
Theoretical Computer Science 255 (2001) 649–658
www.elsevier.com/locate/tcs

Note

Improved fault-tolerant sorting algorithm in hypercubes

Yu-Wei Chena, Kuo-Liang Chungb;∗;1

aDepartment of Computer and Information Science, Aletheia University, No. 32, Chen-Li Street,
Tamsui, Taipei, 25103 Taiwan, Republic of China

bDepartment of Information Management and Institute of Information Engineering,
Institute of Computer Science and Information Engineering, National Taiwan University of Science and

Technology, No. 43, Section 4, Keelung Road, Taipei, 10672 Taiwan, Republic of China

Received February 1999; revised July 2000; accepted August 2000
Communicated by M.S. Paterson

Abstract

Consider M unsorted elements and an n-dimensional hypercube Hn with �3n=2� − 1 faulty
nodes, where M�N = 2n. Employing a newly proposed partition strategy and the light-occupied
dimension concept, this paper improves Sheu et al.’s algorithm [Sheu, Chen, Chang, J. Parallel
Distributed Comput. 16 (1992) 185] for sorting these M unsorted elements on the faulty Hn. With
the same time bound O((M=N)log(M=N) + (M=N)log2 N) as [Sheu et al., 1992], the proposed
algorithm can tolerate �n=2� more faulty nodes than Sheu et al.’s algorithm which can tolerate
at most n− 1 faulty nodes. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Fault tolerance; Hypercube; Parallel algorithm; Parallel sorting

1. Introduction

Sorting is one of the most fundamental operations in the computer science commu-
nity; the hypercube is one of the most versatile and popular networks due to its low
diameter, good connectivity, and symmetry [8, 12]. Without providing fault-tolerant ca-
pacity, many eBcient sorting algorithms [1, 4, 6, 7, 9, 11, 13, 16, 17] have been designed
on hypercubes.

∗ Corresponding author. Tel.: +886-2-27376771; fax: +886-2-27376777.
E-mail addresses: ywchen@email.au.edu.tw, cyw533@ms23.hinet.net (Y.-W. Chen), klchung@cs.ntust.

edu.tw (K.-L. Chung).
1 Supported by NSC87-2213-E011-001=003.

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00390 -X

650 Y.-W. Chen, K.-L. Chung / Theoretical Computer Science 255 (2001) 649–658

Considering faulty hypercubes, it is an important issue to design an eBcient fault-
tolerant sorting algorithm. Previously, using the concept of minimum number of cut
dimensions, Sheu et al. [15] presented the Irst fault-tolerant sorting algorithm to sort
M elements on an n-dimensional faulty hypercube Hn with f6n − 1 faulty nodes in
O((M=N) log(M=N) +M=N log2 N) time, where M�N = 2n.

Consider an Hn with �3n=2�− 1 faulty nodes. Employing a newly proposed partition
strategy and the light-occupied dimension (LOD) concept, this paper improves Sheu
et al.’s sorting algorithm [15] to sort these M unsorted elements on the faulty Hn.
With the same time bound O((M=N) log(M=N) + (M=N) log2 N) as [15], the proposed
algorithm can tolerate �n=2� more faulty nodes than Sheu et al.’s algorithm which can
tolerate at most n − 1 faulty nodes. The fault-tolerance improvement of this paper is
about 50%.

2. Preliminaries

This section consists of three subsections. Section 2.1 describes some notations used
in hypercubes and the adopted fault model. Section 2.2 introduces the concept of Sheu
et al.’s algorithm [15]. Section 2.3 introduces the concept of the LOD.

2.1. Adopted fault model

An Hn has 2n nodes and n2n−1 edges. Each node in Hn is labeled as b= bnbn−1 : : : b2b1

for bj ∈{0; 1} and 16j6n, where j denotes the corresponding dimension. In what fol-
lows, without confusion, the base of any one binary string is 2. Fig. 1 illustrates an H4.
Two nodes are linked via an edge if and only if their binary strings diKer in exactly
one binary digit. For example, node 0 (= 0000) is adjacent to nodes 1 (= 0001); 2 (=
0010), 4, and 8 along dimensions 1, 2, 3, and 4, respectively.
Hn can be partitioned into 2n−k SHk ’s, where each SHk is a k-dimensional sub-

cube, spanned by the same k dimensions. Note that in [15], Sheu et al. presented an
interesting relabeling method. In their fault-tolerant sorting algorithm, each SHk can
independently relabel its own 2k nodes.

