
Theoretical Computer Science 289 (2002) 313–334
www.elsevier.com/locate/tcs

Load-balanced parallel banded-system solvers

Kuo-Liang Chunga ;∗; 1, Wen-Ming Yanb; 2, Jung-Gen Wuc; 3

aDepartment of Information Management, Institute of Computer Science & Information Engineering,
National Taiwan University of Science and Technology No. 43, Section 4; Keelung Road,

Taipei 10672, Taiwan ROC
bDepartment of Computer Science and Information Engineering, National Taiwan University,

Taipei 100, Taiwan ROC
cDepartment of Information and Computer Education, National Taiwan Normal University,

No. 162, Section 1, Hoping E. Road, Taipei 10610, Taiwan ROC

Received June 1999; received in revised form January 2000; accepted May 2001
Communicated by M. Nivat

Abstract

Solving banded systems is important in the applications of science and engineering. This paper
presents a load-balancing strategy for solving banded systems in parallel when the number of
processors used is small. An optimization-based load-balancing analysis is given to determine
how many loads should be assigned to each processor in order to minimize the time requirement.
Some experimentations are carried out on the nCUBE 2E multiprocessor to demonstrate the
speedup advantage of the proposed load-balancing strategy. The speedup improvement ratio
ranges from 47% to 66% (from 12% to 24%) when using 4 (8) processors. c© 2002 Elsevier
Science B.V. All rights reserved.

Keywords: Banded systems; Load-balancing analysis; nCUBE 2E multiprocessor; Parallel
algorithms

1. Introduction

Consider to solve an n×n banded system
Ax = b; (1)

∗ Corresponding author. Tel.: +886-2-27376771; fax: +886-2-27376777.
E-mail addresses: klchung@cs.ntust.edu.tw (K.-L. Chung), ganboon@csie.ntu.edu.tw (W.-M. Yan),

jgwu@ice.ntnu.edu.tw (J.-G. Wu).
1 Supported by the National Science Council of R.O.C. under contract NSC88-2213-E011-005.
2 Supported by the National Science Council of R.O.C. under contract NSC87-2119-M002-006.
3 Supported by the National Science Council of R.O.C. under contract NSC85-2213-E003-003.

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00284 -5

314 K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334

where A=(ai; j) is a banded matrix with r lower nonzero diagonals and s upper nonzero
diagonals such that ai; j =0 for j¿i + s or i¿j + r. The matrix A is called a banded
matrix with bandwidth r+s+1. Solving banded systems is important in the applications
of science and engineering [4, 8]. Solving Eq. (1) sequentially is time consuming when
n is large enough. Parallel processing [10] is a very natural approach to speed up the
concerning large amount of computations.
When setting r= s=m, Lawrie and Sameh [11] presented an O(m2n=p)-time par-

allel algorithm for solving a banded positive deInite linear system, where p denotes
the number of processors used in the multiprocessor. On ensemble architectures such
as linear array, Boolean cube, etc., Johnsson [9] presented some time-optimal parallel
algorithms for solving Eq. (1). Both results in [11, 9] are algorithmic. The other two
eJcient parallel methods were presented by Dongarra et al. [6, 7].
Consider a practical situation when n is large enough, but the number of proces-

sors used in the multiprocessor is small. That is, p is a small constant, e.g. p=4
or 8; the matrix A is of size 2048×2048 or 4096×4096. In this computation-bound
case, the communication cost is small and does not dominate the total cost when com-
pared to the computation cost. On the contrary, the computation cost dominates the
total cost. For this situation, in the previous results [9, 11], the data of matrix A and
vector b are evenly assigned to each processor in the multiprocessor. The motivation
of this research is to determine how many data should be assigned to each proces-
sor in order to minimize the time bound requirement in this real computation-bound
case.
This paper presents a load-balancing strategy for solving banded systems in parallel

when the number of processors used is small. Based on some functional optimization
techniques, a nontrivial load-balancing analysis is given to determine how many loads,
i.e. data, should be assigned to each processor in order to minimize the time bound
requirement. SpeciIcally, we Irst transfer the load-balancing problem into a minimax
problem, then a reduction technique is presented to narrow the solution space such
that at least two feasible points but at most eight feasible points are needed to be
tested in order to Ind the optimal solution. To the best of our knowledge, this is
the Irst time that such a tight load-balancing result is derived. Some experimentations
are carried out on the nCUBE 2E multiprocessor [13, 14] to demonstrate the speedup
advantage of the proposed load-balancing strategy for diMerent r, s, n, and p. Using
4 (8) processors, the speedup improvement ratio ranges from 47% to 66% (from 12%
to 24%) when compared to the parallel banded-system solver without load-balancing
consideration.
The rest of this paper is organized as follows. Section 2 presents a widely used par-

