COMPUTER VISION AND IMAGE UNDERSTANDING
Vol. 61, No. 2, March, pp. 278-284, 1995

NOTE

Hough Transform on Reconfigurable Meshes*

Kuo-LiaNG CHUNGT AND HORN-Y1 LIN

Department of Information Management, National Taiwan lastitute of Technology, No. 43, Section 4, Keelung Road, Taipei, Taiwan 10672,
Republic of China

Received August 23, 1993: accepted July 25, 1994

The Hough transform is an important image processing opera-
tion. Given an N X N digital image, we first present a parallel
algorithm for computing the Hough transform in O((p/k) log N)
time on a reconfigurable mesh of O(kN?) processors, 1 < k =t p,
where p is the number of angles to be considered. Then, on a 3-
dimensional reconfigurable mesh using OQ(kN?) processors, the
Hough transform can be computed in O(p/k) time, When setting
k = O(p}, a constant time algorithm js derived. Furthermore, a
more general result is presented; the Hough transform can be
computed in G((p log N)/(k log M)} time on a reconfigurable mesh

of O(kN>M) processors, where 2 <M < N. © 199¢ Academic Press, Inc.

1. INTRODUCTION

The well-known Hough transform (HT) is an efficient
method for detecting predefined features in digital images
(3, 24]. Without loss of generality, we only consider the
binary image, i.¢., the pixel value is 0 or 1, and consider
the HT for straight line detection using normal parame-
ters as suggested by Duda and Hart [6). The HT was
brought to the attention of the mainstream image commu-
nity by Rosenfeld [23]. In order to detect lines through
large collinear subscts of a planar set of point (i, j) for
0 =i, j= N — I, each point is transformed into the
sinusoidal curve in the (r, 8) plane which is defined by

r=1icos @+ jsin 8. ()

In Fig. 1, all points I(i, j) on L satisfy (I). The HT
utilizes (1) to detect straight lines or edges in an image.
Given a projection angle 8 (—m/2 < ¢ = m/2), let 1-pixel
be the pixel with value 1; we first count the number of 1-
‘pixels with value r. Setting a threshold value & that de-
pends on the practical demand, if the number of 1-pixels
with value r is greater than or equal to &, then the
corresponding I-pixels form a line. We try out a set

* This research is supported in part by the National Science Council
of the Republic of China under Contract NSC82-0415-E011-180.
t To whom correspondence should be addressed.

1077-3142/95 $6.00
Copyright © 1995 by Academic Press, lnc.
Al rights of reproduction in any form reserved,

{0;]0 = j < p} of p possible ¢'s. This is equivalent to
trying out a set of p possible slopes for the lines to be
detected.

Parallel computing for image processing and pattern
recognition [15, 16, 31, 33, 37] has received considerable
attention during the last few years. The progress of VLSI
technology has made new parallel organizations possibie.
From the architecture viewpoint, mesh-connecied com-
puters (MCCs) are of particular interest to the image pro-
cessing community. Some real machines such as the
CLIP, GAPP, and the MPP [1, 5, 10] have been built for
realizing the MCCs. Many parafle! HT algorithms have
been presented on MCCs [4, 8, 9, 25].

The main drawback of MCCs is the large communica-
tion diameter and MCCs tend to be slow when it comes to
handling data transfer operations over long distances. In
order to overcome this large diameter problem, MCCs
have recently been enhanced by the addition of various
bus systems. Some researchers [14, 16, 29-22, 28, 34-36]
consider MCCs enhanced by a number of bus systems
whose configuration can be changed dynamically. Such a
bus system is referred to as a reconfigurable bus system.
An MCC with a reconfigurable bus system is abbreviated
as a reconfigurable mesh (RM). The parallel algorithm
proposed by Kao ef al. [11] computes the HT in O(1) time
on an RM using O(pE?) processors, where p is the num-
ber of angles to be considered and E denotes the number
of edge pixels in the image. However, due to its input
constraint being dominated by the number of edge pixels,
their RM cannot be reused for different images because
commonly the number of edge pixets for different images
is hardly equivalent. A fixed large number of processors
used is another limitation of Kao et al.’s resull, Hence,
the method proposed by Kao et al. [11] is still impractical
to be implemented. Therefore, how to design new paral-
lel HT algorithms on RMs but without the above two
restrictions in Kao ef al.’s result is the main motivation of
this research. Another motivation is to reply to Olariu et
al.’s conjecture [21]: whether the HT can be computed in
O(log log N) Time on RMs.