Fig. 1. An H4.

Y.-W. Chen, K.-L. Chung / Theoretical Computer Science 255 (2001) 649–658 651

For example, H4 can be partitioned into four SH2’s labeled by 0 ∗ 0∗, 0 ∗ 1∗, 1 ∗ 0∗,
and 1∗1∗, respectively. Two SH2’s are adjacent if their ternary representations diKer in
exactly one symbol. For simplicity, the four SH2’s labeled by 0∗0∗, 0∗1∗, 1∗0∗, and
1∗1∗ are denoted by 0-SH2, 1-SH2, 2-SH2, and 3-SH2, respectively; each node labeled
by 0b30b1 in 0-SH2, b3; b1 ∈{0; 1}, is called node b3b1 in 0-SH2 or node b (= b3b1) in
0-SH2. Using Sheu et al.’s relabeling scheme, the four nodes {00; 01; 10; 11} in 0-SH2

(1-SH2) can be independently relabeled as {10; 11; 00; 01} in 0-SH2 ({11; 10; 01; 00} in
1-SH2), for example.

This paper uses the same fault model as that in [15]. Throughout this paper, for
short, the faulty nodes are called TF nodes; the fault-free nodes are called FF nodes.

2.2. The sketch of Sheu et al.’s sorting algorithm

Initially, applying the concept of the minimum number of cut dimensions [15], Hn
with f6n − 1 TF nodes is partitioned into 2f−1 SHn−f+1’s such that each SHn−f+1

contains at most one TF node. In the extreme case, we have f= n − 1. In this case,
each SH2 containing one TF node independently does the relabeling operation to relabel
its own four nodes such that the single TF node is relabeled as node 0 (= 00) while
the other three FF nodes are relabeled as nodes 1 (= 01); 2 (= 10), and 3 (= 11).

We are given M unsorted elements, M�N = 2n. In Sheu et al.’s data assignment
scheme, no element is assigned to node 0 in each SH2, although node 0 may be FF;
these M elements are evenly assigned to the FF nodes labeled as 1, 2, and 3 in each
SH2 such that each of such FF nodes holds M=N ′ (= M=(3N=4)) elements.

Then, using the sequential heapsort algorithm each FF node sorts its M=N ′ elements
in ascending (descending) order if its label is even (odd). Sheu et al. have shown that
the bitonic sorting algorithm [7, 14] can correctly work on each k-SH2 with only one
TF node labeled by 0 for 06k62n−2 − 1. Afterward, the 3M=N ′ elements in k-SH2

can be sorted in ascending (descending) order if k is even (odd).
Suppose each SH2 is viewed as a supernode. These 2n−2 SH2’s form an OHn−2.

Finally, OHn−2 performs a bitonic-like sorting algorithm among these SH2’s such that the
M elements are sorted on OHn−2. Consequently, with O((M=N) log(M=N)+(M=N) log2 N)
(= O((M=N ′) log(M=N ′) + (M=N ′) log2 N))) time, Sheu et al.’s fault-tolerant sorting
algorithm can sort M unsorted elements on Hn with n− 1 TF nodes. The readers are
recommended to refer to paper [15].

2.3. LOD concept

Previously, Yang and Raghavendra [18–20] presented a concept called the degree of
occupancy. The degree of occupancy of dimension d in Hn is k, if there exist exactly
k links, each link connecting two TF nodes along dimension d. If k61, we call
dimension d a light-occupied dimension (LOD). For example, suppose the TF nodes
of H4 as shown in Fig. 1 are {0001; 1000; 1001; 1010; 1011}. The degrees of occupancy
of dimensions 1, 2, 3, and 4 are 2, 2, 0, and 1, respectively. Thus, dimensions 3 and

652 Y.-W. Chen, K.-L. Chung / Theoretical Computer Science 255 (2001) 649–658

4 are LOD’s. Based on the LOD concept, Yang and Raghavendra [19, 20] have shown
the property.

Lemma 1 (Yang and Raghavendra [19, 20]). Given f6�3n=2	 TF nodes; there exists
at least one LOD in Hn.