tition strategy [11, 6, 9, 7] which will be used for solving Eq. (1) in parallel. Section 3
presents a related three-phase parallel algorithm. In addition, the detailed time com-
plexity analysis is also given in the same section. A nontrivial load-balancing analysis
is given in Section 4. Some experimental results are illustrated in Section 5. Some
concluding remarks are addressed in Section 6.

K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334 315

2. Partition strategy

Suppose we are given p processors. In the assumption of this research, p is assumed
to be a small integer, i.e. n�p. For convenience, we also assume n�p(s + 1) and
n�(r + 1)p. Based on rowwise partition scheme, A, b and x are partitioned into

A =

A1 C1

B2 A2 C2

B3 A3 C3

· · ·
· · ·

Bp−1 Ap−1 Cp−1

Bp Ap

;

b =

b1
b2
...
bp

and

x =

x1
x2
...
xp

 ;

where each Ai is an ni×ni banded matrix with r lower nonzero diagonals and s upper
nonzero diagonals;

Bi =
(
0 Di
0 0

)
and Di is an r × r upper triangular matrix;

Ci =
(
0 0
Ei 0

)
and Ei is an s× s lower triangular matrix:

Thus, we can rewrite Ax= b as

A1x1 + C1x2 = b1;

Bixi−1 + Aixi + Cixi+1 = bi for i = 2; 3; : : : ; p− 1

and

Bpxp−1 + Apxp = bp:

316 K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334

Multiplying A−1
i to both sides of the ith equation for 16i6p, yields

x1 + A−1
1 C1x2 = A−1

1 b1;

A−1
i Bixi−1 + xi + A−1

i Cixi+1 = A−1
i bi for i = 2; 3; : : : ; p− 1

and

A−1
p Bpxp−1 + xp = A−1

p bp:

It is easy to know that

A−1
i Bi = A−1

i

(
0 Di
0 0

)
=

(
0 A−1

i

(
Di
0

))
=

(
0 Fi

)
and

A−1
i Ci = A−1

i

(
0 0
Ei 0

)
=

(
A−1
i

(
0
Ei

)
0
)
=

(
Gi 0

)
;

where

Fi = A−1
i

(
Di
0

)
and Gi = A−1

i

(
0
Ei

)
: (2)

Let

yi = A−1
i bi ; (3)

then we have

x1 + (G1 0) x2 = y1;

(0 Fi)xi−1 + xi + (Gi 0)xi+1 = yi for i = 2; 3; : : : ; p− 1
and

(0 Fp)xp−1 + xp = yp:

For any matrix or vector X , let NX be the one by deleting all the rows of X except
the Irst s rows and let X be the one by deleting all the rows of X except the last r
rows. Therefore, we have

x1 + G1 Nx2 = y1; (4)

Fixi−1 + xi + Gi Nxi+1 = yi for i = 2; 3; : : : ; p− 1
and

Fpxp−1 + xp = yp:

Before solving Eq. (4), we Irst solve the following equations:

G1 Nx2 + x1 = y
1
;

K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334 317

Nxi + NFixi−1 + NGi Nxi+1 = Nyi ;

Fixi−1 + Gi Nxi+1 + xi = y
i

for i = 2; 3; : : : ; p− 1
and

Nxp + NFpxp−1 = Nyp:

In terms of matrix form, that is, we Irst solve the following linear system:

G1 I

I NF2 NG2

F2 G2 I

I NF3 NG3

F3 G3 I

· · ·
I NFp−1 NGp−1

Fp−1 Gp−1 I

I NFp

Nx2

x1
Nx3

x2
...

xp−2

Nxp

xp−1

=

y
1

Ny2
y
2

Ny3
...

Nyp−1

y
p−1

Nyp

: (5)

The solutions of Eq. (5) will be used to solve Eq. (4).
Based on the partition strategy mentioned in this section, in next section we will

present a three-phase parallel solver for solving Eq. (1) and the corresponding detailed
time complexity analysis.