278

HOUGH TRANSFORM ON RECONFIGURABLE MESHES

line L

normal

N\

FIG. 1.

(r, 8} plane.

This paper first presents a parallel algorithm for com-
puting the HT in O(p/k) log N) time on a 2-dimensional
(2-D) RM of O(kN?) processors, 1 < k = p. Then, on a 3-
dimensional (3-D) RM with O(kN?) processors, the HT
can be computed in O{p/k) time. When setting £ = O(p),
a constant time, i.e., O(1) time, algorithm is derived. Fur-
thermore, a more general result is presented; the HT can
be computed in O((p log N)/(k log M) time on an RM of
O(kN*M) processors. When setting k = O(p) and M =
O(log N/log log N), we reply to Olariu et al.’s conjecture
[21] that on an RM, the O(log log N) algorithm for com-
puting the HT is achievable. In addition, when setting
k= O(p) and M = O(N"), where c is a constant, the HT
can be computed in O(1) time.

2. COMPUTATIONAL MODEL

The computational model used throughout this paper is
the RM. An N, x N, RM consists of N| X N, identical
processors positioned on a rectangular array with N,

s;={)

sg=1 s9=1 s3=0 sq4=1

FIG. 2. An RM of size 4 x 5,

279

rows and N, columns. For example, an RM of size 4 x 5
shown in Fig. 2 contains four rows and five columns.

The processor located in row { and column jfor@ ==
Ny~ land 0 =j = N, — lis referred to as P(;, j). Every
processor has four ports denoted by N, §, E, and W,
respectively. In each processor, ports can be dynami-
cally connected in pairs to fit computational needs. Our
RM only allows two connections to be set in each proces-
sor. Furthermore, these two connections must involve
disjoint pairs of ports. As shown in Fig. 2, we are given a
binary sequence sps;5253 54 = 10101, where s; is stored in
P(0, j) for 0 = j = 4. If 5; is 0 then all processors P(,),
0=1i= N, -1, connect their W and E ports; if 5;is I then
all processors P(i,), 0 =i = N, — I, connect their W and
S ports and their N and E ports. Now processor P(3, ()
broadcasts a start signal, #, from its W port. It is easy to
track down in a staircase manner. At this moment, P(0, 4)
saves the number of 1's in the sequence, say 3 (= N, —
1 —i=4—~1~— 0}, where { denotes the row number of the
processor that receives # from its E port in the last
column.

We assume that each processor has a constant number
of registers and a set of some basic instructions. A pro-
cessor can perform a standard arithmetic or boolean op-
eration in unit time. We assume a SIMD model; in each
time unit the same instruction is broadcasted to all pro-
cessors, which execute it and wait for the next instruc-
tion. Each instruction can consist of setting locat connec-
tions, performing an arithmetic or boolean operation,
broadcasting a value on a bus, or receiving a value from a
specific bus. At any given time, only one processor can
broadcast a value onto a bus and processors, if instructed
to do so, read the bus. It is assumed that communication
along buses takes O(I) time and the RM operates in a
SIMD manner.

3. HOUGH TRANSFORM ON
RECONFIGURABLE MESHES

Given a binary image I(/, j) for 0 = i, j = N — [, initially
the image has been mapped onto an N X N RM such that
P(i, j) contains [/, j). For a specific projection angle ¢
(—m/2 < 6 = w/2), we first partition the RM into some
paralle]l bands that are 1 pixel-width wide. A simple argu-
ment reveals that at most N sin ¢ + N cos ¢ + [bands
intersect the N X N RM; thus there will be at most
{V2N] + 1 bands [12]. For each band i, we attach its last
processor a variable &; that will count the number of 1-
pixels contained in that band.

The normal length of the band is given by (). For any
#;, 0 = j < p, all image points that have the same normal
length r lie on the same band. Note that the band with 1
pixel-width wide is uniquely defined by the angle 6; and
the length of the normal. In other words, given 4;, proces-
sor P(i, j) can be classified according to its normal length.

280

bl b? bﬂ bd b5 bG b? bS bQ blO bll bli

i O=nj4

A banded image for 8§ = /4.

FIG. 3.

As shown in Fig. 3, when 8 = w/4, the ist band contains
no processor, the 2nd band contains P(0, 0), P(1, 0), and
P(0,1),. . . , the lith band contains P(7, 6), P(7, 7}, and
P(6, 7), and the 12th band contains no processor. For a
specific projection angle #;, by (1) each processor can
compute its normal length in @(1) time in parallel. At this
time, all processors belonging to the same band do have
the same normal length.