In addition, Yang and Raghavendra [19] also presented a distributed algorithm in
O(n) time for Inding an LOD in Hn with �3n=2	 TF nodes. After performing this
LOD-Inding algorithm, each FF node knows the found LOD.

3. New partition strategy based on LOD concept

To improve Sheu et al.’s sorting algorithm in order to have higher fault-tolerant
capacity, our newly proposed partition strategy wants the partitioned hypercube to be
one of the following two conIgurations.
The =rst partition con=guration (PC1): Hn is partitioned into 2n−2 SH2’s forming

OH
∗
n−2 such that besides at most one SH2 containing more than one TF node, each

of the other SH2’s contains at most one TF node. Section 4 will explain why Sheu
et al.’s sorting algorithm [15] can be applied on OH

∗
n−2 directly.

The second partition con=guration (PC2): Hn is partitioned into 2n−3 SH3’s forming
OH

+
n−3 such that besides at most three SH3’s where each SH3 contains two connected TF

nodes, each of the other SH3’s contains at most one TF node. Section 5 will describe
how to modify Sheu et al.’s sorting algorithm [15] in order to apply the modiIed
version on OH

+
n−3.

In the rest of this section, we present how to classify Hn with f6�3n=2�−1 into one
of the two conIgurations PC1 and PC2. From Lemma 1, there exists at least one LOD
in Hn with f6�3n=2� − 1¡�3n=2	 TF nodes. Applying the LOD-Inding algorithm
[19] on Hn, that LOD, say d1, can be found and known by each FF node. The faulty
Hn can be shrunk along dimension d1 to OHn−1 whose nodes are SH1’s. According to
the LOD deInition, at most one SH1 may consist of two TF nodes; each of the other
SH1’s contains at most one TF node. For exposition, if an SH1 contains one or more
TF nodes, it is called a faulty SH1; otherwise, it is called an FF SH1. Let f′ be the
number of faulty SH1’s in OHn−1. If OHn−1 contains f′ =f faulty SH1’s, each SH1 has at
most one TF node; if OHn−1 contains f′ =f−1 faulty SH1’s, at most one SH1 consists
of two TF nodes along dimension d1.

From Lemma 1, changing n to n− 1, if the number of faulty SH1’s in OHn−1 is no
more than �3(n − 1)=2	 (= �3n=2� − 1), there still exists at least one LOD in OHn−1.
Applying the LOD-Inding algorithm [19] on OHn−1, another LOD, say d2, can be found
and known by each FF node. The OHn−1 can be further shrunk along dimension d2 to
OHn−2. From the LOD deInition, at most one SH2 may consist of two faulty SH1’s;
each of the other SH2’s contains at most one faulty SH1.

Y.-W. Chen, K.-L. Chung / Theoretical Computer Science 255 (2001) 649–658 653

Based on the above partitioning process, we can further analyze how Hn with
f6�3n=2� − 1 can be classiIed into PC1 or PC2.

Theorem 2. An Hn with f6�3n=2� − 1 TF nodes can be classi=ed into one of two
con=gurations PC1 and PC2.

Proof. For convenience, call an LOD type-0 or type-1 according to its degree of
occupancy. First Ind a type-0 LOD, if any, then shrink and Ind a second LOD. This
easily gives a PC1.

Otherwise, there is no type-0 LOD, and therefore there will never be any type-0
LOD for any of the later “shrunk” hypercubes. In this case, the Irst LOD, i.e., d1,
and the second, i.e., d2, are both of type-1. Since �3n=2� − 1− 26�3(n− 2)=2	, there
must be a third successive type-1 LOD, say d3. The Irst type-1 LOD identiIes exactly
one edge e in dimension d1; the second LOD identiIes exactly one f, either an edge
in dimension d2 or a diagonal pair in d1 ×d2; and the third LOD gives exactly one
g, an edge in d3, or a diagonal pair in d1 × d3 or d2 × d3, or an antipodal pair in
d1 × d2 × d3.

