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Abstract

Recently, Shen et al. [IEEE Transactions on Image Processing 2003;12:283–95] presented an efficient adaptive vector quantization

(AVQ) algorithm and their proposed AVQ algorithm has a better peak signal-to-noise ratio (PSNR) than that of the previous

benchmark AVQ algorithm. This paper presents an improved AVQ algorithm based on the proposed hybrid codebook data

structure which consists of three codebooks—the locality codebook, the static codebook, and the history codebook. Due to easy

maintenance advantage, the proposed AVQ algorithm leads to a considerable computation-saving effect while preserving the similar

PSNR performance as in the previous AVQ algorithm by Shen et al. [IEEE Transactions on Image Processing 2003;12:283–95].

Experimental results show that the proposed AVQ algorithm over the previous AVQ algorithm has about 75% encoding time

improvement ratio while both algorithms have the similar PSNR performance.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Vector quantization (VQ) has been successfully
developed for speech, image, and video coding [1–4].
Many types of VQ such as classified VQ [5], index
compressed VQ [6], finite state VQ [7–10], and some fast
searching algorithms for VQ [11–15] have been pro-
posed. Shannon’s rate-distortion theory tells us that the
VQ is asymptotically optimal for coding a stationary
source [16]. However, since the image source is rarely
stationary in practice, there still exists a gap between the
theoretical performance and the real performance.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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To improve this gap, many adaptive VQ (AVQ)
algorithms [17–26] have been developed. These devel-
oped AVQ algorithms can adapt to the changing input
source when the coding process progresses. In [24],
Fowler proposed a new AVQ algorithm called the
generalized threshold replenishment (GTR) algorithm
and experimental results included the comparisons
among the GTR, nonadaptive VQ, other AVQ algo-
rithms, and theoretic bounds. As demonstrated in [24],
the GTR algorithm is the best when compared to the
others by using the rate-distortion criterion as the cost
function. Recently, Shen et al. [26] presented a novel
and efficient AVQ algorithm called the SZL algorithm
for convenience. In the SZL algorithm, two new
techniques, the locality consideration and the history
aid, are adopted to improve the benchmark GTR
algorithm. Using the locality consideration technique,
the encoder and decoder update the operational code-
book (OC) by inserting not only the input vector but
also the selected neighboring locality vectors. Using the
history aid technique, the encoder (decoder) also uses
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the information of previously encoded vectors which are
stored in the history codebook (HC) to quantize
(decode) the input vector. Experimental results reveal
that the SZL algorithm has a better peak signal-to-noise
ratio (PSNR) performance when compared to the
GTR algorithm although the encoding time is around
three times that of the GTR algorithm when the
codebook size is set to 32 and the range of the history
vectors to be searched is set to 256. The motivation of
this research is to present an improved AVQ algorithm
to speed up the encoding time significantly while
preserving the similar PSNR performance as in the
SZL algorithm.

In this paper, we present an improved AVQ algorithm
based on the proposed hybrid codebook data structure
(HCDS). The proposed HCDS consists of three code-
books, namely the locality codebook (LC), the static
codebook (SC), and the HC. The LC only has the
locality vectors of the next input vector. The SC is
constructed from the training images. The HC is
obtained from the previously encoded vectors. Due to
easy maintenance advantage by using the HCDS, the
proposed AVQ algorithm leads to a considerable
computation-saving effect while preserving the similar
PSNR performance as in the SZL algorithm. Experi-
mental results show that the proposed AVQ algorithm
over the previous SZL algorithm has about 75%
encoding time improvement ratio while preserving the
similar PSNR performance.

Although, the performance of the proposed AVQ
algorithm maybe inferior to that of the image coding
with a transform coding stage, in [21,25], the authors
have shown that AVQ algorithm can be combined with
wavelet transform and leads to even better performance.
In [25], a new algorithm using zerotrees of vectors of
wavelet coefficients and the GTR algorithm for AVQ is
described; this newly published algorithm is quite
competitive to the wavelet-based algorithms employing
nonadaptive scalar quantizers. We believe the proposed
AVQ algorithm can be combined with a transform
coding stage such as wavelet transform to obtain the
good performance.

