
Pergamon
Pattern Recognition, Vol. 29, No. 9, pp. 1507 1518, 1996

Copyright © 1996 Pattern Recognition Society. Published by Elsevier Science Ltd.
Printed in Great Britain

0031 3203/96 $15.00+.00

0031-3203(95)00167-0

FASTER NEIGHBOR FINDING ON IMAGES REPRESENTED
BY BINCODES

CHI-YEN HUANG and KUO-LIANG C H U N G t
Department of Information Management, National Taiwan Institute of Technology, No. 43, Sec. 4, Keelung

Rd, Taipei, Taiwan 10672, Republic of China

(Received 8 February 1995; in revised form 13 November 1995; received for publication 5 December 1995)

Abstract--The Interpolation-Based Bintree (IBB) is a new encoding scheme for representing binary images
and is storage-saving. In the IBB only the black leaves are saved, called bincodes, as the compressed codes for
the image. In this paper a fast neighbor finding algorithm is presented on bincodes. Given a sequence of
bincodes with size n, our algorithm is performed in O((Imax -/rain + 1) × n) time with the same memory
complexity, where l ~ and/rain are the maximal level and the minimal level, respectively, at which the given
bincodes reside. Our algorithm is faster than the previous one [C.-Y. Huang and K.-L. Chung, Pattern
Recognition 28(3), 409-420 (1995)]. Experimental results for a practical version are included. The experimen-
tal values confirm our theoretical results. Copyright © 1996 Pattern Recognition Society. Published by
Elsevier Science Ltd.

Bincode Interpolation-based bintree
Complexity analysis

Linear bintree Neighbor finding

I. INTRODUCTION

Neighbor finding is one of the key problems in image
processing and pattern analysis. Based on the result of
neighbor finding, many applications thus can be easily
performed, e.g. connected component labeling, per-
imeter, Euler number, and so on. Given quadtrees or
linear quadtrees, some efficient neighbor finding algo-
rithms have been presented. A thorough survey is
provided in reference (2).

The linear bintree is an alternate encoding scheme
for representing images. It has been shown to be very
simple and to save storage, t3'4~ The Interpolation-
Based Bintree (IBB) was first proposed by Ouksel and
Yaagoub ta) by combining the features of some existing
representations such as linear quadtrees, binary trees
and interpolation-based codes. It is one of the linear
bintree. The IBB is based on subdividing recursively
the image into two equal-sized subimages, right and
left or top and down, until the elements of the created
subimages are either black or white, where each sub-
image is represented by a node. Following the sub-
division process, the nodes corresponding to black
subimages are converted into IBB codes. The final
codes are called bincodes, which are unique integers
assigned for black blocks.

Recently, Huang and Chung m presented fast algo-
rithms such as intersection, union, complement and
neighbor finding on bincodes. Given two sets of bin-

t Corresponding author. Email: klchung@cs.ntit, edu.tw.
This research was supported in part by the National Science
Council of R.O.C. under contracts NSC85-2213-E011-099
and NSC85-2121-M011-002.

codes, B1 and B2, the intersection and union operation
algorithms is performed in O(n 1 + n2) time, where n I is
the size of Ba and n 2 is the size of B2; the complement
operation for B~ is performed in O(nl) time; the four-
neighbor finding and the diagonal neighbor finding for
B 1 is accomplished in O(n 1 logn 0 time.

In this paper we present a faster algorithm for
neighbor finding on bincodes. Given a sequence of
bincodes with size n, our algorithm is performed in
O((lmax--lmin + 1)x n) time with the same memory
complexity, where/max and/rain are the maximal level
and the minimal level, respectively, at which the given
bincodes reside. Our algorithm is faster than the previ-
ous one. t~) Our algorithm can he applied to handle the
three-dimensional (3-D) case. Experimental results for
a practical version are included. The experimental
values confirm our theoretical results.

2. PRELIMINARIES

Given a 2 N x 2 N image, the root node of the bintree
represents the whole image. If the root node is gray,
two sons are added. Each son represents half of the
image which is covered by his father. This process is
repeated recursively for each son until a son is white or
black. If a subdivision is either black or white, its
corresponding node is an external node; otherwise, it is
an internal node. A node at height h corresponds to
a 2 N-I'h/2j × 2 N-[h/2] block. When h is even, the block is
square; when h is odd, this block is rectangular. Due to
the structure of bintrees, a 2 N × 2 N image will have
maximal height 2N, 22N external nodes and 22N - 1
internal nodes at most. Naturally, the bintree can be
easily implemented by a pointer-type data structure35~

1507

1508 C.-Y. HUANG and K.-L. CHUNG

J

2 O I

0
(b)

F

1 2 3

level
0

1

2

3

4
87 117 253

(c)

Fig. 1. A 22 × 22 binary image. (a) Binary image. (b) Blocks example. (c) Bintree and bincodes of (a).

Considering the 22 × 22 binary image as shown in
Fig. l(a), the corresponding blocks are shown in
Fig. l(b) and the bintree is illustrated in Fig. l(c).

