasing 
sequence of numerical records (87, 117, 124, 208, 253). 

3. N E I G H B O R  F I N D I N G  O N  B I N C O D E S  

Following the definition used by Samet and 
Tamminen  ~6) we define the black block Q to be a four- 
neighbor of the black block P if Q and P share a com- 
mon  edge and the size of Q is equal to or larger than 
that of P and the black block R to be a diagonal 
neighbor of the black block P if R and P share a com- 
mon vertex. As shown in Fig. l(b), block D is the north 
neighbor of block A and block F is the east neighbor of 
D, but  D is not the west neighbor of F because the size 
of D is smaller than that of F. Further, block F is the 
northeast neighbor of block A; block A is the south- 
west neighbor of block F. 

In this section, we only focus on the four-neighbor 
finding. However, the diagonal neighbor finding can 
be easily derived by the same way. For  simplicity, we 
assume that the input  data is a sequence of bincodes 
and the associated levels and locations. 

3.1. Find b incodes of equal-sized adjacent blocks 

In this subsection the method for finding the bin- 
codes of equal-sized adjacent blocks of a given bincode 
is presented. Following the same notations used in 
reference, ~7) let the symbols A, [, << and ' be bitwise 
operations for andin9, orin 9, shiftin9 to left and comple- 
menting, respectively. Assume any one of these four 
operations needs one unit  time. In addition, let 
tu = xT, N - 1 ( 9 4 k  ..}_ 2 4 k  + 1 q_ 2 4 k  + 2) = (01110111...0111)2 , 

.~..,k = 0 ~-- 

4N 
t v = ~ N - l t ' ) 4 k  @ 2 4 k + 2  @ 2 4 k + 3 )  = (11011101...1101)2 

~..~k = 0 ~ -  

and Am = (000...001)2. aN 

4N 
The bincode of the east equal-sized adjacent block of 

the bincode Q can be obtained in 0(1) time and is 
shown below. 

Theorem 1. Given a bincode Q at level l, the bincode of 
the east equal-sized adjacent block, say Qe, is given by 
(((Qltu) + (Am << (4[(2N -- I))/2] + 3))) A t',)l(Q A t,) 
and it takes O(1) time. 

Proof. Let Q be a bincode at level I and location (i,j), 
we have that Qe is at level I and location (i*,j), where 
i * =  i + 2 [IzN-t)/2l. Qlt, preserves the binary represen- 
tation of columndndex of Q and sets the other bits to be 
1. Am << (412N - 1/21 + 3) equals to (00...0 ~ 0 ) 2  ; 

4(N [U2]) + 4 
(Qlt,,) + (Am<<(4[(2N- 1)/2] + 3)) equals to (i* 1 k3N- 1 × 
k3N-2k3N 31N 2k3N-4k3N 5k3N-6...lN_Ll/zl...Ok2klko) 2, 
where i * =  '* "* "* (t N ltN_2...ts_tt/2jO0...O)2 and kxe{0,1} 
for 0 < x < 3 N -  1; ((Q It,) + (Am << (4[(2N - •)/2] + 3)))/x 
t '  extracts the binary representation of column_index 
of Qe and sets the other bits to be 0; Q A t, preserves the 
other bits excepting the binary representation of col- 
umnSndex  of Qe. Since only a few bitwise operations 
are needed, it takes 0(1) time. [] 

Return to Fig. 1, the east equal-sized adjacent block 
of D is the lower half of F. From D = l 1 7 =  
(01110101)2, t, = (01110111)2 , Am = (00000001)2 and 
4[(2N - 1)/2] + 3 = 3, we have DIt, = (01110111)2 and 
(Dltu) + (Am << (4[(2N - l)/2] + 3)) = (01111111)2, then 
((Oft,) + (Am << ( 4 [ ( 2 N -  •)/2] + 3))) A t '  = (00001000) 
2. From D A t, = (01110101)2, it follows that (((Dlt,) + 
(Am << (4[(2N - •)/2] + 3)))/x t',)l(D A t,) = (01111101) 
2 = 125, which is the bincode of the east equal-sized 
adjacent block of D, i.e. the lower half of F. 