The paper is organized as follows. In Section 2, the
AVQ algorithm by Shen et al. is revisited. Section 3
presents the proposed AVQ algorithm. Some experi-
mental results are demonstrated in Section 4. Some
concluding remarks are addressed in Section 5.
2. Past work: The SZL algorithm

In this section, the basic concept used in the AVQ
algorithm is introduced first, then the past work by Shen
et al. is revisited.

An AVQ algorithm usually updates the codebook
dynamically according to the changing input source. An
AVQ can be expressed as the following mapping
function:

At : <
K ! Ct, (1)

where K is the input vector’s dimension and Ct � <K is
the time-varying codebook. The time subscript t

indicates that the mapping function At and the code-
book Ct may change with time. The codebook Ct may
contain more than one small codebook. Let Vt 2 <K be
a K-dimensional input vector which is usually trans-
formed from the

ffiffiffiffi
K

p
�

ffiffiffiffi
K

p
input subimage, then the

output of AVQ is a K-dimensional vector V̄ t such that

V̄ t ¼ AtðV tÞ, (2)

where the mapping function At maps Vt to V̄ t based on
some specified minimal cost criterion. In [21–26], the
rate-distortion criterion is used as the cost function.
Given an input vector V t and a rate-distortion
parameter l, if Vt is mapped to X, the cost of X is
expressed by

JðX Þ ¼ DðV t;X Þ þ l � lðX Þ, (3)

where DðV t;X Þ and lðX Þ represent the distortion and the
required code length, respectively. In Eq. (3), the
Euclidean 2-norm is often used to measure the distor-
tion DðV t;X Þ and is defined by

DðVt;X Þ ¼ jjVt  X jj2 ¼
XK

j¼1

ðV tj  X jÞ
2. (4)

By Eqs. (3) and (4), the encoder usually finds the
winning codeword X � such that

X � ¼ arg min
X2Ct[fVtg

JðX Þ. (5)

Eq. (5) indicates that the winning vector X � as the
output vector V̄ t can reach the minimal cost.

In [26], Shen et al. presented the SZL algorithm with
codebook updating based on the locality consideration
and the history aid. Since the neighboring vectors of
input vector are often similar to the input vector, the
encoder updates the OC by inserting not only the input
vector but also the selected neighboring locality vectors.
Let the distance-d locality vectors of a vector Z be
denoted as LdðZÞ which is defined as the previously
encoded input vectors whose block distance from Z is
not greater than d. For example, in Fig. 1, we have
L1ðZÞ ¼ fa; bg and L2ðZÞ ¼ L1ðZÞ [ fc; d; e; f g ¼
fa; b; c; d; e; f g where the locality vectors are ordered by
the block distance. Following these ordered vectors and
given an input vector V t, the encoder first encodes the
input vector V t as V̄ t ð¼ aÞ and inserts a into (or moves
a to) the first position of the OC. Then, the encoder
inserts the other locality vectors (excluding a) of the next
input vector Z into the OC and inserts them after the
first position of the OC according to the block distance.
In order to avoid redundantly inserting those locality
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Fig. 1. Locality vectors of Z, L2(Z).
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Fig. 2. Two codebooks OC and HC used in the SZL algorithm.
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vectors that have been saved in the OC, an identifying
process is needed. When the encoder has identified one
locality vector being already in the OC, it needs to move
this found codeword to the head of the OC.