The IBB is based on the bintree structure and
represents the image as an ordered collection of exter-
nal black nodes. Each external black node is described
by a numerical record. Given a 2 N x 2 N binary image,

let a node at level I of a bintree correspond to a black
block in the binary image at location (i, j) , then the
bincode Q is derived as follows: (3)

(1) Convert i and j to binary strings i N_ 1iN_2
i l l o and J N - t J N - 2 J~Jo, where i - - x ~ N - l t i - -~k=0~ k X 2 k)
and " N- ~ . . /= ~k=o (A x 2k).

Neighbor finding on images 1509

(2) Compute s=22N-22N- t and convert it to

a binary string S2N_ISzN_ 2 S1So, where s =
2 N - ~k = 0 l(Sk × 2%
(3) The bincode is given by Q=Y~kU--0~(ik x

2 4 k + 3 , q_ v ~ N - 1 , • 24k+l)~_~ZN- lgS 2 2 k) .
) 2-.k= 0 [Jk × - - -~..,k=0 ~ k X

Here, i is termed the column_index and j is called the
row_index.

For example, block A in Fig. 1 is at location
(0, 1) and at level 4. According to the above bin-
code conversion scheme, we obtain i = 0 =(il i0) 2 =
(0 0) 2 , j= l=(j l jo)2=(O1)2 and s = 2 4 - 2 ° = 1 5 =
(S3SzSlSo)2=(llll)2, then the bincode of block A is
(ilsaJlszioSlJoSo) 2 = (01010111)2 = 87. We traverse
black nodes of the bintree in preorder and simulta-
neously calculate its bincodes, then bincodes of
Fig. 1 (a) are represented by an ordered and increasing
sequence of numerical records (87, 117, 124, 208, 253).

3. N E I G H B O R F I N D I N G O N B I N C O D E S

Following the definition used by Samet and
Tamminen ~6) we define the black block Q to be a four-
neighbor of the black block P if Q and P share a com-
mon edge and the size of Q is equal to or larger than
that of P and the black block R to be a diagonal
neighbor of the black block P if R and P share a com-
mon vertex. As shown in Fig. l(b), block D is the north
neighbor of block A and block F is the east neighbor of
D, but D is not the west neighbor of F because the size
of D is smaller than that of F. Further, block F is the
northeast neighbor of block A; block A is the south-
west neighbor of block F.

In this section, we only focus on the four-neighbor
finding. However, the diagonal neighbor finding can
be easily derived by the same way. For simplicity, we
assume that the input data is a sequence of bincodes
and the associated levels and locations.

3.1. Find b incodes of equal-sized adjacent blocks

In this subsection the method for finding the bin-
codes of equal-sized adjacent blocks of a given bincode
is presented. Following the same notations used in
reference, ~7) let the symbols A, [, << and ' be bitwise
operations for andin9, orin 9, shiftin9 to left and comple-
menting, respectively. Assume any one of these four
operations needs one unit time. In addition, let
tu = xT, N - 1 (9 4 k ..}_ 2 4 k + 1 q_ 2 4 k + 2) = (01110111...0111)2 ,

.~..,k = 0 ~--

4N
t v = ~ N - l t ') 4 k @ 2 4 k + 2 @ 2 4 k + 3) = (11011101...1101)2

~..~k = 0 ~ -

and Am = (000...001)2. aN

4N
The bincode of the east equal-sized adjacent block of

the bincode Q can be obtained in 0(1) time and is
shown below.

Theorem 1. Given a bincode Q at level l, the bincode of
the east equal-sized adjacent block, say Qe, is given by
(((Qltu) + (Am << (4[(2N -- I))/2] + 3))) A t',)l(Q A t,)
and it takes O(1) time.

Proof. Let Q be a bincode at level I and location (i,j),
we have that Qe is at level I and location (i*,j), where
i * = i + 2 [IzN-t)/2l. Qlt, preserves the binary represen-
tation of columndndex of Q and sets the other bits to be
1. Am << (412N - 1/21 + 3) equals to (00...0 ~ 0) 2 ;

4(N [U2]) + 4
(Qlt,,) + (Am<<(4[(2N- 1)/2] + 3)) equals to (i* 1 k3N- 1 ×
k3N-2k3N 31N 2k3N-4k3N 5k3N-6...lN_Ll/zl...Ok2klko) 2,
where i * = '* "* "* (t N ltN_2...ts_tt/2jO0...O)2 and kxe{0,1}
for 0 < x < 3 N - 1; ((Q It,) + (Am << (4[(2N - •)/2] + 3)))/x
t ' extracts the binary representation of column_index
of Qe and sets the other bits to be 0; Q A t, preserves the
other bits excepting the binary representation of col-
umnSndex of Qe. Since only a few bitwise operations
are needed, it takes 0(1) time. []

Return to Fig. 1, the east equal-sized adjacent block
of D is the lower half of F. From D = l 1 7 =
(01110101)2, t, = (01110111)2 , Am = (00000001)2 and
4[(2N - 1)/2] + 3 = 3, we have DIt, = (01110111)2 and
(Dltu) + (Am << (4[(2N - l)/2] + 3)) = (01111111)2, then
((Oft,) + (Am << (4 [(2 N - •)/2] + 3))) A t ' = (00001000)
2. From D A t, = (01110101)2, it follows that (((Dlt,) +
(Am << (4[(2N - •)/2] + 3)))/x t',)l(D A t,) = (01111101)
2 = 125, which is the bincode of the east equal-sized
adjacent block of D, i.e. the lower half of F.