Given a bincode, the bincodes of the corresponding 
west, south and north equal-sized adjacent blocks can 
be obtained by the same way. 

Corollary 1. Given a bincode Q at level l, the bincode 
of the west equal-sized adjacent block is given by 
(((Q A t ' ) -  (Am << (4[(2N - 1)/2] + 3))) A t ')l(Q ^ t,), 
and it takes 0(1) time; the bincode of the south equal- 
sized adjacent block is given by (((Q A t'v)+ (Am<< 
(4[(2N - l)/2] + 1))) ̂  t'v)l( Q ^ tv); the bincode of the 
north equal-sized adjacent block is given by (((QI to) + 
(Am << (4[(2N - / ) / )2]  + 1))) A t~)l( Q ^ t~.). 

3.2. Find four-neighbors for bincodes 

We now illustrate our concept of four-neighbor 
finding. For  easy description, we define that given 
a block A and a black block B; B is termed the 
quasi-neighbor of A if A and B share a common edge 
and the size of B is equal to or larger than that of A. 

As shown in Fig. 2, we first define the black block 
H to be the east equal-sized quasi-neighbor of block 
M. If M is black, H is also the east neighbor of M; if 
M is white, H is not the east neighbor of M. Since M is 
gray, we search the descendants of M further. By the 
top -down  approach, we see that H is the east neighbor 
of U. Given a bincode, its all ancestors whose levels 
are larger than or equal to lmi, are defined to be the 
possible candidates of the bincode, where Imi. is the 
minimal  level at which the given bincodes reside. Here, 
all ancestors of one bincode include the bincode itself. 
Consider the searching path, M is the first possible 
candidate; R is the second possible candidate; U is the 
exact possible candidate since it is black. 

3.2.1. Obtain possible candidates. Return to Fig. 1. 
Since l,,i, = 2, the possible candidates of A are A, B and 
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Fig. 2. Another 22 × 22 binary image. (a) Binary image. (b) Blocks example. 

C; the possible candidates of D are D, E and G; the 
possible candidates of F are F and G; the possible 
candidates of H is H itself. Therefore, all possible 
candidates of Fig. 1 are A, B, C, D, E, G, F, G, H, I, 
J and L. It is observed that some possible candidates 
are redundant, for example, G is the common possible 
candidate of D and F. We need the following two 
lemmas in order to obtain all possible candidates 
without redundancy. 

Lemma 1. (Covering property). (~) Let Q be a black 
bincode at level l, if some bincodes fall in [Q, 
Q + (42N-I-  1)], these bincodes are covered by bin- 
code Q in the sense of spatial structure. 

For  convenience, Q+(42N-I - -1 )  is termed the 
rightmost coverage of bincode Q. 

Lemma 2. TM Given a 2 N x 2 N binary image, if Q is 
the bincode of an internal node in the bintree and 
B and C are bincodes of the left son and the right 
son of Q, respectively, then B = Q + 2 2 ( 2 N - / -  1) and 
C = Q + 3 x 22(2N-z- 1), where I is the level of Q. 

Given a sequence of bincodes, the method for ob- 
taining all possible candidates without redundancy is: 
for the first bincode, by using Lemma 1 and 2, we 
calculate its all ancestors in a bottom-up manner until 
the father of one ancestor covers the next bincode or 

