
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 10, OCTOBER 1999 1455

Level-Compressed Huffman Decoding
Kuo-Liang Chung and Jung-Gen Wu,Member, IEEE

Abstract—Based on the breadth-first search manner and the
level-compression technique, this letter first presents a new array
data structure to represent the classical Huffman tree. Then, the
decoding algorithm is given. Both the memory and the decoding
time required in the proposed method are less than those of
previous methods. Some experimentations are carried out to
demonstrate the advantages of the proposed method. In fact, the
proposed algorithm can be applied to the canonical Huffman tree.

Index Terms—Data compression, decoding algorithm, Huffman
tree.

I. INTRODUCTION

RECENTLY, some efficient array data structures were
presented for representing the conventional Huffman tree

(HT) [5] and the canonical Huffman tree (CHT), which is
transformed from the HT using a preprocessing step [8].

Recently, based on the depth-first search (DFS) manner [7]
on the HT [2], the memory required in the array data structure
is , and the decoding time is , where denotes
the depth of the HT and denotes the number of nodes
in the HT. Some experimental results have shown that the
method [2] has 34% to 39% (50% to 76%) memory utilization
(decoding time) improvement over the method in [4]. In [5],
the memory required in the cluster-based array data structure
associated with a lookup table for representing the CHT is
ranged from to . Later, instead of using three
tables in [2] while still using the DFS manner, only one table
is needed to represent the HT, and the memory requirement
is further reduced to [3].

Suppose the topmost levels of the HT form a complete
subtree. The motivation of this research is to use the breadth-
first search (BFS) [7] to design a new array data structure for
representing the HT, and the level-compression technique can
be applied to improve this data structure further. In addition,
the decoding time can be improved simultaneously. Note
that the DFS-based data structure used in [2] and [3] is not
suitable for employing the level-compression technique due to
its preorder-traversal limitation.

Based on the BFS manner on the HT and the level-
compression technique, this paper first presents a new array
data structure to represent the HT in a more compact way.

Paper approved by E. Ayanoglu, the Editor for Communication Theory
and Coding Application of the IEEE Communications Society. Manuscript
received May 1, 1998; revised December 9, 1999. This research was supported
by the National Science Council, R.O.C., under Contract NSC88-2213-E011-
005.

K.-L. Chung is with the Department of Information Management and Insti-
tute of Information Engineering, National Taiwan University of Science and
Technology, Taipei, Taiwan 10672, R.O.C. (e-mail: klchung@cs.ntust.edu.tw).

J.-G. Wu is with the Department of Information and Computer Education,
National Taiwan Normal University, Taipei, Taiwan 10610, R.O.C.

Publisher Item Identifier S 0090-6778(99)07785-5.

Fig. 1. A Huffman tree.

The memory required in the proposed data structure is
. Then, an efficient decoding algorithm is presented,

and the decoding time is proportional to . Both the
memory and the decoding time required in the proposed
method are less than those of the previous methods [2], [3].
Some experimentations are carried out to demonstrate the
advantages of the proposed method. Finally, applying the
results of this paper to improve the method for the CHT [6]
is discussed.

II. PROPOSEDDATA STRUCTURE FORREPRESENTINGHT

Given a set of source symbols
with frequencies ,

respectively, using the construction method [1], the HT is
shown in Fig. 1, where the integer inside the square box or
the circle is the accumulated frequency.

We traverse the HT in a BFS manner. When traversing a
leaf node, we record the associated source symbol in the array.
When traversing an internal node, we record the “jump value,”

, where denotes the number of internal nodes on
the left-hand-side of that traversed node at the same level, and

denotes the number of nodes on the right-hand-side at the
same level. This jump value will be used to slide from one
entry in the array to another entry in order to emulate the
pointer jumping during the decoding process in the HT. For
example, the right son of the root in Fig. 1 has the jump value

. After traversing the HT, the sequence of
these ordered values is saved in the array, say H_array. It is
clear that the memory required in H_array is .

We now want to reduce H_array further by employing the
level-compression technique. Suppose the topmost levels
of the HT form a complete subtree, i.e., all the nodes on
the topmost levels are internal nodes. The jump values

0090–6778/99$10.00 1999 IEEE

1456 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 10, OCTOBER 1999

TABLE I
PERFORMANCE COMPARISON

of these internal nodes are rather regular and are
, respectively. So, we save only the value

and discard these jump values. This leads to a
more compact array, say CH_array, and the total memory
requirement (including the value) is

. Return to Fig. 1. The topmost three levels form
a complete subtree, and the jump values of the root and its two
sons are 1, 2, and 3, respectively. Therefore, the CH_array is
shown below

CH array

III. D ECODING ALGORITHM

Our decoding algorithm is listed below. Two variables,
code_ptr and array_ptr, are used to denote the current positions
in the Huffman code, which is the input saved in the array,
Huf_array and CH_array, respectively

codeptr

arrayptr decimal value of Hufarray

while CH array [arrayptr] is not a symbol

arrayptr arrayptr CH array [arrayptr]

point to the left son

If Huf array [codeptr] then arrayptr arrayptr

point to the right son if the code bit is ”

codeptr codeptr

point to the next code bit

end while

output CHarray [arrayptr]

Consider the input 1101. From Fig. 1, it is known that
, so code_ptr is set to be. We check the first two bits

in Huf_array, i.e., Huf_array Its decimal value
is , so array_ptr is set to be. Next, we read Huf_array

and the jump value CH_array Since
Huf_array array_ptr is increased by (Huf_array

CH_array). Then, code_ptr is increased to be
and array_ptr is set to be . Further, we

read Huf_array and CH_array The array_ptr
is increased by , i.e., array_ptr . Finally,
the decoded source symbol (CH_array) is found.