Given a bincode, the bincodes of the corresponding
west, south and north equal-sized adjacent blocks can
be obtained by the same way.

Corollary 1. Given a bincode Q at level l, the bincode
of the west equal-sized adjacent block is given by
(((Q A t ') - (Am << (4[(2N - 1)/2] + 3))) A t ')l(Q ^ t,),
and it takes 0(1) time; the bincode of the south equal-
sized adjacent block is given by (((Q A t'v)+ (Am<<
(4[(2N - l)/2] + 1))) ̂ t'v)l(Q ^ tv); the bincode of the
north equal-sized adjacent block is given by (((QI to) +
(Am << (4[(2N - /) /)2] + 1))) A t~)l(Q ^ t~.).

3.2. Find four-neighbors for bincodes

We now illustrate our concept of four-neighbor
finding. For easy description, we define that given
a block A and a black block B; B is termed the
quasi-neighbor of A if A and B share a common edge
and the size of B is equal to or larger than that of A.

As shown in Fig. 2, we first define the black block
H to be the east equal-sized quasi-neighbor of block
M. If M is black, H is also the east neighbor of M; if
M is white, H is not the east neighbor of M. Since M is
gray, we search the descendants of M further. By the
top -down approach, we see that H is the east neighbor
of U. Given a bincode, its all ancestors whose levels
are larger than or equal to lmi, are defined to be the
possible candidates of the bincode, where Imi. is the
minimal level at which the given bincodes reside. Here,
all ancestors of one bincode include the bincode itself.
Consider the searching path, M is the first possible
candidate; R is the second possible candidate; U is the
exact possible candidate since it is black.

3.2.1. Obtain possible candidates. Return to Fig. 1.
Since l,,i, = 2, the possible candidates of A are A, B and

1510 C.-Y. HUANG and K.-L. CHUNG

 .lJI

(b)

Fig. 2. Another 22 × 22 binary image. (a) Binary image. (b) Blocks example.

C; the possible candidates of D are D, E and G; the
possible candidates of F are F and G; the possible
candidates of H is H itself. Therefore, all possible
candidates of Fig. 1 are A, B, C, D, E, G, F, G, H, I,
J and L. It is observed that some possible candidates
are redundant, for example, G is the common possible
candidate of D and F. We need the following two
lemmas in order to obtain all possible candidates
without redundancy.

Lemma 1. (Covering property). (~) Let Q be a black
bincode at level l, if some bincodes fall in [Q,
Q + (42N-I- 1)], these bincodes are covered by bin-
code Q in the sense of spatial structure.

For convenience, Q+(42N-I - -1) is termed the
rightmost coverage of bincode Q.

Lemma 2. TM Given a 2 N x 2 N binary image, if Q is
the bincode of an internal node in the bintree and
B and C are bincodes of the left son and the right
son of Q, respectively, then B = Q + 2 2 (2 N - / - 1) and
C = Q + 3 x 22(2N-z- 1), where I is the level of Q.

Given a sequence of bincodes, the method for ob-
taining all possible candidates without redundancy is:
for the first bincode, by using Lemma 1 and 2, we
calculate its all ancestors in a bottom-up manner until
the father of one ancestor covers the next bincode or

the level of one ancestor is equal to lmin, then the next
given bincode is processed successively. From the first
given bincode 87 in Fig. 1 and the second bincode 117,
by Lemma 1, the first bincode 87 does not cover the
second bincode 117 because the rightmost coverage of
87 is 87 [= 8 7 + (4 (4 - 4) - 1)] . Thus, bincode 87 is
a possible candidate. By Lemma 2, the father of bin-
code 87 is bincode 84 [87= 84+ 3 x 2 (2(4-3-1))] at
level 3 (--4 - 1). The rightmost coverage of 84 is 87
[= 84 + (4 (4- 3) _ 1)]. Since it does not cover bincode
117, bincode 84 is also a possible candidate. The father
of bincode 84 is bincode 80 [84 = 80 + 2 (2(4-2-1))]
at level 2. The rightmost coverage is 95
[= 80 + (4 (4- 2) _ 1)], so bincode 80 is also a possible
candidate. Since bincode 80 is at level 2 (= lmin), we
check the second given bincode 117 and the third
bincode 124, subsequentially. By the same arguments,
we have that all possible candidates of Fig. 1 are
bincodes 87, 84, 80, 117, 116,124, 112,208, 253,252 and
240, which correspond to nodes A, B, C, D, E, F, G, H,
I, J and L, respectively. Note that the black possible
candidates are the given bincodes.