3. The three-phase method and time complexity analysis

For convenience, we Irst analyze the time complexity required in solving Eq. (1)
sequentially based on the LU -decomposition, i.e. A=LU , where L is an unitary lower
matrix with r lower nonzero diagonals and U is an upper matrix with s upper nonzero
diagonals. The related time complexity will be adopted in the time analysis of the
three-phase method. From [8], we have

L = (li; j) where li; i = 1 and li; j = 0 for i ¡ j or i ¿ j + r;

U = (ui; j) where Ui; i = 1 and ui; j = 0 for j ¡ i or j ¿ i + s:

Basically, solving Eq. (1) sequentially consists of three steps, namely, the LU -
decomposition, solving Ly= b, and solving Ux= y. Here, the time complexity is mea-
sured by the number of Poating-point operations (FLOPs) and the time required in one
subtraction is assumed to be equal to that in one addition.

Lemma 1. The LU -decomposition of A needs n divisions; the number of multiplica-
tions required in this algorithm is between [n − 1

2 (r + s + 1)]r(s + 1) and

318 K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334

[n − 1
2 (r + 1)]r(s + 1); and the number of additions required in this algorithm is

between [n− 1
2 (r+ s+1)]rs and [n− 1

2 (r+1)]rs. Solving Ly= b takes nr− r(r+1)=2
multiplications and nr−r(r+1)=2 additions. Solving Ux= y takes n(s+1)−s(s+1)=2
multiplication and ns− s(s+ 1)=2 additions.

Proof. See Appendix A.

The three-phase parallel method for solving Eq. (1) is described in the following
three subsections.

3.1. Phase 1

In phase 1, Processor i, 26i6p− 1, wants to obtain the solutions of Nyi and y
i
by

solving Aibi= yi (see Eq. (3)). SpeciIcally, Processor 1 (p) wants to obtain only the
solution of y

1
(Nyp). Simultaneously, in the same phase, Processor i, 26i6p− 1, also

wants to obtain the matrix form of Gi and Fi. Processor 1 (p) wants to obtain only
the matrix form of G1 (NFp).
We next analyze the detailed time complexity required in each processor and come to

a conclusion that in phase 1, the computation cost required in Processor i, 26i6p−1,
is more heavy than that in Processor 1 or p. This unbalanced phenomenon, which also
occurs in phase 3, is an important clue and it leads to this work.
For Processor 1, the procedure of this phase is listed below:

Step 1: Factor A1 as L1U1

Step 2: =∗ Solve y
1
from A1y1 = b1 ∗=

Step 2.1: Solve z1 from L1z1 = b1
Step 2.2: Solve y

1
from U1y1 = z1

Step 3. =∗ Solve G1 from A1G1 =
(
0
E1

)
∗=

Step 3.1: Solve R1 from L1R1 =
(
0
E1

)
Step 3.2: Solve G1 from U1G1 =R1

Looking at the above pseudocodes, from Lemma 1, Step 1 needs n1 divisions, [n1−
1
2 (r+ s+1)]r(s+1) to [n1− 1

2 (r+1)]r(s+1) multiplications, and [n1− 1
2 (r+ s+1)]rs

to [n1 − 1
2 (r + 1)]rs additions. Step 2.1 needs [n1 − 1

2 (r + 1)]r multiplications and
[n1 − 1

2 (r + 1)]r additions.
Since y

1
consists of the last r entries of y1; the number of additions required in

Step 2.2 is less than 1+2+ · · ·+(r−1)= 1
2 (r−1)r and the number of multiplications

required in Step 2.2 is less than 1 + 2 + · · ·+ r= 1
2 r(r + 1).

Since E1 is an s×s lower triangular matrix, the number of additions and multiplica-
tions required in Step 3.1 is less than s (r + r + · · ·+ r)︸ ︷︷ ︸

s

= rs2.