The following theorem can confirm for us that each
band can establish its bus in O(1) time simultancously.

THEOREM 1. In the same band, each processor of the
RM can visit its nearest neighbor within two steps.

Proof. We prove it by contradiction. Give an angle
(—7/2 < 0 = 7w/2), one example is shown in Fig. 4. Pro-
cessor A can visit processor B, processor C, or processor
D within two steps. Suppose that in the band of Fig. 4,
processor E is the nearest right neighbor of processor A,
then it needs three steps to visit from A to E. We have
that the band contains both processor A and processor E
with bandwidth w (< & < CD = 1). Hence, it is a contra-
diction because each bandwidth is of 1 pixel-width. =

By Theorem I, we have the following result.

FIG. 4. One example.

CHUNG AND LIN

COROLLARY 2. In the same band, each processor of
the RM can visit its nearest neighbor in O(1) time.

In addition, there is a notable property in Fig. 4 that for
some 4, in the same band, there are at most two proces-
sors in the same column [4].

Algorithm 1 presents our first parallel HT algorithm to
compute the number of [-pixels contained in each band {
(1 =i=|V2N}+ 1)in Olog N) time on an N x N RM.
For simplicity, N is assumed to be a power of 2. In fact, it
is not hard to extend this algorithm to the general case: N
is not a power of 2, and we leave it to the readers. For
simplicity, throughout the following three HT algorithms,
we only present them for one band.

ALGORITHM 1. A parallel HT algorithm on the N X N

RM.

Step 1. Establish a bus system for each band. First,
each processor P({, j) computes its normal length by (1).
Because there are at most two pixels within the same
column, each processor then sums up the pixel value of
itself and the pixel value stored in its upper-adjacent pro-
cessor if both processors have the same r value. In order
to avoid the collision when sharing processors, we dupli-
cate the ports in each processor. One is used by the cur-
rent bus while the duplicated port is used by the adjacent
bus.

Step 2. For each band i, we want to compute b; =
Ej’ig‘ pi.j» where p, ; denotes the pixel value stored in the
processor in band i, 1 =i = |V2N] + 1, and column j,
0=j= N — 1. We first sume up p; ;s in pairs as shown

below:

Pil < Pig + pia
Pia < piz + pi3

PiN-1 < Pin-2 T Pin-i.

Then we want to compute b; =p;; + pis +. . . + pin-1.
Repeat the above pairwise summations iteratively by us-
ing the bus systems dynamically, the value of each b; can
be determined in O(log N) stages in parallel and is stored
in the last processor of band i.

Step 3. We compare all ;s with the threshold value
8. If b; = 8, then we detect the corresponding lines. This
comparison step takes (1) time.

For example, in Fig. 3, the bus system in the sixth band
was constituted by P(7, 0), P(6, 0}, P(6, 1), P(3, 1),
P(5,2), P4, 2), P4, 3}, P(3, 3), P(3, 4}, P(2, 4), P(2, 5),
P(1, 5), P(1, 6), P(0, 6), and P(0, 7). We have pgy = 2,
Pe1 = 2,p62=0,p63=0,p54= 1,65 =0, pss = 1, and
ps7 = 0. Then we set those upper-adjacent processors to
be bridges. The role of bridges is only transmitting the

HOUGH TRANSFORM ON RECONFIGURABLE MESHES

r 7 L. T T T 1

stage 1.
stage 2, __J
stage 3. ‘ |
3
output bs
FIG. 5. A computational diagram for computing b.

data. Those bridges are P(6, 0), P(5, 1), P(4, 2), P(3, 3),
P2, 4), P(1, 5), and P(0, 6). The bus established in the
sixth band and the bus established in the seventh band
share processors P(6, 0), P(5, 1), P4, 2), P(3, 3), P(2, 4),
P(1, 5), and P(0, 6). By Corollary 2, Step 1 takes O(1)
time to establish a bus system for each band. Based on
previous duplication strategy, in Step 2, ;s can be per-
formed in O(log N) time in a collision-free way. Figure 5
illustrates the computational diagram for computing b, of
Fig. 3. It needs three stages to obtain b;.

Combining the overall time spent in Steps [-3, we
have the following result,

THEOREM 3. For p projection angles, the HT can be
computed in O((p/kllog N) time on an RM with O(kN?)
processors.