After describing the locality consideration technique
used in the SZL algorithm, we next introduce the history
aid technique used in the SZL algorithm. As shown in
Fig. 2, when a vector Z is inserted into the OC, the last
codeword in the OC will be deleted and moved to the
HC if the deleted codeword is not from the HC.
Otherwise, the deleted codeword coming from the HC
will not be moved back to the HC. In the SZL
algorithm, a flag is used to indicate whether the deleted
codeword will be moved to the HC or not. Therefore,
besides the codewords stored in the OC, the encoder also
uses the previously encoded vectors which are stored in
HC to quantize the input vector.
Using the two codebooks OC and HC, in the SZL
algorithm, the encoder evaluates the costs among the
one to encode the new input vector directly, the one to
encode the input vector by using the best codeword from
the HC, and the one to encode the input vector by using
the best codeword from the OC, then it selects the best
encoding way with the minimum cost. If the winning
case is the one to encode the new input vector directly,
the encoder usually sends Vt to the decoder and inserts
the input vector into the first position of the OC. If the
winning case is the one to encode the input vector by
using the best codeword from the HC (OC), the encoder
sends the index of the winning codeword to the decoder
and inserts the winning codeword into (moves the
winning codeword to) the first position of the OC.

After encoding the winning case, the encoder inserts
the other locality vectors of the next input vector V tþ1

into the OC based on the selected LdðVtþ1Þ for all cases.
In order to improve the searching time, the index of each
codeword in the HC is encoded by the fixed length
coding and the HC is ordered according to the
potentials of all codewords [13] to accelerate the
searching time where the potential of a codeword X ¼

ðX 1;X 2; . . . ;X K Þ is defined as PðX Þ ¼
PK

i¼1 X 2
i . In

addition, the indices of the codewords in the OC are
encoded by the variable length coding and the OC is
organized in a cache manner. Furthermore, the initial
OC is usually constructed from the training images.

Using the locality consideration and the history aid
techniques, the SZL algorithm has a better PSNR when
compared to the GTR algorithm. But, to maintain the
OC is a time-consuming work and the encoding time is
much more than that of the GTR algorithm.
3. The proposed improved algorithm

In this section, we first present the proposed hybrid
codebook data structure called the HCDS. Based on the
proposed HCDS, we next present the proposed CCAVQ
algorithm, where CC denotes the first letters of the
authors’ last names, to improve the time performance
significantly while preserving the similar PSNR perfor-
mance as in the SZL algorithm.

Before describing the proposed HCDS, let us examine
the previous two codebooks OC and HC used in the
SZL algorithm. Three observations on the OC are given
as follows.

Observation 1. The OC contains two types of code-
words, one from locality vectors and the other
constructed from the training images.
Observation 2. In the OC, repeated dictionary opera-
tions, such as inserting the input vector or the locality
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vectors into the OC, inserting the codeword from the
HC into the OC, moving the codeword from the OC to
itself, or deleting the last codeword of the OC, make the
maintenance of the OC some complicated.

Observation 3. For finding the winning codeword, it
must search the whole OC. Thus, the searching time is
proportional to the size of the OC.

From Observation 1, we suggest splitting the OC into
two codebooks, namely the LC and the SC which is built
up from the training images. The main reason is that the
codebook constructed from the locality vectors will be
changed dynamically due to the changing input vector.
However, the codebook constructed from the training
images is static. Fig. 3 depicts the proposed HCDS
where the distance-2 locality vectors are used in the LC
and V t denotes the coming input vector. In Fig. 3, the
LC only contains the locality vectors of the input vector
V t and the indices of the locality vectors are encoded by
the variable length coding. The indices of the codewords
in the SC and the HC are encoded via fixed length
coding. In addition, the codewords in the SC and the
HC are ordered by some specific property such as sums
or potentials in order to speed up the searching time. In
order to avoid a large amount of memory movements,
we suggest using auxiliary index arrays in the SC and the
HC.