the level of one ancestor is equal to lmin, then the next 
given bincode is processed successively. From the first 
given bincode 87 in Fig. 1 and the second bincode 117, 
by Lemma 1, the first bincode 87 does not cover the 
second bincode 117 because the rightmost coverage of 
87 is 87 [ = 8 7 + ( 4 ( 4 - 4 ) - 1 ) ] .  Thus, bincode 87 is 
a possible candidate. By Lemma 2, the father of bin- 
code 87 is bincode 84 [87= 84+ 3 x 2 (2(4-3-1))] at 
level 3 (--4 - 1). The rightmost coverage of 84 is 87 
[ = 84 + (4 (4- 3) _ 1)]. Since it does not cover bincode 
117, bincode 84 is also a possible candidate. The father 
of bincode 84 is bincode 80 [84 = 80 + 2 (2(4-2-1))] 
at level 2. The rightmost coverage is 95 
[ = 80 + (4 (4- 2) _ 1)], so bincode 80 is also a possible 
candidate. Since bincode 80 is at level 2 (=  lmin), we 
check the second given bincode 117 and the third 
bincode 124, subsequentially. By the same arguments, 
we have that all possible candidates of Fig. 1 are 
bincodes 87, 84, 80, 117, 116,124, 112,208, 253,252 and 
240, which correspond to nodes A, B, C, D, E, F, G, H, 
I, J and L, respectively. Note that the black possible 
candidates are the given bincodes. 

It is observed that given a sequence of bincodes of 
size n with respect to an rn x m image, if all given 
bincodes are at the same level, the size of all possible 
candidates is O(n); in the worst case (see Fig. 3), the 

(b) 
Fig. 3. The worst case example. (a) Binary image. (b) The corresponding bintree. 
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size of all possible candidates is O(n x logm). In 
general, the size of all possible candidates is 
O((lma X --  lmi n + 1) X n). Consider the corresponding 
bintree of one image, when the size of the black leaf 
nodes is equal to or larger than that of the white leaf 
nodes, it follows that the size of all possible candidates 
will be less than or equal to 3 x n. Upon  finding 
a possible candidate, the next possible candidate can 
be obtained in O(1) time, so we have the following 
result. 

Lemma 3. Finding all possible candidates can be per- 
formed in O((lma x --  lmi n + 1) x n) time. 

3.2.2. Construct hashing table. We now want to 
construct a hashing table for storing these possible 
candidates in order to perform four-neighbor finding 
efficiently. 

Given a 2 N x 2 N image and a hashing table with 
bucket size S ( = 4  K, where K is an integer, 1 _< K _<4 
and K < N), our bucket-allocation strategy is de- 
scribed as follows. Let the first bucket contain S -  1 
possible bincodes and each of the others contain 
S possible bincodes. The possible bincodes at levels 
above 2K are allocated to the first bucket since there 
are 22K - 1 (=  S - 1) possible candidates at most. The 
next two buckets contain the possible candidates at 
level 2K because it is of size 22K+1 (=2S)  at most. 
Cont inuing this way, we see that the possible bincodes 
in a bucket are all located at the same level except those 
in the first bucket. Given a 22 x 22 binary image, all 
possible bincodes are shown in Fig. 4(a), where the 
number  incident to the node is the bincode and its 
corresponding column_index and row_index. Suppose 
the size of the bucket is 4, we first assign bincodes 0, 64 

,% 
84 t'~ 92 ~ I16(~  124}~ 212r~ 2ao}h 244t. ~ 2 5 2 ~  

85 87 93 95 117 I19 125 127 213 215 221 223 245 247 253 255 
(0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3) 

(a) 

level 
0 

3 

4 

0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 4 5 5 4 4 5 5 6 6 7 7 6 6 7 7 

(b) 

Fig.4. A bucket-allocation example. (a) All possible bincodes ofa 22 x 22 binary image. (b) Associated bucket 
numbers when the size of the bucket is 4. 
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and 192 to bucket 0. At level 2, the bincodes 80, 112, 
208 and 240 are assigned to bucket 1. At level 3, the 
bincodes 84, 92, 116 and 124 are assigned to bucket 2; 
bincodes 212, 220, 244 and 252 are assigned to bucket 
3. As shown in Fig. 4(b), the number  of incident to the 
node is the corresponding bucket number.  Return to 
Fig. l(c). Since it does not  have any possible candidate 
at level 0 and level 1, C, G, H, L, B, E, F, J, A, D and 
I are al located to bucket  0, 0, 0, 0, 1, 1, 1, 2, 3, 3 and 6, 
respectively. 