It is observed that given a sequence of bincodes of
size n with respect to an rn x m image, if all given
bincodes are at the same level, the size of all possible
candidates is O(n); in the worst case (see Fig. 3), the

(b)
Fig. 3. The worst case example. (a) Binary image. (b) The corresponding bintree.

Neighbor finding on images 1511

size of all possible candidates is O(n x logm). In
general, the size of all possible candidates is
O((lma X -- lmi n + 1) X n). Consider the corresponding
bintree of one image, when the size of the black leaf
nodes is equal to or larger than that of the white leaf
nodes, it follows that the size of all possible candidates
will be less than or equal to 3 x n. Upon finding
a possible candidate, the next possible candidate can
be obtained in O(1) time, so we have the following
result.

Lemma 3. Finding all possible candidates can be per-
formed in O((lma x -- lmi n + 1) x n) time.

3.2.2. Construct hashing table. We now want to
construct a hashing table for storing these possible
candidates in order to perform four-neighbor finding
efficiently.

Given a 2 N x 2 N image and a hashing table with
bucket size S (= 4 K, where K is an integer, 1 _< K _<4
and K < N), our bucket-allocation strategy is de-
scribed as follows. Let the first bucket contain S - 1
possible bincodes and each of the others contain
S possible bincodes. The possible bincodes at levels
above 2K are allocated to the first bucket since there
are 22K - 1 (= S - 1) possible candidates at most. The
next two buckets contain the possible candidates at
level 2K because it is of size 22K+1 (=2S) at most.
Cont inuing this way, we see that the possible bincodes
in a bucket are all located at the same level except those
in the first bucket. Given a 22 x 22 binary image, all
possible bincodes are shown in Fig. 4(a), where the
number incident to the node is the bincode and its
corresponding column_index and row_index. Suppose
the size of the bucket is 4, we first assign bincodes 0, 64

,%
84 t'~ 92 ~ I16(~ 124}~ 212r~ 2ao}h 244t. ~ 2 5 2 ~

85 87 93 95 117 I19 125 127 213 215 221 223 245 247 253 255
(0,0) (0,1) (1,0) (1,1) (0,2) (0,3) (1,2) (1,3) (2,0) (2,1) (3,0) (3,1) (2,2) (2,3) (3,2) (3,3)

(a)

level
0

3

4

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 5 5 4 4 5 5 6 6 7 7 6 6 7 7

(b)

Fig.4. A bucket-allocation example. (a) All possible bincodes ofa 22 x 22 binary image. (b) Associated bucket
numbers when the size of the bucket is 4.

1512 C.-Y. HUANG and K.-L. CHUNG

and 192 to bucket 0. At level 2, the bincodes 80, 112,
208 and 240 are assigned to bucket 1. At level 3, the
bincodes 84, 92, 116 and 124 are assigned to bucket 2;
bincodes 212, 220, 244 and 252 are assigned to bucket
3. As shown in Fig. 4(b), the number of incident to the
node is the corresponding bucket number. Return to
Fig. l(c). Since it does not have any possible candidate
at level 0 and level 1, C, G, H, L, B, E, F, J, A, D and
I are al located to bucket 0, 0, 0, 0, 1, 1, 1, 2, 3, 3 and 6,
respectively.

Let P be a bincode at level lp(lp >_ lmin) and location
(ip, jp). Given a hashing table, each bucket with size S,
following the previous bucket-al locat ion strategy, the
bucket number of P, bp, can be obtained by the follow-
ing hash function:

bp = 0 for Ip < 2K;

bp = 2 lp- zK + Lip × 2 t~ N- 2K] + Lip X 2(lp)/2- N- 2K J

_ L2tmi,- zK] for Ip _> 2K and lp is even;

bp = 2 lp 2K+ lip x 2 lp-N 2r j + [j p x 2(lp-1/2)-N-EKj

_ [21~, - 2r] for lp > 2K and Ip is odd.

Naturally, the bincodes at levels smaller than 2K are
allocated to bucket 0. We next consider the bincodes
at levels larger than or equal to 2K, that is, lp > 2K.
When Ip is odd (even), because there are (2/p - 1) -
(22K - 1)((2 z° - 1) - (22K - 1)) bincodes at levels smaller
than lp and larger than or equal to 2K, the leading bucket
number at level lp is 2 lp-2K (= ((2 / p - 1) - (2 2 K - 1))/
4k)+ 1)(2/p-2K (=((2 l~ - 1) - - (2 2 r - l)) /4k)+ 1)). The
possible bin- codes at level lp are al located to buc-
kets by the order of co lumnJndex major first then
row_index major. [(ip/2 ~2N-1,)/2) x 2l'/2/4 K]
(= [it, X 2lP-u-2g])([(ip/2 t2N-tl"+ 1))/2) X 2 (l~- 1)/2/4K]
(= lip X 2 Ip- N-2K])) calculates the number of buckets
used at the column_indices smaller than ip at
level lp; [(jp/2(2N-lp)/2)/4 K] (= [jp X 2(lP/Z)-N-2r])
([(jp/2 t2N-~'- 1)/2/4r)](= [jp x 2 ~ ' - 1)/2-m-2K])) cal-

culates the bucket num- ber which is the row_index jp
with to column_index ip. The buckets occupied by
the possible bincodes at levels smaller than level
/rain will not be used if /min--> 2K SO we minus
[2tmi. - 2K] ([2 ~ . - 2K]).