From Observation 2, it is clear that updating the small
LC is easier than updating the original whole OC in the
SZL algorithm. Since we apply the fixed length coding
to encode the codeword in the SC, one of the existing
fast VQ searching algorithms, such as any one algorithm
in [11–15], can be used in the SC. Using the VQ
searching algorithm, it is not necessary to search the
whole SC for finding the winning codeword and it leads
to a computation-saving effect. From Observation 3, it
SC

c1

c2

cN

LC

a

f

HCVt

Fig. 3. The proposed hybrid codebook data structure.
is clear that finding the winning codeword from the SC
is faster than finding the winning codeword from the
whole OC in the SZL algorithm. Thus, from above
discussion, the proposed CCAVQ algorithm leads to a
considerable computation-saving effect. That is why we
say we have the easy maintenance advantage when
compared to the SZL algorithm. Since the LC and HC
can be updated dynamically according to the changing
input source, the proposed CCAVQ algorithm can
preserve the similar PSNR performance as in the SZL
algorithm.

According to Fig. 3, when the vector Vt is fed as the
new input vector, the encoder evaluates the costs among
the one to encode the new input vector directly, and the
ones to encode the input vector by using the best
codeword from the LC, the SC, and the HC, then it
selects the best encoding way with the minimum cost. If
the winning case is the one to encode the new input
vector directly, the encoder sends V t to the decoder,
updates the LC and inserts the input vector into the HC.
Since we do not need a flag array to indicate whether the
deleted codeword will be inserted into the HC or not, the
maintenance of the proposed CCAVQ algorithm is
much easier than that of the SZL algorithm. If the
winning case is the one to encode the input vector by
using the best codeword from the LC, the SC, or the
HC, the encoder sends the index of the winning
codeword to the decoder and updates the LC. Given a
rate-distortion parameter l, the proposed five-step
CCAVQ algorithm is listed as follows. The flowchart
of the following proposed algorithm is supplemented in
Fig. 4.

Step 1 (Initialization): From the training images, we
build up the SC with size N ¼ jSCj. Initially, we assign
zeros to the LC with size jLd j. The maximum size of the
HC is set to Hmax and the initial size of the HC is set to
M ¼ 0. Set the time counter to t ¼ 1. Input the current
input vector V t.

Step 2 (Computing four possible costs).
Step 2.1 (Computing the cost of the winning codeword

from the LC): Use full search to find the winning
codeword e� from the LC. Assume the index of the
winning codeword e� is j�. By Eq. (3), the cost function
of the winning codeword e� is given by

Jðe�Þ ¼ DðVt; e
�Þ þ l � lðe�Þ, (6)

where lðe�Þ is the required code length if the input vector
V t is encoded as e�.

Step 2.2 (Computing the cost of the winning codeword

from the SC): Apply one of the existing fast searching
algorithms, such as any one algorithm in [11–15], to find
the winning codeword from the SC. Assume the index of
the winning codeword c� is i�. The cost function of c� is
given by

Jðc�Þ ¼ DðVt; c
�Þ þ l � lðc�Þ, (7)
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Fig. 4. Flowchart of the proposed algorithm.
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where lðc�Þ ¼ log2 N is the required code length if the
input vector V t is encoded as c�.

Step 2.3 (Computing the cost of the winning codeword

from the HC): If M40, apply one of the existing fast
searching algorithms, such as any one algorithm in
[11–15], to find the winning codeword from the HC.
Assume the index of the winning codeword h� is k�. The
cost function of h� is given by

Jðh�
Þ ¼ DðVt; h

�
Þ þ l � lðh�

Þ, (8)

where lðh�
Þ ¼ log2 M is the required code length if the

input vector V t is encoded as h�. Otherwise, i.e. M ¼ 0,
we set the cost to 1.

Step 2.4 (Computing the cost to encode using the input

vector directly): Calculate the cost if the input vector V t

is encoded as itself. The cost function of V t is given by

JðV tÞ ¼ DðV t;VtÞ þ l � lðVtÞ ¼ l � lðV tÞ, (9)

where lðV tÞ is the required code length if the input
vector V t is encoded as itself.

Step 3 (Selecting the minimum one among the four

possible costs): Select the minimum cost among JðVtÞ,
Jðh�

Þ, Jðc�Þ, and Jðe�Þ. According to the selected
minimum cost, perform one of the following four
actions.