Let P be a bincode at  level lp(lp >_ lmin) and location 
(ip, jp). Given a hashing table, each bucket  with size S, 
following the previous bucket-al locat ion strategy, the 
bucket number  of P, bp, can be obtained by the follow- 
ing hash function: 

bp = 0 for Ip < 2K; 

bp = 2 lp- zK + Lip × 2 t~ N- 2K ] + Lip X 2(lp)/2- N- 2K J 

_ L2tmi,- zK] for Ip _> 2K and lp is even; 

bp = 2 lp 2K+ lip x 2 lp-N 2r j  + [ j p  x 2(lp-1/2)-N-EKj 

_ [21~, - 2r] for lp > 2K and Ip is odd. 

Naturally,  the bincodes at levels smaller than 2K are 
allocated to bucket 0. We next consider the bincodes 
at levels larger than or equal to 2K, that is, lp > 2K. 
When Ip is odd (even), because there are (2/p - 1 ) -  
(22K - 1)((2 z° - 1) - (22K - 1)) bincodes at levels smaller 
than lp and larger than or equal to 2K, the leading bucket 
number  at level lp is 2 lp-2K ( = ( ( 2 / p -  1 ) - ( 2 2 K -  1))/ 
4k)+ 1)(2/p-2K (=((2 l~ -  1 ) - - ( 2 2 r -  l ) ) /4k)+ 1)). The 
possible bin- codes at level lp are al located to buc- 
kets by the order of co lumnJndex  major  first then 
row_index major.  [(ip/2 ~2N-1,)/2) x 2l'/2/4 K] 
( =  [it, X 2lP-u-2g])([(ip/2 t2N-tl"+ 1))/2) X 2 (l~- 1)/2/4K] 
(= lip X 2 Ip- N-2K])) calculates the number  of buckets 
used at  the column_indices smaller than ip at 
level lp; [(jp/2(2N-lp)/2)/4 K] ( =  [jp X 2(lP/Z)-N-2r]) 
([(jp/2 t2N-~'- 1)/2/4r)](= [jp x 2 ~ ' -  1)/2-m-2K])) cal- 

culates the bucket num- ber which is the row_index jp 
with to column_index ip. The buckets occupied by 
the possible bincodes at levels smaller than level 
/rain will not  be used if /min--> 2K SO we minus 
[2tmi. - 2K] ( [ 2 ~ . -  2K] ). 

In our  hash function, the bucket number  of a poss- 
ible candidate is obta ined by its level, column_index 
and row_index. F r o m  the bincode conversion scheme, 
the level, co lumndndex  and row_index of a bincode 
can be extracted from the bincode in O(N) time. 
It follows that  the hashing table for storing all pos- 
sible candidates can be constructed in a total  of 
O((Im~ -/rain + 1) × n x N) time. We now improve the 
time complexity from O((lma ~ -- lm~, + 1) X n x N) to 
O((lmax --/rain + 1) x n). 

Given a bincode Q at level l and location (i,j), if 
bincode P is the father of Q, the level lp and location 
(i,, jp) of P can be obtained by the following formulas 
in O(1) time: 

l , = l -  1; 

ip = i and jp  = j  i fQ is the left son of P; 

ip = i and jp = j - 2 (2N-t)/2 if I is even and 

Q is the right son of P; 

ip = i-212N-(z + 1))/2 and jp = j i f / i s  odd and 

Q is the right son of P. 

On the contrary,  given a bincode P at level Ip and 
location (ip, jp), the level 1 and location (i,j) of Q can be 
obtained in a similar way if it is known when Q is the 
right son of P or the left son of P. 