On a 3-D RM, we next present a constant time HT
algorithm. We construct a 3-D RM with a N X N base
mesh denoted by layer Ly, and in total there are N layers,
, and Ly_y.

say Ig, Ly, . ..
mapped into Ly.

Initially, the image is

FIG. 6.

281

ALGORITHM 2. A parallel HT algorithm on the N %
N X N RM.

Step 1. Establish a vertical 2-D RM for each band. On
Ly, by Corollary 2 we first establish the bus system for
each band in O(1) time; this part is similar to Step 1 of
Algorithm 1. At this moment, each processor P(0, i, j),
0=i,j= N — 1, on Ly recognizes its adjacent neighbors
and then acknowledges the processors P(k, i, j) for 1 =
k=N-1onlL,, ..., Ly, and Ly, to form a
vertical 2-D RM. For an image, it needs (1) time to
construct these [V2N] + 1 vertical 2-D RMs in parallel.

Step 2. Sum up the number of 1-pixels for each band
by using the vertical 2-D RM. Thus, all b;’s are obtained.

Step 3. Finally, all b;"s values are stored in the first
row and last column of processors on L,. We compare
them with the threshold value & and determine whether
they form the corresponding lines.

For example, in the third band of L,, processors
P(0, 2,0), PO, 1, 0), PO, 1, 1), P(0, 0, 1), and P(0, 0, 2)
construct a vertical 2-D RM as shown in Fig. 6a, where
processors P(0, 1, () and P(0, 0, 1} serve as the bridges
and contribute O-pixels since their coordinates are out of
the third band. After straightening these zig-zag lines, the
alternate vertical 2-D RM is shown in Fig. 6b. On one
vertical 2-D RM in Fig. 6b, if P(0, i, j) contains 0-pixels
then all processors in the same column connect their W
and E ports; if P(0, i, j) contains 1-pixels then all proces-
sors in the same column connect their W and S ports and
their N and E ports. Now processor P(7, 2,) broadcasts
a start signal, #, from its W port; it can be verified that
the number (N — 1) —I, where ! is the layer number of the

b bridge column bridge column
U 4
(U 1 2 3 4
layer 7 l . ' '
layer 6 . l ..
layer 5 ' ' ' . /
layer 4

P(0,2,0) P(0,1,0) P(0,1,1) P(0,0,1} P{0,0,2)
=1 =0 =1 =0 =1

Two vertical 2-D RMs for the third band of L,. (a} Original vertical 2-D RM for the third band. (b) Vertical 2-D RM after straightening.

282

CHUNG AND LIN

" 5 6 7 8
A ARNVER c
2JoNL NN
A) AN

a 0 1 2 3
layer 2 O / Q %\
layer 1 \\

o (O OAAH OO

P(0,1,)=1 @

P(0,2,0)=1 @ PO,1,0)=0 @

SAOa®

P(0,0,1)=0 @ P(0,2)=1

P{0,2,0)=0 @

P(0,1,00)=9 @

FIG. 7.

unique processor that receives # from its £ port in the
last column, equals the number of 1-pixels in the band.
Based on the previous duplication strategy to avoid the
collision when sharing processors, the work of summing
up the number of 1-pixels in each band can be performed
in (1) time in a collision-free way. As a result, all 5;’s
are obtained.

Since each above step needs O(1) time, we have the
following result.

THEOREM 4. For p projection angles, the HT can be
computed in O{plk) time on a 3-D RM with O(kN?)} pro-
Cessors,

Consider the case: the number of layers, say, M, in the
3-D RM is less than or equal to N. Following Algorithm 2
and the concept of modulo [22], in what follows, we
present a more general result: the HT can be computed in
O((p log N)/(k log M)) time on a RM of O(kN*M) proces-
sors, 2 = M = N. We take the third band in Fig. 3 as an
example to demonstrate our third algorithm.

ALGORITHM 3.
with size O(N?M).