Case JðV tÞ (V t is the winning codeword): Send the flag
to indicate that the input vector Vt is encoded as itself
and send Vt to the decoder. Next, update the LC by
inserting the input vector into the first position of the
LC and update the HC by inserting the input vector into
the proper position of the HC. Set M ¼ M þ 1.

Case Jðh�
Þ (h� is the winning codeword): Send the flag

to indicate that the input vector V t is encoded as h� and
send the index k� to the decoder. Then, update the LC
by inserting the winning codeword h� into the first
position of the LC.

Case Jðc�Þ (c� is the winning codeword): Send the flag
to indicate that the input vector V t is encoded as c� and
send the index i� to the decoder. Next, update the LC by
inserting the winning codeword c� into the first position
of the LC.

Case Jðe�Þ (e� is the winning codeword): Send the flag
to indicate that the input vector V t is encoded as e� and
send the index j� to the decoder. Next, update the LC by
moving the winning codeword e� to the first position of
the LC if the winning codeword e� is not in the first
position.

Step 4 (Inserting the other locality vectors into the LC):
Update the LC by inserting the other locality vectors of
the next input vector into their destined positions of the
LC.

Step 5: If t is less than the number of image blocks, set
t ¼ t þ 1, read the next input vector, and go to Step 2.
Otherwise, stop the process.

In Case JðV tÞ of Step 3, the encoder sends 8K bits
representing V t to the decoder in our algorithm. If the
encoder quantizes the input vector V t and the length of
encoding bits is less than 8K, Eq. (9) can be modified
easily. As described before, the LC only contains the
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locality vectors of the next input vector and the indices
of the locality vectors are encoded by the variable length
coding. In Step 2.1, different variable length coding
scheme can be used to obtain the required code length.
In the implementation of our proposed CCAVQ
algorithm, the beforehand constructed Huffman codes
are used to get the required code length.

In addition, the SC is usually available for the encoder
and the decoder. Initially, both LC and HC are empty.
The output of the encoder includes either the flag and
index or the flag and current input vector. The flag
indicates which case happened. Using the received data,
the decoder can decode the current input vector and
perform the same codebook updating as the encoder
does. First, the decoder judges which case happened. If
Case JðVtÞ in Step 3 happens, the decoder uses the
received 8K bits to represent the current input vector.
Then, it inserts the decoded vector into the HC and
updates the LC. If the other cases in Step 3 happen, the
decoder uses the received index to find the correspond-
ing codeword in the specific codebook. Further, it
updates the LC. After decoding all the received data, the
image or video sequence can be decompressed. Since no
searching algorithm is used in the decoding process, the
decoding time is much faster than the encoding time.

In next section, some experiments are carried out to
demonstrate the encoding time improvement of the
proposed CCAVQ algorithm while preserving the
similar PSNR performance when compared to the
previous SZL algorithm.
4. Experimental results

To assure a fair comparison between the SZL
algorithm and the proposed CCAVQ algorithm, follow-
ing the same experiments as in the SZL algorithm, the
similar types of images and video sequences are used to
evaluate the performance comparison. The machine
used in the experiments is Pentium III PC with 866MHz
and the used language is C language. The dimension of
the input vector is 16 and the distance-2 locality vectors
are used in the LC.

The LBG algorithm [27] is adopted to generate the
initial codebook which is used in the OC of the SZL
algorithm and used in the SC of the proposed CCAVQ
algorithm simultaneously. The eight images in Fig. 5(a)
are used as the training images to generate the initial
codebook of the OC and the SC. Fig. 5(b) depicts the
four testing images, namely Lena, Barbara, House, and
Scene, each with size 512� 512, used to evaluate the
time and PSNR performance comparison between the
SZL algorithm and the proposed CCAVQ algorithm.
Figs. 6(a) and (b) show two images scanned from the
2003 book catalog of Open-Tech Pub., where the image
in Fig. 6(a) is used as the training image and the image
in Fig. 6(b) is used as the testing image, namely the
Catalog image. In addition, Figs. 6(c) and (d) show two
images captured from the web pages of the website
www.kenphoto.com where the image in Fig. 6(c) is still
used as the training image to generate the initial
codebook of the OC and the SC. The Photo image as
shown in Fig. 6(d) is used as the testing image. The
pictures in Fig. 6 contain images and some Chinese and
English characters, each with size 512� 512. The testing
video sequences shown in Fig. 7 consist of four frames
of the Akiyo video sequence and four frames of the
Garden video sequence, each with size 352� 256. In
Figs. 7(a) and (b), eight frames from two sequences are
concatenated and interleaved so as to form the slow-
changing patterns and the fast-changing patterns,
respectively. Here, we take another frame from the
Akiyo video sequence as the training image.