Recall that  the possible candidates of Fig. 1 are 87, 
84, 80, 117, 116, 124, 112, 208, 253, 252 and 240. Since 
the possible candidate 87 is at level 4 and location (0, 1), 
by our hash function, the possible candidate 87 is 
allocated to bucket 3 (bp = 24- 2 + [0 )< 24- 2- 2j + 
L1 x 2 2 - 2 - 2 j  - [_22-2 ]  = 4 + 0 + 0 - 1 = 3 ) .  Next, 
the possible candidate 84 is at level 3 and location 
(0, O) ( l p = l - l = 4 - 1 = 3 ,  i p = i = 0  and jp= 
j - -  2 (2N-0/2 = 1 --  2 o ---- 0). Thus, it is allocated 
to b u c k e t  1 (bp = 2 3 -2  + [0 X 2 3 - 2 -  2] + 
[0 x 2 t3- lv2-2-2] _ [  22-~j = 2 + 0 + 0 - 1 = 1). The 
possible candidate 80 is allocated to bucket 0 because 
it is at level 2 and location (0, 0) (lp = l - 1 = 3 - 1 = 2, 
ip = i = 9 and jp = j  = 0, then bp = 22- 2 + 
[0 × 2 2 - 2 - 2 j  + [0 × 2 (2 /2 ) -2 -2 ]  --  L 2 2 - 2 j =  1 + 0 +  

0 - 1 = 0). By the same way, all the remaining possible 
candidates will be assigned to the proper  buckets. The 
constructed hashing table maintained by pointers is 
i l lustrated in Fig. 5, where the alphabets  shown in the 
right upper  corners, namely, A, B, C , . . . ,  and L, denote 
the corresponding nodes in the bintree of Fig. l(c); four 
fields at the bo t tom of each rectangular  record are the 
east, west, south and north quasi-neighbors of that  
possible candidate,  respectively, which will be dis- 
cussed later. F o r  saving space, the associated levels and 
locations of the possible candidate are omitted in the 
figure. In order to increase the utilization of memory, 
all buckets being empty (e.g. buckets 4 and 5 in Fig. 5) 
could be marked out and allocated to other possible 
candidates. 

Based on this improved version, we have the follow- 
ing lemma. 

Lemma 4. Construct ing a hashing table for storing 
all possible candidates can be accomplished in 
O((lmax -- lmin + 1) x n) time. 

3.2.3. Obtain equal-sized quasi-neighbors. After 
all possible candidates have been allocated in the hash- 
ing table, we want  to find equal-sized quasi-neighbors 
of each possible candidate.  We now calculate the 
bincode of the east equal-sized adjacent block 
of the first given bincode 87. F rom Q = 8 7 =  
(01010111)2 , t u = (01110111)2, Am = (00000001)2, and 
4[(2N-1)/2] + 3 = 3 ,  by Theorem 1, we have 
Q It, = (01110111)2, (Q[tu) + (Am << (4 [ ( 2 N -  l)/2J + 3)) = 
(Olllllll)2,then((Q[tu)+(Am<<(4[(2N-l)/2] +3))) ^ 
t' u = (00001000)2. F rom Q A t u = (01010111)2, we have 
(((Qltu) + (Am << ( 4 [ ( 2 N - / ) / 2 ]  + 3))) ^ t'u)l(Q A t , ) =  
(01011111)2 = 95. Thus, bincode 95 is the east equal- 
sized adjacent  block of bincode 87. On the other hand, 
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Fig. 5. The constructed hashing table of Fig. l. 

we have that  bincode 87 is the west equal-sized quasi- 
neighbor of bincode 95. 

The level, column_index and r o w J n d e x  of one 
equal-sized adjacent  block of the given bincode can be 
obta ined by using the following method in O(1) time. 

Given a bincode Q at  level I and locat ion (i, j), let le, 
lw, l~ and 1 w be the levels of the east, west, south and 
north equal-sized adjacent  blocks of Q, respectively; 
(ie, Je), (iw, jw), (is, js ) and ( i , , j , )  be the locations of the 
east, west, south and nor th  equal-sized adjacent  
blocks, respectively. It is not  hard to derive 
le = 1 w = I s = I n = 1, ie = i + 2 L(2N- l)/2j, iw = i -- 2 tt2n-/)/2J, 
i s = i n = i, Je =Jw =J,  Js = J  --  2tt2N-t')/2J, and 
Jn = 2tt2N- l ) /2J .  