If e, f, and g are all in the same SH3, there are 3 distinct possibilities and they all
yield a PC1. If e, f, and g are in two distinct SH3’s, then a partition along d1, d2 or
d3, according to whether the solitary element is e, f, or g, respectively, yields a PC1.
If e, f, and g are in three distinct SH3’s, then a partition along d2 will give a PC1
(by separating f and g) unless g is an edge in d3 or a diagonal pair in d1 × d3. In
this case a partition along d1 will give a PC1 (by separating e, f, and g) unless f
and g are both edges. This Inal remaining case, that each of e, f, and g is an edge,
gives a PC2. Because e, f, and g are all exactly one conIguration although they have
1; 2; and 3 possible conIgurations, respectively, any combination among e, f, and g
is disjoint each other. Consequently, along d1, d2, and d3 (if any), Hn with �3n=2�− 1
TF nodes can be classiIed into one of the two conIgurations PC1 and PC2.

4. The "rst partition con"guration (PC1): 'H∗
n−2

For PC1, this section presents how to modify the sorting algorithm [15] slightly in
order to achieve higher fault-tolerant capacity.

In PC1, each SH2 in OH
∗
n−2 is relabeled such that not only the SH2 containing more

than one TF node is labeled as 0-SH2, but also the only TF node in any one SH2 is
relabeled as 00 in that SH2 with the other three FF nodes being relabeled as 01, 10,
and 11. We then set 0-SH2 to be dead and to do nothing. Excluding the dead 0-SH2,
these M unsorted elements are evenly assigned to the FF nodes 01, 10 and 11 in i-SH2

for 16 i6 2n−2 − 1 such that each of such FF nodes holds M=N ′ (=M=(3N=4 − 3))
elements, where N ′ = 3N=4 − 3.

After performing the data assignment, each node applies a sequential sorting algo-
rithm, e.g., heapsort or quicksort, on its own M=N ′ elements. Then, applying the bitonic

654 Y.-W. Chen, K.-L. Chung / Theoretical Computer Science 255 (2001) 649–658

sorting algorithm [7, 14], four nodes in each SH2 do the bitonic sorting, where if any
FF node does any operation with a TF node, such an FF node will do nothing. Thus,
except 0-SH2, all the other SH2’s can successfully perform the bitonic sorting algorithm
[7, 14] simultaneously.

From the supernode viewpoint, OH∗
n−2 contains only one dead SH2, i.e., 0-SH2.

Then, the fault-tolerant sorting algorithm [15] is applied to OH
∗
n−2 containing only

one dead SH2. The only diKerence is that if any SH2 does any operation with the
dead 0-SH2, such an SH2 will do nothing. For the completeness of the context, the
formal algorithm is listed below. For simplicity, let the two LOD’s be d1 = 1 and
d2 = 2. Each k-SH2 has an adjacent k(j)-SH2; where k = knkn−1 : : : kj+1kjkj−1 : : : k4k3

and k(j) = knkn−1 : : : kj+1 Okjkj−1 : : : k4k3 for kj ∈{0; 1} and 36 j6 n.

Algorithm FTSA 1 =∗ Fault-Tolerant Sorting Algorithm 1 ∗=

Step 1: (relabeling process) Each SH2 in OH
∗
n−2 is relabeled such that not

only the SH2 containing more than one TF node is relabeled as
0-SH2, but also the only TF node in any one SH2 is relabeled as
00 in SH2 with the other three FF nodes being relabeled as 01,
10, and 11.

Step 2: (data assignment) The given M elements are evenly assigned to
the FF nodes 01, 10, and 11 in k-SH2 for 16 k6 2n−2 −1. Thus,
each FF node used receives M=N ′ elements, where N ′ = 3N=4− 3.

Step 3: (bitonic sorting on each SH2) Each node in SH2 applies the se-
quential sorting algorithm on its own M=N ′ elements, such that the
M=N ′ elements in node 10 (node 01 or 11) in SH2 are sorted in
ascending (descending) order. Then, four nodes in each SH2 do
the bitonic sorting [7, 14]. Here, if one FF node does any opera-
tion with another TF node, such that an FF node will do nothing.
Finally, the 3M=N ′ elements in each k-SH2 are sorted in ascending
(descending) order if k3 = 0 (k3 = 1).

Step 4: (bitonic sorting among SH2’s)
For i= 3 to n do: =∗ The two LOD’s are d1 = 1 and d2 = 2. ∗=
4.1: For j= i down to 3 do:

4.1.1: (sending a half data to corresponding adjacent node) If
kj = 0 (kj = 1) then FF nodes 01, 10, and 11 in k-SH2 sends the
Irst (last) M=(2N ′) sorted elements to its corresponding adjacent
nodes 01, 10, and 11 in k(j)-SH2, respectively.
4.1.2: (comparing data and sending the compared data back) If
ki+1 = kj (ki+1 �= kj), where kn+1 = 0, then each FF node holding
data in k-SH2 compares its own elements with the received ele-
ments and keeps the smaller (larger) element in each comparison,
and sends the larger (smaller) elements for all comparisons to its
corresponding adjacent node.