In our hash function, the bucket number of a poss-
ible candidate is obta ined by its level, column_index
and row_index. F r o m the bincode conversion scheme,
the level, co lumndndex and row_index of a bincode
can be extracted from the bincode in O(N) time.
It follows that the hashing table for storing all pos-
sible candidates can be constructed in a total of
O((Im~ -/rain + 1) × n x N) time. We now improve the
time complexity from O((lma ~ -- lm~, + 1) X n x N) to
O((lmax --/rain + 1) x n).

Given a bincode Q at level l and location (i,j), if
bincode P is the father of Q, the level lp and location
(i,, jp) of P can be obtained by the following formulas
in O(1) time:

l , = l - 1;

ip = i and jp = j i fQ is the left son of P;

ip = i and jp = j - 2 (2N-t)/2 if I is even and

Q is the right son of P;

ip = i-212N-(z + 1))/2 and jp = j i f / i s odd and

Q is the right son of P.

On the contrary, given a bincode P at level Ip and
location (ip, jp), the level 1 and location (i,j) of Q can be
obtained in a similar way if it is known when Q is the
right son of P or the left son of P.

Recall that the possible candidates of Fig. 1 are 87,
84, 80, 117, 116, 124, 112, 208, 253, 252 and 240. Since
the possible candidate 87 is at level 4 and location (0, 1),
by our hash function, the possible candidate 87 is
allocated to bucket 3 (bp = 24- 2 + [0)< 24- 2- 2j +
L1 x 2 2 - 2 - 2 j - [_22-2] = 4 + 0 + 0 - 1 = 3) . Next,
the possible candidate 84 is at level 3 and location
(0, O) (l p = l - l = 4 - 1 = 3 , i p = i = 0 and jp=
j - - 2 (2N-0/2 = 1 -- 2 o ---- 0). Thus, it is allocated
to b u c k e t 1 (bp = 2 3 -2 + [0 X 2 3 - 2 - 2] +
[0 x 2 t3- lv2-2-2] _ [22-~j = 2 + 0 + 0 - 1 = 1). The
possible candidate 80 is allocated to bucket 0 because
it is at level 2 and location (0, 0) (lp = l - 1 = 3 - 1 = 2,
ip = i = 9 and jp = j = 0, then bp = 22- 2 +
[0 × 2 2 - 2 - 2 j + [0 × 2 (2 /2) -2 -2] -- L 2 2 - 2 j = 1 + 0 +

0 - 1 = 0). By the same way, all the remaining possible
candidates will be assigned to the proper buckets. The
constructed hashing table maintained by pointers is
i l lustrated in Fig. 5, where the alphabets shown in the
right upper corners, namely, A, B, C , . . . , and L, denote
the corresponding nodes in the bintree of Fig. l(c); four
fields at the bo t tom of each rectangular record are the
east, west, south and north quasi-neighbors of that
possible candidate, respectively, which will be dis-
cussed later. F o r saving space, the associated levels and
locations of the possible candidate are omitted in the
figure. In order to increase the utilization of memory,
all buckets being empty (e.g. buckets 4 and 5 in Fig. 5)
could be marked out and allocated to other possible
candidates.

Based on this improved version, we have the follow-
ing lemma.

Lemma 4. Construct ing a hashing table for storing
all possible candidates can be accomplished in
O((lmax -- lmin + 1) x n) time.

3.2.3. Obtain equal-sized quasi-neighbors. After
all possible candidates have been allocated in the hash-
ing table, we want to find equal-sized quasi-neighbors
of each possible candidate. We now calculate the
bincode of the east equal-sized adjacent block
of the first given bincode 87. F rom Q = 8 7 =
(01010111)2 , t u = (01110111)2, Am = (00000001)2, and
4[(2N-1)/2] + 3 = 3 , by Theorem 1, we have
Q It, = (01110111)2, (Q[tu) + (Am << (4 [(2 N - l)/2J + 3)) =
(Olllllll)2,then((Q[tu)+(Am<<(4[(2N-l)/2] +3))) ^
t' u = (00001000)2. F rom Q A t u = (01010111)2, we have
(((Qltu) + (Am << (4 [(2 N - /) / 2] + 3))) ^ t'u)l(Q A t ,) =
(01011111)2 = 95. Thus, bincode 95 is the east equal-
sized adjacent block of bincode 87. On the other hand,

Neighbor finding on images 1513

oll lr,ll

2[252 J

'll II
JI

°ll 'll

112 208 , , , °I " I , , ,
I I I I I I

117 Dll
I I I

240

J I i Lll

Fig. 5. The constructed hashing table of Fig. l.

we have that bincode 87 is the west equal-sized quasi-
neighbor of bincode 95.