K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334 319

Since G1 consists of the last r rows of G1 and R1 has s columns, the number of
additions required in Step 3.2 is less than s[1 + 2+ · · ·+ (r− 1)]= 1

2 (r− 1)rs and the
number of multiplications required in Step 3.2 is less than s[1+2+· · ·+r] = 1

2 r(r+1)s.
Totally, in phase 1, Processor 1 needs n1 divisions, [n1− 1

2 (r+ s+1)](rs+ r)+[n1−
1
2 (r+1)](rs+r) to [n1− 1

2 (r+1)](rs+2r)+
1
2 r(r+1)+rs

2+ 1
2 r(r+1)s multiplications, and

[n1− 1
2 (r+s+1)]rs+[n1− 1

2 (r+1)]r to [n1− 1
2 (r+1)](rs+r)+

1
2 r(r−1)+rs2+ 1

2 (r−1)rs
additions.
For Processor i, i=2; 3; : : : ; p − 1, the procedure performed in phase 1 is shown

below:
Step 1: Factor Ai as LiUi
Step 2: Solve yi from Aiyi= bi

Step 3: Solve Gi from AiGi=
(
0
Ei

)
Step 3.1: Solve Ri from LiRi=

(
0
Ei

)
Step 3.2: Solve Gi from UiGi=Ri

Step 4: Solve Fi from AiFi=
(
Di
0

)
Step 4.1: Solve Si from LiSi=

(
Di
0

)
Step 4.2: Solve Fi from UiFi= Si

In the above procedure, from Lemma 1, Step 1 needs ni divisions, [ni − 1
2 (r +

s + 1)]r(s + 1) to [ni − 1
2 (r + 1)]r(s + 1) multiplications, and [ni − 1

2 (r + s + 1)]rs
to [ni − 1

2 (r + 1)]rs additions. Step 2 needs ni(r + s + 1) − 1
2 r(r + 1) − 1

2 s(s + 1)
multiplications and ni(r + s)− 1

2 r(r + 1)− 1
2 s(s+ 1) additions.

Since Ei is a s×s lower triangular matrix, the number of additions and multiplications
required in Step 3.1 is less than s (r + r + · · ·+ r)︸ ︷︷ ︸

s

= rs2.

Since all the rows of Ri except the last s rows of Ri are equal to zero, and Ri has
s columns, Step 3.2 needs s[ni − 1

2 (r + 1)]r multiplications and s[ni − 1
2 (r + 1)]r − nis

to s[ni − 1
2 (r + 1)]r − [ni − s]s additions.

Since Di is an r×r upper triangular matrix, Step 4.1 needs [ni − 1
2 (r + 1)]r2 multi-

plications and [ni − 1
2 (r + 1)]r2 − nir to [ni − 1

2 (r + 1)]r2 − [ni − r]r additions.
Since Si has r columns, Step 4.2 needs r[ni − 1

2 s](s + 1) multiplications and
r[ni − 1

2 (s+ 1)]s additions.
Totally, in this phase, Processor i, 26i6p− 1, needs ni divisions, ml to mr multi-

plications, and al to ar additions, where

ml = [ni − 1
2 (r + s+ 1)]r(s+ 1) + ni(r + s+ 1)− 1

2 r(r + 1)− 1
2 s(s+ 1)

+ s[ni − 1
2 (r + 1)]r + [ni − 1

2 (r + 1)]r2 + r[ni − 1
2 s](s+ 1);

320 K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334

mr = [ni − 1
2 (r + 1)]r(s+ 1) + ni(r + s+ 1)− 1

2 r(r + 1)− 1
2 s(s+ 1)

+ rs2 + s[ni − 1
2 (r + 1)]r + [ni − 1

2 (r + 1)]r2 + r[ni − 1
2 s](s+ 1);

al = [ni − 1
2 (r + s+ 1)]rs+ ni(r + s)− 1

2 r(r + 1)− 1
2 s(s+ 1) + s[ni− 1

2 (r + 1)]r

− nis+ [ni − 1
2 (r + 1)]r2 − nir + r[ni − 1

2 (s+ 1)]s;

ar = [ni − 1
2 (r + 1)]rs+ ni(r + s)− 1

2 r(r + 1)− 1
2 s(s+ 1)

+ rs2 + s[ni − 1
2 (r + 1)]r − [ni − s]s+ r[ni − 1

2 (s+ 1)]s:

For Processor p, the procedure performed in phase 1 is listed below:

Step 1: Factor Ap as UpLp
Step 2: Solve Nyp from Apyp= bp

Step 2.1: Solve zp from Upzp= bp
Step 2.2: Solve Nyp from Lpyp= zp

Step 3: Solve Fp from ApFp=
(Dp
0

)
Step 3.1: Solve Sp from UpSp=

(Dp
0

)
Step 3.3: Solve NFp from LpFp= Sp

Step 1 needs np divisions, [np − 1
2 (r + s + 1)](r + 1)s to [np − 1

2 (s + 1)](r + 1)s
multiplications, and [np− 1

2 (r+ s+1)]rs to [np− 1
2 (s+1)]rs additions. Step 2.1 needs

[np − 1
2 (s+ 1)]s multiplications and [nps− 1

2 (s+ 1)]s additions.
Since Nyp consists of the Irst s entries of yp, the number of additions required in

Step 2.2 is less than 1+2+ · · ·+(s−1)= 1
2 (s−1)s and the number of multiplications

required in Step 2.2 is less than 1 + 2 + · · ·+ s= 1
2 s(s+ 1).

Since Dp is an r× r upper triangular matrix, the number of additions and multipli-
cations required in Step 3.1 is less than r (s+ s+ · · ·+ s)︸ ︷︷ ︸

r

= r2s.

Since NFp consists of the Irst s rows of Fp and Sp has r columns, the number of
additions required in Step 3.2 is less than r[1 + 2+ · · ·+ (s− 1)]= 1

2 rs(s− 1) and the
number of multiplications required in Step 3.2 is less than r[1+2+· · ·+s] = 1

2 rs(s+1).
Totally, in phase 1, Processor p needs np divisions, [np− 1

2 (r+s+1)](rs+s)+[np−
1
2 (s+1)]s to [np− 1

2 (s+1)](rs+2s)+ 1
2 s(s+1)+ r2s+ 1

2 rs(s+1) multiplications, and
[np− 1

2 (r+s+1)]rs+[np− 1
2 (s+1)]s to [np− 1

2 (s+1)](rs+s)+
1
2 s(s−1)+r2s+ 1

2(s−1)rs
additions.

3.2. Phase 2

In phase 2, Processor 2, Processor 3, . . . , and Processor p Irst send their Fi’s,
NFi’s, Gi’s, NGi’s, yi’s, and Nyi’s to Processor 1. Processor 1 collects these data to form a
reduced linear system and solves Eq. (5) alone sequentially. Processor 1 performs the
following procedure in this phase.

K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334 321

Step 1: Accumulate the data Nyi, yi,
NGi, Gi, Fi, and NFi from Processors 2; 3; : : : ; and

p− 1; Nyp and Fp from Processor p.
Step 2: Solve the reduced system (see Eq. (5)).
Step 3. Distribute the data Nxi+1 and xi−1 to Processor i for i=2; 3; : : : ; p− 1; Nxp to

processor p.

Setting n=p× (r+s) in Lemma 1, this phase needs less than p(r+s)(rs+2r+s+1)
multiplications and less than p(r + s)(rs + r + s) additions in Step 2. Note that the
communication cost required in Step 1 and that required in Step 3 is negligible since
in our assumption the number of processors used in the multiprocessor is small. The
communication cost required in the two steps, i.e. Steps 1 and 3, is a Ixed value
and does not dominate the total cost required in the parallel banded-system solver.
Therefore, the communication cost factor is ignored since it does not aMect our load-
balancing analysis.

3.3. Phase 3

Phase 3 is an update phase. We want to solve all the xi’s for 16i6p by using
Eq. (4) and the temporary solutions x1, Nxp, xi, and Nxi for 26i6p− 1.
For Processor 1, from the Irst equation in Eq. (4), we have

x1 + G1 Nx2 = y1:

Multiplying A1 to both sides, yields

A1x1 + A1G1 Nx2 = A1y1 = b1:

We then have

A1x1 = b1 − A1G1 Nx2

= b1 −
(
0
E1

)
Nx2

= b1 −
(

0
E1 Nx2

)
:

From the LU -decomposition of A1, A1 =L1U1, let

L1z1 = b1:

In phase 3, Processor 1 Irst solves v from

L1v =
(

0
E1 Nx2

)
;

then solves x1 from U1x1= z1 − v. In this phase, Processor 1 needs about n1(s + 1)
multiplications and n1s additions.
For Processor i, 26i6p− 1, from the second equation in Eq. (4), we have

Fixi−1 + xi + Gi Nxi+1 = yi :

322 K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334

Processor i for i=2; 3; : : : ; p− 1 just performs
xi ← yi − Fi−1xi−1 − Gi+1 Nxi+1:

Processor i for i=2; 3; : : : ; p − 1 needs about ni(r + s) multiplications and ni(r + s)
additions.
By the same argument as in Processor 1, for Processor p, from the last equation in

Eq. (4), we have

Fpxp−1 + xp = yp:

We further have

Apxp + ApFpxp−1 = Apyp = bp:

That is, we have

Apxp = bp − ApFpxp:0−1

= bp −
(
Dp
0

)
xp−1

= b−
(
Dpxp−1

0

)
:

Using the LU -decomposition of Ap, Ap=UpLp, let

Upzp = bp:

Processor p Irst solves v from

Upw =
(
Dpxp−1

0

)
;

then solves xp from Lpxp= zp −w. Processor p needs about np(r + 1) multiplications
and npr additions.
After analyzing the number of FLOPs required in each processor in the three-phase

method mentioned in this section, the load-balancing analysis is given in the next
section.

4. Load-balancing analysis

For simplifying the load-balancing analysis, let the computation time for one addition
be one time unit; the computation time for one division be a time unit; the computation
time for one multiplication be b time unit.
From the time bound required in Phase 1 for each processor, we know the two facts:

(1) each Processor i, 26i6p−1, has the same time requirement when n2 = n3 = · · ·=
np−1, and (2) the terms without involving ni in the time complexity expressions,

K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334 323

16i6p, can be ignored because of ni�r; s. Therefore, we set n1 =m1, n2 = n3 = · · ·=
np−1 =m, and np=m2. Then, Processor 1 needs m1 divisions, m1(rs + 2r) multipli-
cations, and m1(rs + r) additions. Processor i, for 26i6p − 1, needs m divisions,
m(r2 + 3rs+3r + s+1) multiplications, and m(r2 + 3rs) additions. Processor p needs
mp divisions, mp(rs+ 2s) multiplications, and mp(rs+ s) additions.
From the parallel processing viewpoint, the time bound required in phase 1 is given

by

max(m1c1; mc2; m2c3)

time unit, where

c1 = a+ (rs+ 2r)b+ (rs+ r);

c2 = a+ (r2 + 3rs+ 3r + s+ 1)b+ (r2 + 3rs)

and

c3 = a+ (rs+ 2s)b+ (rs+ s):

By the same argument, the time bound required in phase 3 is given by

max(m1d1; md2; m2d3)

time unit, where

d1 = (s+ 1)b+ s;

d2 = (r + s)b+ (r + s)

and

d3 = (r + 1)b+ r:

We thus wish to minimize the average computation time f(m1; m; m2) for each equa-
tion, where

f(m1; m; m2) =
max(m1c1; mc2; m2c3) + max(m1d1; md2; m2d3)

m1 + (p− 2)m+ m2
:

Let t1 =m1=m and t2 =m2=m, then we have

f(m1; m; m2) = F(t1; t2) =
max(t1c1; c2; t2c3) + max(d1t1; d2; d3t2)

t1 + (p− 2) + t2 :

In what follows, an optimization-based load-balancing analysis is given to determine
how many loads should be assigned to each processor in order to minimize F(t1; t2).
On the other hand, we want to determine the values of t1 and t2 such that the value
of F(t1; t2) is minimal. Once such point (t1; t2) is obtained, the values n1; n2; : : : ; and
np can also be obtained.
Before obtaining (t1; t2) to minimize F(t1; t2), we need the following two lemmas.

324 K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334

Lemma 2. Suppose G is an open region and is included in {(t1; t2): t1¿0; t2¿0}. Let
g(t1; t2)= (at1+bt2+c)=(t1+ t2+d) for a; b; c; d¿0 be in D. Then either g is constant
in this region or minimal value of g does not exist at any interior point in D.

Proof. DiMerentiating g with respect to t1 and t2, respectively, we have

dg
dt1

=
(t1 + t2 + d)a− (at1 + bt2 + c)

(t1 + t2 + d)2
=
(a− b)t2 + ad− c
(t1 + t2 + d)2

and
dg
dt2

=
(t1 + t2 + d)b− (at1 + bt2 + c)

(t1 + t2 + d)2
=
(b− a)t1 + bd− c
(t1 + t2 + d)2

:

Suppose a �= b. Solving dg=dt1 = 0 and dg=dt2 = 0, we obtain t1 = (bd− c)=(a− b) and
t2 = (c− ad)=(a− b). Unfortunately, since t1 + t2 = bd− ada− b=−d, (t1; t2) does not
belong to the given region D, so minimal value of g does not exist at any interior point
in D in this case. Considering another case, suppose a= b. If c �= bd, the two equations
dg=dt1 = 0 and dg=dt2 = 0 have no solution, so minimal value of g also does not exist
at any interior point in D in this case. Considering the remaining case, suppose a= b
and c= bd. Then g is constant in this region. We complete the proof.