Y.-W. Chen, K.-L. Chung / Theoretical Computer Science 255 (2001) 649–658 655

4.1.3: (merging two ordered subsequences) Each node 10 (01 or
11) merges the two ordered subsequences in ascending (descend-
ing) order.
4.1.4: (bitonic sorting on each SH2) Four nodes in each SH2 do the
bitonic sorting [7, 14]. The 3M=N ′ elements in k-SH2 are sorted in
ascending (descending) order if kj−1 = ki+1 (kj−1 �= ki+1), where
k2 = 0.

The time required in Algorithm FTSA 1 [15] is analyzed again as follows. Let
symbols ts=r (tc) denotes the sending and receiving time (the time for comparing a pair
of elements). In Algorithm FTSA 1, since Steps 1 and 2 are preprocessing steps, we
only focus on the time required in Steps 3 and 4.

In Step 3, the time required in the sequential sorting algorithm is bounded by
((M=N ′ − 1) log(M=N ′) + 1)tc. The bitonic sorting algorithm [13] in each SH2 needs
3 (= 2·3=2) loops [3], each with time (M=N ′)ts=r+(3M=2N ′−1)tc. Because two adjacent
SH2’s contains at most two TF nodes except 0-SH2, the distance between two corre-
sponding relabeled nodes in Step 4.1.1 is at most 3. Thus, the time in the worst case
required in Steps 4.1.1, 4.1.2, and 4.1.3 are 3(M=2N ′)ts=r , 3(M=2N ′)ts=r+(M=2N ′−1)tc,
and (M=N ′ − 1)tc, respectively. In Step 4.1.4, the bitonic sorting needs 3 loops, each
with time (M=N ′)ts=r + (3M=2N ′ − 1)tc. Totally, there are (n− 2)(n− 1)=2 loops [3] in
Steps 4. Consequently, the total time is

T = ((M=N ′ − 1) log(M=N ′) + 1)tc + 3((M=N ′)ts=r + (3M=2N ′ − 1)tc)

+ (n− 2)(n− 1)=2(3(M=N ′)ts=r + (M=2N ′ − 1)tc + (M=N ′ − 1)tc

+ 3((M=N ′)ts=r + (3M=2N ′ − 1)tc))

= O(M=N ′ log(M=N ′) + n2(M=N ′))

= O(M=N log(M=N) + (M=N) log2 N):

As a result, we have the following theorem.

Theorem 3. For PC1; with O((M=N) log(M=N) + (M=N) log2 N) (= O((M=(3N=4 −
3)) log(M=(3N=4 − 3)) + (M=(3N=4 − 3)) log2 N)) time for M�N = 2n; M elements
can be sorted on OH

∗
n−2; with at most �3n=2� − 1 TF nodes.

From Theorem 3, we know that with the same time complexity as [15] for PC1, the
proposed algorithm can tolerate �n=2� more TF nodes than [15]. However, Algorithm
FTSA 1 cannot be applied to the faulty OH+

n−3 for PC2 directly. In the next section, we
further handle PC2.

5. The second con"guration (PC2): 'H+
n−3

We now present the idea of the proposed improved sorting algorithm on OH+
n−3 with

f6 �3n=2�−1 TF nodes for PC2. Initially, each SH3 in OH+
n−3 is relabeled such that the

656 Y.-W. Chen, K.-L. Chung / Theoretical Computer Science 255 (2001) 649–658

two connected TF nodes in any one SH3 are relabeled as 000 and 001 while the other
six FF nodes are relabeled as 010, 011, 100, 101, 110 and 111. The M unsorted ele-
ments are evenly assigned to the FF nodes 010, 011, 100, 101, 110 and 111 in each SH3

such that each of such FF nodes holds M=N ′ (=M=(3N=4)) elements, where N = 2n.
To present our improved sorting algorithm on OH+

n−3, we need the following lemma.