The level, column_index and r o w J n d e x of one
equal-sized adjacent block of the given bincode can be
obta ined by using the following method in O(1) time.

Given a bincode Q at level I and locat ion (i, j), let le,
lw, l~ and 1 w be the levels of the east, west, south and
north equal-sized adjacent blocks of Q, respectively;
(ie, Je), (iw, jw), (is, js) and (i , , j ,) be the locations of the
east, west, south and nor th equal-sized adjacent
blocks, respectively. It is not hard to derive
le = 1 w = I s = I n = 1, ie = i + 2 L(2N- l)/2j, iw = i -- 2 tt2n-/)/2J,
i s = i n = i, Je =Jw =J, Js = J -- 2tt2N-t')/2J, and
Jn = 2tt2N- l) /2J .

Using the above formulas, the level of the bincode
95 is 4 and the location is (1, 1) (l e = l = 4 ,
i e ~ i -}- 2 L(2N-I) /2] = 0 + 2 0 = 1 and Je = J = 1). Using
the hash function, bv = 24- 2 + [1 x 24- 2-23 ..[_
L l x 2 2 - 2 - 2 J - L 2 2 - 2 j = 4 + l + 0 - 1 = 4 . We see
that bincode 95 will be in bucket 4 if it exists, that is,
bincode 95 is a possible candidate. We ignore it because
bincode 95 does not exist in bucket 4. The given bincode
87 does not have the west equal-sized adjacent block
because the column_index iw is out of the boundary of
the image (iw = i - 2 tt2N- i)/2j = 0 - - 20 = - 1). By Corol-
lary 2, we have t' v = (00100010)2 , Q A t' v = (00000010)2 ,
(Q ^ t ' v) - (A m << (4 [(2 N - - I) / 2 J+ 1)) =
(00000000)2, then ((Q ^ t ') - (Am << (4L(2N - /) / 2 J +
1))) ^ t ' = (00000000)2. Further, we have
(((Q ^ t ') - (Am << (4[(2N - /) / 2 J + 1))) ^ t'~)lQ ^ t ,) =
(01010101)2 = 85 since Q A t~ = (01010101)2. The given
bincode 87 would be assigned be the nor th equal-sized
quasi-neighbor of bincode 85. We ignore bincode 85

because it is not a possible candidate. By Corol lar ly 1,
we have that bincode 117 is the north equal-sized
adjacent block of the given bincode 87. The bin-
code 117 is at level 4 and location (0, 2) (1n=1=4,
i n = i = 0 and j , = j + 2 t ~ 2 N - ~) / 2 j = l + l = 2) , then
b v = 24.-2 + L0 x 2 4 - 2 - 2 j + [2 x 2 2 - 2 - 2 j - L 2 2 - 2 j =

4 + 0 + 0 - 1 = 3.. As shown in the second record of
bucket 3 in Fig. 6, 87, is assigned to be the south
equal-sized quasi-neighbor of 117. After finding all the
equal-sized quasi-neighbors, the updated hashing
table is i l lustrated in Fig. 6. We have that the possible
candidate 80 has an east quasi-neighbor 208; the poss-
ible candidate 240 has a south quasi-neighbor 208; the
possible candidate 116 has an east quasi-neighbor
124;...and so on.

Since it takes O(1) time to find the equal-sized
adjacent block of a given bincode and the correspond-
ing bucket number of this equal-sized adjacent block
in each direction, we have the following result.

L e m m a 5. Finding all equal-sized quasi-neighbors
for all possible candidates can be performed in O(n)
time.

3.2.4. R e a r r a n g e possible candidates in the f i r s t
bucket . Recall that based on our bucket-al locat ion
strategy described above, the possible bincodes in
a bucket are all located at the same level, except those
in the first bucket. In addit ion, supposing x and y be
two integers and y > x > 0, the corresponding sub-
images of the possible bincodes in bucket x are larger
than or equal to that of the possible bincodes in bucket
y. Therefore, before performing the t o p - d o w n ap-

1514 C.-Y. HUANG and K.-L. CHUNG

011208,
'll
211
311
411
511
°ll

80

84

252

87

I

112 ,1HI , , , °IHI
, , "IHI

, 11
1HI 11 1117] 1871

[I
253

, 'll

1HI I I I
124 F[[

I I I

Fig. 6. The hashing table of Fig. 1 after finding all the equal-sized quasi-neighbors.

240
112081 L[[

proach, we should rearrange the possible candidates in
the first bucket, bucket 0 when Imin < 2K. This rearran-
gement can be accomplished easily by using the quick-
sort methods. (s)

3.2.5. Downloading. For each gray possible candi-
date which has the equal-sized quasi-neighbor, we next
want to search its descendants adjacent to its equal-
sized quasi-neighbors. Our method for searching the
proper descendants is demonstrated by an example of
Fig. 2. For the gray block M, we first obtain that M has
an equal-sized quasi-neighbor H, then this message
being that H is a quasi-neighbor is downloaded to the
proper sons of M, say R. That is, R has a quasi-
neighbor H. Since R is still gray, the meassage is
downloaded further to his proper sons, say T and U.
We bypass T, because it is white and have that U has
a neighbor H.