In the experiments, the codewords of the SC in
the proposed CCAVQ algorithm and the codewords of
the HCs in both concerning algorithms are sorted by the
sum of each codeword in an increasing order where
the sum of a K-dimensional codeword X is defined as
SðX Þ ¼

PK
i¼1 X i. Suppose the current minimum distor-

tion is Dmin. Given an input vector Vt and a codeword X

in the SC or in the HC,

if ðSðV tÞ  SðX ÞÞ
2
XK � Dmin,

then the condition DðV t;X ÞXDmin holds. ð10Þ

If Eq. (10) holds, the codeword X will not be a possible
winning codeword [11] and X can be discarded (the
condition in Eq. (10) is also surveyed in [14]). This
strategy can speed up the searching time in the SC and
the HC. As described before, any existing fast searching
algorithms, such as any one algorithm in [11–15], can be
used to speed up the searching time of the SC in the
proposed CCAVQ algorithm and the searching time of
the HCs in both concerning algorithms. The faster the
searching technique is, the less the time of our CCAVQ
algorithm needs. Consequently, the important property
in Eq. (10) is used to implement both algorithms. Since
the OC in the SZL algorithm is not static, it is hard to
employ any existing fast searching algorithm. Therefore,
the full search algorithm is still used in the OC.

In Fig. 8, we plot the bit rate–PSNR performance for
the testing image ‘‘Lena’’ using the codebook sizes, 256,
128, 64, and 32, where the codebook denotes the OC in
the SZL algorithm and the SC in the proposed CCAVQ
algorithm. Fig. 8 illustrates the similar PSNR perfor-
mance for both concerning algorithms. In fact, all the
testing images and video sequences used in the experi-
ments have the similar PSNR performance for both
algorithms. Therefore, we only plot the bit rate–PSNR
performance for the testing image ‘‘Lena.’’

Since all the testing images and video sequences used
in the experiments have the similar PSNR performance

http://www.kenphoto.com
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Fig. 6. Scanned images and captured web pages: (a) scanned training image, (b) scanned testing image, (c) captured web page for training and (d)

captured web page for testing.

Fig. 5. (a) Eight training images and (b) four testing images.
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for both concerning algorithms, the bit rate–PSNR
performance plot as shown in Fig. 8 can hardly
distinguish one from the other. Therefore, the part of
the experimental results for the testing image ‘‘Lena’’
with codebook size 256 is shown in Table 1 in order to
show that the proposed CCAVQ algorithm is quite
competitive to the previous SZL algorithm. We also
depict some of the decoded images for ‘‘Lena’’ with
codebook size 256 in Fig. 9 to illustrate the visual
comparison. In the experiments, the total size of the



ARTICLE IN PRESS

Fig. 7. Two video sequences: (a) concatenating sequence and (b) interleaving sequence.
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Fig. 8. Bit rate-PSNR performance for the testing image ‘‘Lena.’’
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three codebooks used in the proposed CCAVQ algo-
rithm is less than the total size of the two codebooks
used in the SZL algorithm. The main reason is that the
HC size used in the SZL algorithm is usually larger than
the HC size used in the proposed CCAVQ algorithm
(see Table 1). Note that the way to obtain the vectors of
the HC in the CCAVQ algorithm is different from that
in the SZL algorithm.
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Table 1