Lemma 4. With ((M=N ′ − 1) log(M=N ′) + 1 + 6(3M=2N ′ − 1))tc + 6(M=N ′)ts=r time;
each SH3 with two connected TF nodes can perform a bitonic sorting to sort its own
6M=N ′ elements.

Proof. Initially, each SH3 is relabeled such that the two connected TF nodes are rela-
beled as 000 and 001. Each node applies the sequential sorting algorithm on its own
M=N ′ elements. The time required for the sequential sorting algorithm is bounded by
((M=N ′ − 1) log(M=N ′) + 1)tc. Let SH3 be divided into 0-SH2 and 1-SH2. Assume that
elements in 0-SH2 and 1-SH2 are sorted in ascending and descending orders, respec-
tively, after three steps of executing the bitonic sorting algorithm. When we merge
two ordered subsequences in 0-SH2 and 1-SH2, initially, nodes 00 and 01 in 1-SH2

also do nothing because nodes 00 and 01 in 0-SH2 are TF. Because these M=N ′ el-
ements in node 0 (1) in 1-SH2 are larger than 2(M=N ′) elements, thus we know
that the elements in 1-SH2 must be larger than those in 0-SH2 holding only 2(M=N ′)
elements. Repeatedly, these 6M=N ′ elements can be sorted on each SH3 with two con-
nected TF nodes. The bitonic sorting [14] on each SH3 totally needs 6 (= 3(3 + 1)=2)
loops, each with time ((M=N ′)ts=r + ((3M=2N ′) − 1)tc). As a result, the total time is
((M=N ′ − 1) log(M=N ′) + 1 + 6(3M=2N ′ − 1))tc + 6(M=N ′)ts=r .

From Lemma 4, each k-SH3 for 06 k6 2n−3 − 1 performs the bitonic sorting
algorithm [7, 14] to sort its own 6M=N ′ elements in ascending (descending) order
if k is even (odd). From the supernode viewpoint, these 2n−3 SH3’s form OH

+
n−3. There-

fore, we only modify Algorithm FTSA 1 slightly. Replacing the term SH2, the initial
value 3, and ultimate value 3 in the two loops of Step 4 in Algorithm FTSA 1 by
SH3, 4, and 4, respectively, the modiIed version of Algorithm FTSA 1 can be ap-
plied to the OH+

n−3. The time required in this step is analyzed as follows. Because
each SH3 contains at most two connected TF nodes, the diameter in such an SH3 is
still 3. Thus, the distance between any two FF nodes used in two adjacent SH3’s is
at most 7 (= 3 + 1 + 3). Thus, the time in the worst case for Steps 4.1.1 and 4.1.2
are 7(M=2N ′)ts=r and 7(M=2N ′)ts=r + (M=2N ′ − 1)tc; respectively. In Step 4.1.3, the
time is (M=N ′)tc. In Step 4.1.4, the bitonic sorting performs 6 loops, each with time
((M=N ′)ts=r + ((3M=2N ′) − 1)tc). Step 4 needs (n− 3)(n− 2)=2 loops [3].

Consequently, the total time is

T = ((M=N ′ − 1) log(M=N ′) + 1 + 6(3M=2N ′ − 1))tc + 6(M=N ′)ts=r

+ (n− 3)(n− 2)=2(7(M=2N ′)ts=r + 7(M=2N ′)ts=r + (M=2N ′ − 1)tc

+ (M=N ′)tc + 6((M=N ′)ts=r + ((3M=2N ′) − 1)tc)

Y.-W. Chen, K.-L. Chung / Theoretical Computer Science 255 (2001) 649–658 657

= O(M=N ′ log(M=N ′) + n2(M=N ′))

= O(M=N log(M=N) + (M=N) log2 N):

As a result, we have the following theorem.

Theorem 5. For PC2; with O((M=N) log(M=N)+(M=N) log2 N) time; M�N = 2n; M
elements can be sorted on the faulty OH+

n−3.

Combining Theorem 3 and 5, we have the main result.

Theorem 6. With O((M=N) log(M=N)+(M=N) log2 N) time; M�N = 2n; M elements
can be sorted on the faulty Hn with �3n=2� − 1 TF nodes.