Now, downloading can be performed from the first
possible candidate of the first bucket one by one until
all gray possible candidates are processed. For each
gray possible candidate, the rules are described as
follows:

(1) The east (west) quasi-neighbor information is
downloaded to its right (left) son if the level of the
gray possible candidate is even and is downloaded to
its two sons if the level of the gray possible candidate
is odd.

(2) The south (north) quasi-neighbor information is
downloaded to its two sons if the level of the gray
possible candidate is even and is downloaded to its left
(right) son if the level of the gray possible candidate is
odd.

As shown in Fig. 6, for the first gray possible candi-
date 80, by Rule (1), its east quasi-neighbor informa-
tion 208 is downloaded to the right son 92 since by
Lemma 2, 92 = 80 + 3 × 22t4-2-1). The bincode 92 is
at level 3 and position (I, 0) (/= lp + 1 = 2 + 1 = 3,
i = ip + 2 (2N-(I+ 1))/2 = 0 + 20 = 1 and j = jp = 0). We
ignore it because 92 (not a possible candidate) does
not exist in bucket 1 (b p = 2 3 - 2 + [l x 2 3 - 2 - 2 j +
L0 × (3 - D / 2 - 2 - 2 j _ L22-2j = 2 + 0 + 0 - 1 = 1). We

bypass the second gray possible candidate 112, since
it does not have any neighbor. For the third gray
possible candidate 240, based on Rule (2), its south
quasi-neighbor information 208 is downloaded to
244 and 252 (244 = 240 + 2 2 (4 -2 - 1) and 252 = 240 +
3 x 22(4- 2-1)). Thus, 208 is assigned to be the south
quasi-neighbor of 252 (see the first record of bucket 2 in
Fig. 7). Nevertheless, 244 is ignored because it does not
exist in bucket 2. For 116, its east quasi-neighbor
information 124 is assigned to be the east quasi-neigh-
bor of possible candidate 117 at bucket 3. For 252, its
south quasi-neighbor information 208, which was just
described, is assigned to be the south quasi-neighbor of
possible candidate 253 at bucket 6. After downloading
all quasi-neighbors information, the updated hashing
table is illustrated in Fig. 7 and we have the following
result.

Lemma 6. The downloading work can be performed in
O((lmax -- lmin + 1) X n) time.

Up to here, all black neighbors of the given bincodes
have been found. From Fig. 7, we see that the bincode
87 has a north neighbor 117; the bincode 117 has an
east neighbor 124 and a south neighbor 87; the bincode
253 has a south neighbor 208.

Neighbor finding on images 1515

011208,
111
2 I
311
4

5

°11

80

, , clHI,
8, 1HI I I 1241

252

i l l
, , l l

253

119.1 I dHI , ,1HI
116 124

117 11
1871

Fig.7. The updated hashing table of Fig. 1 after downloading quasi-neighbors.

240
I 12081 L

For all given bincodes, our algorithm for find-
ing all black four-neighbors is described as
follows.

Algorithm. Four-neighbor finding
Input: Given bincodes with levels and locations.
Output: The four-neighbors.

Step 1. Finding all possible candidates.
Step 2. Constructing a hashing table for storing all
possible candidates.
Step 3. In the hashing table, for each direction, cal-
culating equal-sized adjacent blocks, say Xs, of each
given bincode, say Y. Y is assigned to be the equal-
sized quasi-neighbor of Xs.
Step 4. When lmi . < 2K, rearranging the sequence
of the possible candidates of the first bucket to be
a decreasing sequence based on the sizes of their
corresponding subimages.
Step 5. From the first bucket, for each gray possible
andidate which has the neighbor, downloading its
quasi-neighbor information to his proper descen-
dants.

By Lemma 3, Step 1 takes O((lma x - lmi n 4-1)X n)
time. By Lemma 4, Step 2 takes O((lma x -- lmi . + 1) X n)
time. By Lemma 5, Step 3 takes O(n) t ime. By using
the quicksort method, Step 4 can be done in
O(S log S) = O(1) time since S is specified to be a con-
stant. By Lemma 6, Step 5 takes O ((l m a x - - lmi n 4- 1) x n)
time. The total complexity is shown below.

Theorem 2. Givenasequenceofbincodesofsizen, our
algorithm for the four-neighbor finding can be accom-

plished in O((lma x --/rain + 1)× n) time with memory
size O((/ma x --/mi, + 1) X n).

Following the definition of the diagonal neighbor
described above, by modifying our algorithm slightly,
the diagonal neighbors can be found easily in terms of
the same time complexity.