Using the above formulas, the level of the bincode 
95 is 4 and the location is (1, 1 ) ( l e = l = 4 ,  
i e ~ i -}- 2 L(2N-I) /2] = 0 + 2 0 = 1 and Je = J  = 1). Using 
the hash function, bv = 24- 2 + [1 x 24- 2-23 ..[_ 
L l x 2 2 - 2 - 2 J - L 2 2 - 2 j = 4 + l + 0 - 1 = 4 .  We see 
that bincode 95 will be in bucket 4 if it exists, that is, 
bincode 95 is a possible candidate. We ignore it because 
bincode 95 does not  exist in bucket 4. The given bincode 
87 does not  have the west equal-sized adjacent block 
because the column_index iw is out of the boundary of 
the image (iw = i -  2 tt2N- i)/2j = 0 - -  20 = - 1). By Corol-  
lary 2, we have t' v = (00100010)2 , Q A t' v = (00000010)2 , 
(Q  ^ t ' v ) -  ( A m  << ( 4 [ ( 2 N - -  I ) / 2  J+ 1 ) )  = 
(00000000)2, then ((Q ^ t ' )  - (Am << (4L(2N - / ) / 2 J  + 
1))) ^ t '  = (00000000)2. Further,  we have 
(((Q ^ t ' )  - (Am << (4[(2N - / ) / 2 J  + 1))) ^ t'~)lQ ^ t ,)  = 
(01010101)2 = 85 since Q A t~ = (01010101)2. The given 
bincode 87 would be assigned be the nor th  equal-sized 
quasi-neighbor of bincode 85. We ignore bincode 85 

because it is not  a possible candidate.  By Corol lar ly 1, 
we have that bincode 117 is the north equal-sized 
adjacent  block of the given bincode 87. The bin- 
code 117 is at level 4 and location (0, 2) (1n=1=4,  
i n = i = 0  and j , = j + 2  t ~ 2 N - ~ ) / 2 j = l + l = 2 ) ,  then 
b v = 24.-2 + L0 x 2 4 - 2 - 2 j  + [2 x 2 2 - 2 - 2 j  - L 2 2 - 2 j  = 

4 + 0 + 0 - 1 = 3.. As shown in the second record of 
bucket 3 in Fig. 6, 87, is assigned to be the south 
equal-sized quasi-neighbor of 117. After finding all the 
equal-sized quasi-neighbors,  the updated hashing 
table is i l lustrated in Fig. 6. We have that  the possible 
candidate 80 has an east quasi-neighbor 208; the poss- 
ible candidate 240 has a south quasi-neighbor 208; the 
possible candidate 116 has an east quasi-neighbor 
124;...and so on. 

Since it takes O(1) time to find the equal-sized 
adjacent block of a given bincode and the correspond- 
ing bucket number  of this equal-sized adjacent  block 
in each direction, we have the following result. 

L e m m a  5. Finding all equal-sized quasi-neighbors 
for all possible candidates can be performed in O(n) 
time. 

3.2.4. R e a r r a n g e  possible  candidates  in the f i r s t  
bucket .  Recall that  based on our  bucket-al locat ion 
strategy described above, the possible bincodes in 
a bucket are all located at the same level, except those 
in the first bucket. In addit ion,  supposing x and y be 
two integers and y > x > 0, the corresponding sub- 
images of the possible bincodes in bucket x are larger 
than or equal to that  of the possible bincodes in bucket 
y. Therefore, before performing the t o p - d o w n  ap- 
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Fig. 6. The hashing table of Fig. 1 after finding all the equal-sized quasi-neighbors. 