Step 1. Establish a vertical 2-1> RM with height M for
each band. Different from Step 1 of Algorithm 2, in
the third band of L,, processors P(0, 2, 0), P(0, 1, 0},
P, 1, 1), PO, 0, 1), and P(0, 0, 2} construct an aug-
mented vertical 2-D RM with height 3 as shown in Fig.
7(a). Recall that for any band, on the corresponding bus
system, the processor contributes (-pixels to the se-

A parallel HT algorithm on the RM

PO, 1,1}=1 @

P{0,0,1)=0 @ P{0,0,D=0

(a) The augmented 2-D RM after setting up port-connections. (b) The augmented 2-D RM after pushing the start signal.

quence if its coordinate is out of the band. Suppose that
we have duplicated all the ports as described in Algo-
rithm 2. If P(0, i, j) contains 0-pixels then all processors
in the same column connect their W and E ports; if
P(0, i, j) contains 1-pixels then all processors in the same
column connect their W and S ports and their N and E
ports. The augmented sequence of the third band is rep-
resented by 1 @ 0 @ 1 @ 0 @ 1, where the symbol @
denotes a dummy signal to set up the processors in the
same column in order to transmit the start signal, #, to
the adjacent processor in the next colomn. If processor
P(0, i, j) contains the @ signal then all processors
Pk,i,j),l =k=M -2, where M denotes the number of
layers, connect their W and E ports and their N and S
ports; P(M — 1, 1, j) connects its W and E ports when
P(0, i — 1, /) contains 0-pixels, but connects its S and E
ports when P(0, i — 1, j) contains 1-pixels; PO, i, j)
connects its W and N ports by itself. Figure 7a illustrates
the detailed port-connections of each processor for the
third band. For each band, this construction step takes
O(1) time.

Step 2. Sum up the number of 1-pixels for each band
by using the augmented 2-D RM. If we follow Step 2 of
Algorithm 2, then we may not have sufficient height to
perform the summation work. We modify Step 2 of Algo-
rithm 2 by using the concept of modulo [22]. Now proces-
sor P(2, 2, 0) broadcasts a start signal, #, from its W port.
The # signal crashes to the bottom processor P(0, 1, 1)
and P(Q, 1, 1) is assigned the value 1 while the other
bottom processors are assigned the values 0. Simulta-

HOUGH TRANSFORM ON RECONFIGURABLE MESHES

0 3 4 5

1 2
G094

PO, 200=0 @ PI1,00=0 @ PO1LYy=0 @

6 7 8
N N Y

NS

P0,0,1)=0

Oat
« (4
OO

P0,0,2) =0

FIG. 8. The augmented 2-D RM after the second iteration.

neously, P(1, 0, 2) receives the #signal from P(2, 2, 0). At
this moment, we obtain the first remainder v} = 1 (= M —
1—1=3—1-1), which is stored in P(l, 0, 2), and it
satisfies r} = f{10101) mod (M — 1), where f10101) de-
notes the number of 1’s in the sequence 10101. Next,
processor P(1, 0, 2) sends the value of r} to by which is
stored in P(0, 0, 2). Now, the associated sequence stored
in the bottom processors is represented by 0 @ 0 @ 1 @
0 @ 0 @ 0 which is shown in Fig. 7b. Basicaily, each
iteration consists of two phases: setting up port-connec-
tions and pushing the start signal, respectively.

Once again, P(2, 2, 0) broadcasts a start signal from its
W port after setting up the port-connections based on the
sequence 0 @ 0@ 1 @ 0 @ 0. Then P(1, 0, 2) receives the
signal and we obtain the second remainder r = 1 which
satisfies rZ = f(00100) mod (M - 1). Next, PO, 0, 2)
receives r; from P(1, 0, 2) and performs by = r} X
(M — 1) + r}. Now the sequence stored in the bottom
processors is 0 @ 0 @ 0 @ 0 @ 0 which is shown in Fig.
8. Up to here, the summation work is finished.

Generally speaking, the above process can be carried
out iteratively, say, ¢ iterations, for any band, Finally, the
bottom processors contain the sequence 0 @0 @ 0 - - 0
@0@0and weobtain by = ¢y x (M — 1)1+ -« +
i X (M — 1)+ rl. It is not hard to check that ¢ =
O(log N/log M) and b, can be computed in O(log N/log
M) time.

Step 3. Similar to Step 3 of Algorithm 2.

Since Step 1 and Step 3 need O(1) time and Step 2
needs O(log N/log M) time, we have the following result,

THEGREM 5. For p projection angles, the HT can be
computed in O(p log N{(k log M)} time on an RM with
O(kN?) processors. When setting k = O(p) and M =
O(NY), where ¢ is a constant, the HT can be computed
in OQ1) time.