Bit rate–PSNR performance for the testing image ‘‘Lena’’ with codebook size 256

l CCAVQ SZL

Bit rate PSNR HC size Bit rate PSNR HC size

1 5.464214 45.615870 10 839 5.503166 45.676255 11 087

5 2.107521 37.127776 3926 2.154171 37.155922 4069

10 1.323814 34.953046 2324 1.373631 34.978552 2461

15 0.963856 33.869679 1579 1.024998 33.914545 1751

20 0.750439 33.149259 1132 0.804737 33.178928 1291

25 0.615303 32.624969 849 0.669147 32.644947 1030

30 0.506340 32.198476 618 0.562592 32.213744 816

35 0.436176 31.867055 474 0.498840 31.905020 663

40 0.389252 31.626053 378 0.448753 31.652607 569

45 0.346931 31.407691 291 0.404202 31.418072 501

50 0.318840 31.245189 233 0.377380 31.264205 448

55 0.296375 31.113115 189 0.351460 31.104855 399

60 0.280807 31.011115 158 0.330036 31.003578 375

65 0.266342 30.897606 130 0.313515 30.882574 346

70 0.250977 30.779250 100 0.297588 30.761661 320

75 0.242813 30.718936 85 0.286930 30.676678 303

80 0.233894 30.642103 69 0.279015 30.584166 285

85 0.228207 30.583524 59 0.271717 30.520418 273

89 0.224285 30.544837 52 0.267334 30.474720 274

Fig. 9. Decoded image for the testing image ‘‘Lena’’ with codebook sizes 256: image generated by (a) CCAVQ for l ¼ 30, rate ¼ 0.50634 bpp, and

PSNR ¼ 32.198476, (b) SZL for l ¼ 34, rate ¼ 0.506958bpp, and PSNR ¼ 31.940309, (c) CCAVQ for l ¼ 54, rate ¼ 0.300117bpp, and

PSNR ¼ 31.135015 and (d) SZL for l ¼ 69, rate ¼ 0.30035 bpp, and PSNR ¼ 30.788631.

Table 2

Time comparison for testing images in Fig. 5(b)

Codebook size Lena Barbara House Scene

SZL CCAVQ SZL CCAVQ SZL CCAVQ SZL CCAVQ

32 79 37 116 74 115 73 114 72

64 121 37 157 74 154 71 154 71

128 204 37 241 75 235 70 238 71

256 371 38 422 84 400 72 403 75
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Tables 2–4 demonstrate the time requirement gener-
ated by the SZL algorithm and the proposed CCAVQ
algorithm with l ranging from 1 to 89 where the time
unit is second. The codebook size vs. time curves for six
testing images and two testing video sequences are
shown in Fig. 10. Specifically, the required encoding
time in the SZL algorithm is growing very quickly when
the OC is growing. The reason is that the previous SZL
algorithm must search the whole OC for finding the
winning codeword and perform dictionary operations in
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Table 3

Time comparison for Catalog and Photo testing images

Codebook size Catalog Photo

SZL CCAVQ SZL CCAVQ

32 113 72 103 63

64 157 76 143 62

128 241 77 227 65

256 406 82 385 68

Table 4

Time comparison for two testing video sequences in Fig. 7

Codebook size Concatenating Interleaving

SZL CCAVQ SZL CCAVQ

32 358 236 405 282

64 480 236 529 278

128 736 236 782 280

256 1250 243 1296 287
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Fig. 10. Codebook size vs. time curves for six testing images and two testing video sequences.
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the OC frequently. Thus, the larger the OC size is, the
more the required time is. On the contrary, in the
proposed CCAVQ algorithm, the existing VQ searching
technique can be adopted in the SC and it is unnecessary
to search the whole SC for finding the winning
codeword. In addition, updating the small LC in the
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Table 5