240 
112081 L[[ 

proach, we should rearrange the possible candidates in 
the first bucket, bucket 0 when Imin < 2K. This rearran- 
gement can be accomplished easily by using the quick- 
sort methods. (s) 

3.2.5. Downloading. For  each gray possible candi- 
date which has the equal-sized quasi-neighbor, we next 
want to search its descendants adjacent to its equal- 
sized quasi-neighbors. Our method for searching the 
proper descendants is demonstrated by an example of 
Fig. 2. For  the gray block M, we first obtain that M has 
an equal-sized quasi-neighbor H, then this message 
being that H is a quasi-neighbor is downloaded to the 
proper sons of M, say R. That is, R has a quasi- 
neighbor H. Since R is still gray, the meassage is 
downloaded further to his proper sons, say T and U. 
We bypass T, because it is white and have that U has 
a neighbor H. 

Now, downloading can be performed from the first 
possible candidate of the first bucket one by one until 
all gray possible candidates are processed. For  each 
gray possible candidate, the rules are described as 
follows: 

(1) The east (west) quasi-neighbor information is 
downloaded to its right (left) son if the level of the 
gray possible candidate is even and is downloaded to 
its two sons if the level of the gray possible candidate 
is odd. 

(2) The south (north) quasi-neighbor information is 
downloaded to its two sons if the level of the gray 
possible candidate is even and is downloaded to its left 
(right) son if the level of the gray possible candidate is 
odd. 

As shown in Fig. 6, for the first gray possible candi- 
date 80, by Rule (1), its east quasi-neighbor informa- 
tion 208 is downloaded to the right son 92 since by 
Lemma 2, 92 = 80 + 3 × 22t4-2-1). The bincode 92 is 
at level 3 and position (I, 0) ( /=  lp + 1 = 2 + 1 = 3, 
i = ip + 2 (2N-(I+ 1))/2 = 0 + 20 = 1 and j = jp  = 0). We 
ignore it because 92 (not a possible candidate) does 
not exist in bucket 1 ( b p = 2 3 - 2 + [ l x 2 3 - 2 - 2 j +  
L0 × ( 3 - D / 2 - 2 - 2 j  _ L22-2j = 2 + 0 + 0 -  1 = 1). We 

bypass the second gray possible candidate 112, since 
it does not have any neighbor. For  the third gray 
possible candidate 240, based on Rule (2), its south 
quasi-neighbor information 208 is downloaded to 
244 and 252 (244 = 240 + 2 2 (4 -2 -  1) and 252 = 240 + 
3 x 22(4- 2-1)). Thus, 208 is assigned to be the south 
quasi-neighbor of 252 (see the first record of bucket 2 in 
Fig. 7). Nevertheless, 244 is ignored because it does not 
exist in bucket 2. For  116, its east quasi-neighbor 
information 124 is assigned to be the east quasi-neigh- 
bor of possible candidate 117 at bucket 3. For  252, its 
south quasi-neighbor information 208, which was just 
described, is assigned to be the south quasi-neighbor of 
possible candidate 253 at bucket 6. After downloading 
all quasi-neighbors information, the updated hashing 
table is illustrated in Fig. 7 and we have the following 
result. 

Lemma 6. The downloading work can be performed in 
O((lmax -- lmin + 1) X n) time. 

Up to here, all black neighbors of the given bincodes 
have been found. From Fig. 7, we see that the bincode 
87 has a north neighbor 117; the bincode 117 has an 
east neighbor 124 and a south neighbor 87; the bincode 
253 has a south neighbor 208. 
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For all given bincodes, our algorithm for find- 
ing all black four-neighbors is described as 
follows. 

Algorithm. Four-neighbor finding 
Input: Given bincodes with levels and locations. 
Output: The four-neighbors. 

Step 1. Finding all possible candidates. 
Step 2. Constructing a hashing table for storing all 
possible candidates. 
Step 3. In the hashing table, for each direction, cal- 
culating equal-sized adjacent blocks, say Xs, of each 
given bincode, say Y. Y is assigned to be the equal- 
sized quasi-neighbor of Xs. 
Step 4. When lmi . < 2K, rearranging the sequence 
of the possible candidates of the first bucket to be 
a decreasing sequence based on the sizes of their 
corresponding subimages. 
Step 5. From the first bucket, for each gray possible 
andidate which has the neighbor, downloading its 
quasi-neighbor information to his proper descen- 
dants. 