4, REMARKS AND CONCLUSIONS

The well-known HT is an efficient method for detecting
predefined features in digital image. In this paper we have
presented simple algorithms for this problem which take
only O(log N) time and O(1) time on a 2-D RM of O(N?)
processors and a 3-D RM of O(N?) processors, respec-

283

tively, in which each processor has only a constant num-
ber of switches and registers and uses only a constant
amount of memory. As far as the second algorithm is
concerned, although the number of processors used to
solve the HT problem is G(N?), we overcome the restric-
tion in Kao et al.’s result which is dominated by the
number of edge pixels. Finally, if we set M = O(log N/log
log N) for our third algorithm, then we reply to Olariu et
al.’s conjecture [21] that the O(log log N) algorithm for
the HT is achievable. In addition. when setting & = O(p)
and M = O(NY), where c¢ is a constant, the HT can be
computed in (1) time. Although our aigorithms seem
ideally for detecting straight lines corresponding to the
parallel bands, how to design efficient Hough transforms
on RMs for the other parametric curves {2} such as cir-
cles and ellipses is our future research topic.

Finally, some implementation considerations are dis-
cussed. The YUPPIE system [17] and the configurable
hardware [7] are the first two VLSI implementations to
justify the enhancement of the 2-ID RM. In fact, the claim
of the O(1) time broadcast delay is not true in the above
two implementations. By employing precharged circuits,
the broadcast delay has been shorten in the gated-con-
nected network [30]. Furthermore, it has been shown
that the (1) time claim is reasonable if the reconfigurable
bus system is implemented by using optical fibers [29].
An empirical methodology for exploring RMs is pre-
sented in [13]. Especially, Maresca e¢ al. [18] present a
hierarchical node clustering scheme for packaging a class
of RMs which uses circuit-switching-based router at each
node to deliver a different topology at every instruction.
This scheme makes it possible to obtain communication
speed-up and automatic control, at the compiler level,
over signal propagation delay.

REFERENCES

1. K. E. Batcher, Design of a massively parallel processor, [EEE
Trans. Comput. Ser. C 29 1980, 836-84(.

2. D. H. Ballard, Generalizing the Hough transform to detect arbitrary
shapes, Pattern Recognit. 13(2) 1981, 111-122,

3. D. H. Baliard and C. M. Brown, Computer Vision, Prentice—Hall,
Englewood Cliffs, NJ, 1982.

4. R. E. Cypher,]. L. C. Sanz, and L. Snyder, The Hough transform
has O(N) Complexity on N X N Mesh Connected Computers,
SIAM J. Comput. 19(5), 1990, 805-820.

5. M.]. B. Duff, Review of the CLIP image processing system, in
National Computer Conference, Anaheim, CA, 1978,

6. R. 0. Duda and P. E. Hart, Use of the Hough transformation to
detect lines and curves in picture, Commun. ACM 15(1), 1972, 11-
15.

7. 1. P, Gray and T. A, Kean, Configurable hardware: a new paradigm
for computation, in Proceedings, 10th Cualtech. Conference on
VLSI, 1989, pp. 279-295.

8. C. Guerra and S, Hambruch, Parallel algorithms for line detection
on a mesh, J. Parallel Distrib. Comput. 6, 1989, 1-19,

284

9. C. 5. Kannan and Y. H. Chuang, Fast Hough transform on a mesh

1.

12,

16.

17.

19.

20.

21

22

23.

connected processor array, Inform. Process. Letr. 33, 1990, 243-
248.

. NCR Microelectronics Division, Product Description ncrdScg72,

NCR Corporation, Dayton, OH, 1984,

T.W. Kao, S.J. Horng, Y. L. Wang, and K. L. Chung, A constant
time algorithm for computing Hough transform, Pattern Recognit.
26(2), 1993, 277-286.

F. T. Leighton, Introduction to Parallel Algorithms and Architec-
tures: Arrays, Trees, Hypercubes, Kaufmann, Los Altos, CA, 1992,

. W. B. Ligon [T and U. Ramachandran, An empirical methodology

for exploring reconfigurable architectures, J. Paralle! Distrib. Com-
put. 19, 1993, 323-337.

. H. W.Liand Q. F. Stout, Reconfigurable SIMD massively parallel

computers, Proc. {EEE T9(4), 1991, 429-443.

. M. Maresca, M. Lavin, and H. W. Li, Parallel architectures for

vision, Proc. IEEE 76, Aug. 1988, 970-981.