Time comparison for testing images in Fig. 5(b) included in the training set

Codebook size Lena Barbara House Scene

SZL CCAVQ SZL CCAVQ SZL CCAVQ SZL CCAVQ

32 77 37 117 75 115 73 114 72

64 118 36 157 74 154 70 154 70

128 198 34 238 74 233 69 235 71

256 362 37 406 78 397 71 401 73

Table 6

Decoding time improvement ratios for testing images and video sequences

Image or video sequence SZL CCAVQ Decoding time improvement ratio (%)

Bit rate Decoding time Bit rate Decoding time

Lena 0.506958 0.177 0.50634 0.057 68

Barbara 0.500408 0.214 0.500259 0.057 73

House 0.498959 0.199 0.506954 0.058 71

Scene 0.499939 0.187 0.506134 0.058 69

Catalog 0.505173 0.164 0.50346 0.057 65

Photo 0.500961 0.131 0.500088 0.054 59

Concatenating 0.504297 0.66 0.505374 0.16 76

Interleaving 0.503497 0.67 0.501574 0.15 78
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CCAVQ algorithm is easier than updating the whole OC
in the previous SZL algorithm. Consequently, the
proposed CCAVQ algorithm leads to a significant
time-saving effect. When the codebook size is set to
256 and the searching size of the HC is set to 256, the
proposed CCAVQ algorithm over the previous SZL
algorithm has about 75% encoding time improvement
ratio while preserving the similar PSNR performance as
in the SZL algorithm.

In order to compare the performance difference
between the training set excluding testing images and
the training set including testing images (see Fig. 5(b)),
both cases are included in the experiments. Because
under the training set excluding testing images in Fig.
5(b), the performance comparison among the testing
images has been demonstrated in Fig. 8 and Table 2, we
now demonstrate the performance comparison among
the testing images under the training set including
testing images. Experimental results reveal that all the
testing images in Fig. 5(b) have the similar PSNR
performance for both concerning algorithms. For saving
the context space, only one example is illustrated. For
example, when the testing image is ‘‘Lena’’ with code-
book size 256 and l ¼ 70, we have the bit rate
0.30645 bpp and the PSNR 30.851319 dB by using the
SZL algorithm; the bit rate 0.250546 bpp and the PSNR
30.88489 dB by using the proposed CCAVQ algorithm.
The time requirement is shown in Table 5 with l ranging
from 1 to 89. The time requirement in Table 5 is almost
the same as the time requirement in Table 2.
When the codebook size is set to 256 and the bit rate
is about 0.5 bpp, the decoding time requirements
generated by the SZL algorithm and the proposed
CCAVQ algorithm for all testing images and video
sequences are shown in Table 6 where the time unit is
second. Since the variable length coding is used in the
OC of the SZL algorithm and the codes are generated by
updating probability each time, the adaptive arithmetic
coding [28] is used to produce the bitstreams in the OC.
In the decoding process, it is unnecessary to search the
codebooks for finding the winning codeword in both
concerning algorithms. However, updating the small LC
in the CCAVQ algorithm is easier than updating the
whole OC in the SZL algorithm. Consequently, the
proposed CCAVQ algorithm leads to a significant time-
saving effect. When the codebook size is set to 256 and
the bit rate is about 0.5 bpp, the proposed CCAVQ
algorithm over the previous SZL algorithm has about
70% decoding time improvement ratio in average. The
significant decoding time improvement could meet the
real-time demand.
5. Conclusion

Using the rate-distortion criterion as the cost func-
tion, this paper has presented an improved AVQ
algorithm based on the proposed HCDS. Due to the
easy maintenance advantage, the proposed CCAVQ
algorithm leads to a considerable computation-saving
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effect when compared to the previous SZL algorithm
while preserving the similar PSNR performance as in the
SZL algorithm. When the codebook size is set to 256
and the searching size of the HC is set to 256, the
proposed CCAVQ algorithm has about 75% encoding
time improvement ratio while preserving the similar
PSNR performance as in the SZL algorithm. When the
codebook size is set to 256 and the bit rate is about
0.5 bpp, the proposed CCAVQ algorithm over the
previous SZL algorithm has about 70% decoding time
improvement ratio in average.
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