By Lemma 3, Step 1 takes O((lma x -  lmi n 4-1)X n) 
time. By Lemma 4, Step 2 takes O((lma x -- lmi . + 1) X n) 
time. By Lemma 5, Step 3 takes O(n) t ime.  By using 
the quicksort method, Step 4 can be done in 
O(S log S) = O(1) time since S is specified to be a con- 
stant. By Lemma 6, Step 5 takes O ( ( l m a  x - -  lmi n 4-  1) x n) 
time. The total complexity is shown below. 

Theorem 2. Givenasequenceofbincodesofsizen,  our 
algorithm for the four-neighbor finding can be accom- 

plished in O((lma x --/rain + 1)× n) time with memory 
size O((/ma x --/mi, + 1) X n). 

Following the definition of the diagonal neighbor 
described above, by modifying our algorithm slightly, 
the diagonal neighbors can be found easily in terms of 
the same time complexity. 

4. EXPERIMENTATIONS 

In order to gain more insight into the performance 
of our algorithm, some experimental results for a prac- 
tical version are included. We first provide five se- 
quences of bincodes with respect to five 28 × 28 binary 
images. These bincodes are generated randomly. Our 
programs are coded in C-compiler programming lan- 
guage and are executed on a SUN/SPARC-2 worksta- 
tion. 

Let the size of the bucket be 16 (=42). The experi- 
mental results are shown in Table 1, where "see" 
denotes second; (b)/(a) denotes the ratio of the time 
spent in the four-neighbors finding to the size of the 
possible candidates. From Table 1, it is observed that 
the execution time of the four-neighbor finding is 
almost linearly proportional to the size of possible 
candidates. These results confirm our theoretical 
analysis. Next, we take two maps shown in 
Figs 8 and 9, respectively, to evaluate our algorithm. 
Figure 8 is the floodplain map and Fig. 9 is the Taiwan 
map. Both images are of resolution 28 × 28. Similarly, 
the size of the bucket is set to be 16 (=42). The 
experimental results are shown in Table 2. The results 
also confirm our theoretical analysis. 
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Table 1. Experimental results for random images 

The size of 
given bincodes 

(a) The size of 
possible candidates 

(b) The execution time 
for four-neighbor finding 

(s) (b)/(a) 

2720 8019 1.12 
4911 15 765 2.19 
4613 14841 2.02 
4968 14982 2.13 
3925 13 031 1.79 

0.000140 
0.000139 
0.000136 
0.000142 
0.000137 

Fig. 8. Floodplain map. 

5. DISCUSSIONS AND CONCLUSIONS 

In this paper, we assume that the input data of our 
algorithm is a sequence ofbincodes and the associated 
levels and locations. However, the associated levels 
and locations can be easily extracted from bincodes if 
the input data only has bincodes. This extraction work 
needs O(N x n) time. In this case, the total time com- 
plexity is O(N x n) since 2N >/max --/rain + 1, where 
the image is of size 2 s x 2 s. In fact, our algorithm can 

be applied to handle the 3-D ease, where the 3-D image 
is represented by the 3-D bineodes/3) 

The significance of neighbor finding is due to its 
popular use in the area of image processing and 
pattern analysis. Our main contribution is to present 
a faster neighbor algorithm. The result of this paper 
can also be applied to many, applications on bincodes, 
such as connected component labeling, perimeter, 
Euler number, and so on, to achieve better perform- 
ance. 
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Fig. 9. Taiwan map. 

Table 2. Experimental results for real maps 

(b) The execution 
(a) The size of time for 

The size of possible four-neighbor 
Image given bincodes candidates finding (s) (b)/(a) 

Floodplain 807 2454 0.31 0.000126 
Taiwan 459 1453 0.20 0.000138 
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