4. EXPERIMENTATIONS

In order to gain more insight into the performance
of our algorithm, some experimental results for a prac-
tical version are included. We first provide five se-
quences of bincodes with respect to five 28 × 28 binary
images. These bincodes are generated randomly. Our
programs are coded in C-compiler programming lan-
guage and are executed on a SUN/SPARC-2 worksta-
tion.

Let the size of the bucket be 16 (=42). The experi-
mental results are shown in Table 1, where "see"
denotes second; (b)/(a) denotes the ratio of the time
spent in the four-neighbors finding to the size of the
possible candidates. From Table 1, it is observed that
the execution time of the four-neighbor finding is
almost linearly proportional to the size of possible
candidates. These results confirm our theoretical
analysis. Next, we take two maps shown in
Figs 8 and 9, respectively, to evaluate our algorithm.
Figure 8 is the floodplain map and Fig. 9 is the Taiwan
map. Both images are of resolution 28 × 28. Similarly,
the size of the bucket is set to be 16 (=42). The
experimental results are shown in Table 2. The results
also confirm our theoretical analysis.

1516 C.-Y. HUANG and K.-L. CHUNG

Table 1. Experimental results for random images

The size of
given bincodes

(a) The size of
possible candidates

(b) The execution time
for four-neighbor finding

(s) (b)/(a)

2720 8019 1.12
4911 15 765 2.19
4613 14841 2.02
4968 14982 2.13
3925 13 031 1.79

0.000140
0.000139
0.000136
0.000142
0.000137

Fig. 8. Floodplain map.

5. DISCUSSIONS AND CONCLUSIONS

In this paper, we assume that the input data of our
algorithm is a sequence ofbincodes and the associated
levels and locations. However, the associated levels
and locations can be easily extracted from bincodes if
the input data only has bincodes. This extraction work
needs O(N x n) time. In this case, the total time com-
plexity is O(N x n) since 2N >/max --/rain + 1, where
the image is of size 2 s x 2 s. In fact, our algorithm can

be applied to handle the 3-D ease, where the 3-D image
is represented by the 3-D bineodes/3)

The significance of neighbor finding is due to its
popular use in the area of image processing and
pattern analysis. Our main contribution is to present
a faster neighbor algorithm. The result of this paper
can also be applied to many, applications on bincodes,
such as connected component labeling, perimeter,
Euler number, and so on, to achieve better perform-
ance.

Neighbor finding on images 1517

Fig. 9. Taiwan map.

Table 2. Experimental results for real maps

(b) The execution
(a) The size of time for

The size of possible four-neighbor
Image given bincodes candidates finding (s) (b)/(a)

Floodplain 807 2454 0.31 0.000126
Taiwan 459 1453 0.20 0.000138

REFERENCES

1. C.-Y. Huang and K.-L. Chung, Fast operations on binary
images using interpolation-based bintrees, Pattern Rec-
ognition 28(3), 409-420 (1995).

2. H. Samet, Applications of Spatial Data Structures. Ad-
dison Wesley, New York (1990).

3. M. A. Ouksel and A. Yaagoub, The interpolation-based
bintree and encoding of binary images, CVGIP: Graph.
Models Image Process. 54(1), 75-81 (1992).

4. C. A. Shaffer, R. Juvvadi and L. S. Health, Generalized
comparison of quadtree and bintree storage require-
ments, Image Vis. Comput. 11(7), 402-412 (1993).

5. K. Knowlton, Progressive transmission of gray-scale and
binary pictures by simple, efficient, and lossless encoding
schemes, Proc. I EEE 68, 885-896 (1980).

6. H. Samet and M. Tamminen, Computing geometric
properties of images represented by linear quadtrees,
IEEE Trans. Pattern Anal. Mach. Intell. 7(2), 229-240
(1985).

7. G. Schrack, Finding neighbors of equal size in linear
quadtrees and octrees in constant time, CVGIP: Image
Understanding 55(3), 221-230 (1992).

8. R. Sedgewick, Algorithms. Addison Wesley, New York
(1988).

1518 C.-Y. HUANG and K.-L. CHUNG

About the Autbor--CHI-YEN HUANG received the B,S. degree in Industrial engineering from Chung Yuan
Christian University and the M.S. degree in Industrial management from the National Taiwan Institute of
Technology. He now is a Ph.D. candidate in the Department of Information Management of the National
Taiwan Institute of Technology. His current research interests include computer vision and parallel
processing. He is a student member of the IEEE Computer Society.

About the Author--KUO-LIANG CHUNG received the B.S., M.S. and Ph.D. degrees in Computer science
and information engineering from National Taiwan University. Since 1995, he has been a Full Professor in
the Department of Information Management of the National Taiwan Institute of Technology. His current
research interests include parallel and distributed computing, image and vision processing, matrix computa-
tions and computer graphics. He obtained the 1990 Outstanding Paper Award from the Computer Society of
Republic of China and the Outstanding Research Awards from the National Science Council of Republic of
China in 1992 and 1994, respectively. In 1995, he received the National Taiwan Institute of Technology
Teaching Excellence Award. Dr Chung is a member of the IEEE Computer Society and the SIAM Society.