6. Conclusions

The signiIcance of sorting is due to its popular use in science and engineering.
Our main contribution is to show that with O((M=N) log(M=N) + (M=N) log2 N) time,
M�N = 2n, M elements can be sorted on the faulty Hn with �3n=2�−1 TF nodes. Our
algorithm can tolerate �n=2� more faulty nodes than Sheu et al.’s algorithm [15] under
the same time bound. The fault-tolerance improvement is about 50%. In addition, using
some variants of the proposed partition strategy and a newly proposed delay-update
scheme, we have presented an eBcient fault-tolerant algorithm for preIx computation
[5]. It is an interesting research issue to plug the fault-tolerance consideration into the
randomized sorting networks [2, 10].

Acknowledgements

The authors would like to thank the anonymous referees and Editor Prof. Mike
Paterson for their valuable comments that lead to the improved presentation of our
paper. In addition, we would like to thank Prof. D. Frank Hsu for his valuable com-
ments.

References

[1] B. Abali, F. SOzgSuner, A. Bataineh, Balanced parallel sort on hypercube multiprocessors, IEEE Trans.
Parallel Distributed Systems 4 (1993) 572–581.

[2] M. Ajtai, J. KomlTos, E. SzemerTedi, An O(nlogn) sorting network, Proc. 1983 ACM Symp. on Theory
of Computing, 1983, pp. 1–9.

[3] S.G. Akl, Parallel Sorting Algorithms, Academic Press, Inc., New York, 1985.
[4] K.E. Batcher, Sorting networks and their applications, Proc. AFIPS 1968 SJCC, 1968, pp. 307–314.
[5] Y.W. Chen, K.L. Chung, EBcient preIx computation on faulty hypercubes, J. Inform. Sci. Eng., 2000,

to appear.
[6] G. Fox, M. Johnson, G. Lyzenga, S.O.J. Salmon, D. Walker, Solving Problems on Concurrent Processors,

Prentice-Hall, Englewood CliKs, NJ, 1988.

658 Y.-W. Chen, K.-L. Chung / Theoretical Computer Science 255 (2001) 649–658

[7] S.L. Johnsson, Combining parallel and sequential sorting on a boolean n-cube, Proc. 1984 Internat.
Conf. on Parallel Processing, 1984, pp. 444–448.

[8] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan
Kaufmann Pub., CA., 1992 (Chapter 3).

[9] E.W. Mayr, C.G. Plaxton, Pipelined parallel preIx computations, and sorting on a pipelined hypercube,
J. Parallel Distributed Comput. 17 (1993) 374–380.

[10] M.S. Paterson, Improved sorting networks with O(logN) depth, Algorithmica 5 (1990) 75–92.
[11] C.G. Plaxton, Load balancing, selection and sorting on the hypercube, Proc. 1989 ACM Symp. Parallel

Algorithms and Architectures, 1989, pp. 64–73.
[12] Y. Saad, M.H. Schultz, Topological properties of hypercube, IEEE Trans. Comput. 37 (1988) 867–872.
[13] S.R. Seidel, W.L. George, Binsorting on hypercubes with d-port communication, Proc. Third Conf.

Hypercube Concurrent Comput. and Appl., January 1988, pp. 1455–1461.
[14] S.R. Seidel, L.R. Ziegler, Sorting on hypercubes, Proc. 2nd Conf. on Hypercube Multiprocessors, 1987,

pp. 285–291.
[15] J.P. Sheu, Y.S. Chen, C.Y. Chang, Fault-tolerant sorting algorithm on hypercube multicomputers,

J. Parallel Distributed Comput. 16 (1992) 185–197.
[16] B. Wagar, Hyperquicksort, Proc. 2nd Conf. on Hypercube Multiprocessors, 1987, pp. 292–299.
[17] Y. Won, S. Sahni, A balanced bin sort for hypercube multicomputers, J. Supercomput. 2 (1988)

435–448.
[18] P.J. Yang, S.B. Tien, C.S. Raghavendra, Embedding of rings and chains onto faulty hypercubes, Tech.

Rep., Dept. Elec. Eng., Univ. of South California, 1990.
[19] P.J. Yang, C.S. Raghavendra, ReconIguration of binary trees in faulty hypercubes, Proc. 7th Internat.

Parallel Processing Symp., 1993, pp. 401–405.
[20] P.J. Yang, C.S. Raghavendra, Embedding and reconIguration of binary trees in faulty hypercubes, IEEE

Trans. Parallel Distributed Systems 7 (1996) 237–245.