In the proposed decoding algorithm, the firstbits of the
input are read at one time, and the decimal value of these

bits is used to jump to the proper entry of the CH_array.
Besides needing a decimal conversion of the firstbits, it
takes at most two integer additions and two check operations

for processing each input bit in the remaining bits, so
the decoding-time bound is proportional to .

IV. EXPERIMENTAL RESULTS

Four real gray-scale images, the Lena, Baboon, Pepper, and
F16, each pixel with 256 gray levels and each image with size

, are taken to evaluate the performance; the values of
’s in the four images are 235, 234, 237, and 234, respectively;

the values of ’s (’s) are 18, 18, 17, and 17 (7, 7, 4, and 5).
The machine used is the IBM compatible personal computer
with 233 MHz Pentium II microprocessor. Table I compares
the memory requirement and the decoding time between our
method and the methods in [2] and [3].

The memory required in the methods in [2] and [3] and our
method are denoted by , , and , where the adopted
memory unit is bit. In the related array data structures, we
add a ninth bit to each entry to distinguish between the jump
value and the source symbol. A “1” is added to each source
symbol and a “0” is added to each jump value. Therefore,
each entry in the array needs nine bits. The array used in
[3] needs entries such that bits are
needed. Our proposed method needs bits.
In [2], three tables, i.e., the preorder table, jump table, and
symbol table, are needed. The preorder table has
entries and each entry has one bit. The jump table has
entries and each entry has eight bits. The symbol table has
entries and each entry has eight bits. Totally, in [2],
bits are needed. Let

denote the relative ratio
of the memory improvement of the proposed method when
compared to the methods in [2] and [3]. It is observed that
the proposed method has 32.8% to 49.4% (3.0% to 27.0%)
memory utilization improvement over the methods in [2] and
[3].

The decoding time includes the time needed to read com-
pressed data from the input file and that needed to write
the results into the output file. The decoding time required
in [2] and [3] and our proposed method are denoted by

and respectively, where the time unit is mi-
croseconds. Let

denote the relative ratio of the
decoding time improvement of the proposed method when
compared to the methods in [2] and [3]. It is observed that
the proposed method has 34.1% to 41.1% (3.6% to 20.7%)
decoding time improvement over the methods in [2] and [3].

In Table I, the decoding time required in the proposed BFS-
based data structure without employing the level-compression
technique is denoted by . Although the decoding perfor-

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 10, OCTOBER 1999 1457

mance in the DFS-based approach [3] is somewhat better than
, however, it is difficult to employ the level-compression

technique to [3] in order to improve the decoding time further.
Due to combining the advantages of BFS and the level-
compression technique, the proposed method is better than
that of [3].

V. CONCLUSIONS

For supporting faster decoding on the HT, we have pre-
sented a new, but simple, memory-efficient array data struc-
ture. Experimental results have demonstrated the advantages of
the proposed method, which are dependent on the distribution
of . In fact, the level-compression technique can be used
to discard the first entries in the offset table and the base
table in [6] for the CHT. Using the same four images, the
memory requirement has improved about 1.1% to 4.1%, and
the improved method needs 2100 bits on average, which is
less than our result. The decoding time has improved about
6.5% to 18.2%, and the improved method needs 0.79s on
average, which is a little more than our result.

ACKNOWLEDGMENT

The authors would like to thank the four reviewers and Dr.
Ayanoglu for making valuable suggestions and corrections that
led to the improved version of the paper.

REFERENCES

[1] T. C. Bell, J. G. Cleary, and I. H. Witten,Text Compression.Engle-
wood Cliffs, NJ: Prentice-Hall, 1990, pp. 105–107, sec. 5.1.2.

[2] K. L. Chung and Y. K. Lin, “A novel memory-efficient Huffman
decoding algorithm and its implementation,”Signal Processing, vol. 62,
pp. 207–213, 1997.

[3] K. L. Chung, “Efficient Huffman decoding,”Inf. Process. Lett., vol. 61,
pp. 97–99, 1997.

[4] R. Hashemian, “Memory efficient and high-speed search Huffman
coding,” IEEE Trans. Commun., vol. 43, pp. 2576–2581, Oct. 1995.

[5] A. Huffman, “A method for the construction of minimum redundancy
codes,”Proc. IRE, vol. 40, pp. 1098–1101, Sept. 1952.

[6] A. Moffat and A. Turpin, “On the implementation of minimum redun-
dancy prefix codes,”IEEE Trans. Commun., vol. 45, pp. 1200–1207,
Oct. 1997.

[7] B. M. E. Moret and H. D. Shapiro,Algorithms from P to NP, vol. 1,
Design and Efficiency. New York: Benjamin, 1991, pp. 193–196, sec.
4.1.1.

[8] E. S. Schwartz and B. Kallick, “Generating a canonical prefix encoding,”
Commun. ACM, vol. 7, pp. 166–169, 1964.