M. Maresca, H. W. Li, and M. Shen, Parallel computer vision on
polymorphic-torus architecture, Int. J. Comput. Vision Appl., Nov.
1985.

M. Maresca and H, W. Li, Connection autonomy and SIMD com-
puters: A VLSI implementation, J. Parallel Distrib. Comput. 7,
1989, 302-320.

. M. Maresca, H. W. Li, and P. Baglietto, Hardware support for fast

reconfigurability in processor arrays, Meshes with reconfigurable
buses, in Proceedings of the International Conference on Paratlel
Processing, 1993, Vol. 1, pp. 282-289,

R. Miller, V. K. Prasanna Kumar, D. Reisis, and Q. F. Stout,
Meshes with reconfigurable buses, in Proceedings of the Interna-
tional Conference on Parallel Processing, 1938, Vol. 1. 205-208.

R. Miller, V. K. Prasanna Kumar, D. Reisis, and Q. F. Stout, Data
movement operations and applications on reconfigurable VLSI ar-
rays, in Proceedings of the Fifth MIT Conference on Advanced
Research in VLSI, 1988, pp. 163-178.

§. Olariu, J. L. Schwing, and J. Zhang, Fast computer vision algo-
rithms on reconfigurable meshes, fmage Vision Comput. J. 10,
1992, 610-616.

S. Olariu, J. L. Schwing, and J, Zhang, Fundamental data move-
ment of reconfigurable meshes, in Proceedings, International Phoe-
nix Conference on Computers and Communication, Scotisdle, AZ,
1992, pp. 472-478.

A. Rosenfeld, Picture Processing by Compuier, Academic Press,
New York, 1969.

24.

25.

26.

27.

28.

29.

30.

3.

32,

33

34

35,

36.

7.

CHUNG AND LIN

A. Rosenfeld and A. C. Kak, Digifal Picture Processing, 2nd ed.,
Academic Press, San Diego, 1986.

A. Rosenfeld, J. Omelas, Ir., and Y. Hung, Hough transform algo-
rithms for mesh-connected SIMD parallel processors, Comput. Vi-
sion Graphics Image Process. 41, 1988, 293-305.

J. Rothstein, On the ultimate limitations of parallel processing, in
Proceedings, International Conference on Parallel Processing., St.
Charles, MO, 1976, pp. 206-212.

J. Rothstein and A, Davis, Parallel recognition of parabolic and
conic patterns by bus automata, in Proceedings, International Con-
ference on Parallel Processing, St. Charles, MO, 1979, pp. 288—
297.

J. Rothstein, Bus automata, brains, and mental medels, JEEE
Trans. Syst. Man Cybernetics 18, 1988, 522-531.

A. Schuster and Y. Ben-Asher, Algorithms and optic implementa-
tion for reconfigurable networks, in Proceedings Sth Jerusalem
Conference on Information Technology, 1990.

D. B. Shu, L. W. Chow, and J. G. Nash, A content-addressable,
bit-serial associative processor, in Proceedings IEEE Workshop on
VLS Signal Processing, CA, 1988.

H. J. Siegel, J. B. Armstrong, and D. W, Watson, Mapping com-
puter-vision-related tasks onto reconfigurable parallel processing
systems, JEEE Computer. 25(2), 1992, 34—-62.

Q. F. Stout, Meshes with multiple buses in Proceedings 27th IEEE
Symposium on the Foundations of Computer Science, 1986, pp.
264-273.

5. L. Tanimoto, A pyramidal approach 1o parallel processing, in
Proceedings Internatonal Symposium on Computer Architecture,
1933, pp. 372-378.

P. Thangavel and V. P. Muthuswamy, Parallel algorithms for addi-
tion and multiplication on processor arrays with reconfigurable bus
systems, Inform. Process. Lett. 46, 1993, §9-94,

B. F. Wang, G. H. Chen, and F. C. Lin, Constant time sorting on a
processing array with a reconfigurable bus system, Inform. Pro-
cess. Lett. 34(4), 1990, 187-192.

B. F. Wang and G. H. Chen, Constant time algorithms for the
transitive closure and some related graph problems on processor
arrays with a reconfigurable bus system, JEEE Trans. Parallel Dis-
trib. Syst. 1, 1990, 500-507,

C. C. Weems, S, P. Levitan, A, R. Hanson, E. M. Riseman, D. B.
Shu, and J. G. Nash, The image understanding architecture, Inr. J.
Comput. Vision 2, 1989, 251-282.