Lemma 3. Suppose I is an open interval which is included in {t: t¿0}. Let g(t)=
(at+b)=(ct+d); a; b; c; d¿0 on I; then either g is constant in this interval or minimal
value of g does not exist at any interior point in I .

Proof. Since g′(t)= ((ct+d)a− (at+ b)c)=(ct+d)2 = (ad− bc)=(ct+d)2, if ad �= bc,
then g′(t) �=0. It implies that minimal value of g does not exist at any interior point.
If ad= bc, then g is constant in this interval. We complete the proof.

For solving this minimization problem, the numerator of F(t1; t2) can be handled as
follows. Consider the Irst class which consists of the following nine disjoint open 2-D
regions, say G1; G2; : : : ; G9. Each region is formed by the intersection of some open
half-plane.

G1 = {(t1; t2): c1t1 ¿ c2; c1t1 ¿ c3t2; d1t1 ¿ d2; d1t1 ¿ d3t2};

G2 = {(t1; t2): c2 ¿ c1t1; c2 ¿ c3t2; d1t1 ¿ d2; d1t1 ¿ d3t2};

G3 = {(t1; t2): c3t2 ¿ c1t1; c3t2 ¿ c2; d1t1 ¿ d2; d1t1 ¿ d3t2};

G4 = {(t1; t2): c1t1 ¿ c2; c1t1 ¿ c3t2; d2 ¿ d1t1; d2 ¿ d3t2};

G5 = {(t1; t2): c2 ¿ c1t1; c2 ¿ c3t2; d2 ¿ d1t1; d2 ¿ d3t2};

G6 = {(t1; t2): c3t2 ¿ c1t1; c3t2 ¿ c2; d2 ¿ d1t1; d2 ¿ d3t2};

G7 = {(t1; t2): c1t1 ¿ c2; c1t1 ¿ c3t2; d3t2 ¿ d1t1; d3t2 ¿ d2};

K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334 325

G8 = {(t1; t2): c2 ¿ c1t1; c2 ¿ c3t2; d3t2 ¿ d1t1; d3t2 ¿ d2};

G9 = {(t1; t2): c3t2 ¿ c1t1; c3t2 ¿ c2; d3t2 ¿ d1t1; d3t2 ¿ d2}:

From G1, suppose the point (t1; t2)∈G1. Then we have F(t1; t2)= (c1 + d1)t1=
(t1 + (p − 2) + t2). In general, considering each Gi for 16i69 and (t1; t2)∈Gi, it
yields to F(t1; t2)= (#it1 + $it2 + %i)=(t1 + (p− 2) + t2).
By Lemma 2, the minimal value of function F(t1; t2) does not exist at any interior

point in the region unless that function is constant. In fact, if the function is constant,
both the interior point in one Gi and the boundary point of the same Gi make the
function constant. Further, we consider the next class.
The second class consists of the following 12 disjoint open segments or open half-

line, say I1; I2; : : : ; I12.

I1 =
{
(t1; t2): c1t1 = c2 ¿ c3t2; d3t2 ¿ max

(
c2d1
c1

; d2

)}
;

I2 =
{
(t1; t2): c1t1 = c2 ¿ c3t2; d3t2 ¡ max

(
c2d1
c1

; d2

)}
;

I3 =
{
(t1; t2): c1t1 = c3t2 ¿ c2;max

(
d1c3
c1

; d3

)
t2 ¿ d2

}
;

I4 =
{
(t1; t2): c1t1 = c3t2 ¿ c2;max

(
d1c3
c1

; d3

)
t2 ¡ d2

}
;

I5 =
{
(t1; t2): c3t2 = c2 ¿ c1t1; d1t1 ¿ max

(
d2;

c2d3
c3

)}
;

I6 =
{
(t1; t2): c3t2 = c2 ¿ c1t1; d1t1 ¡ max

(
d2;

c2d3
c3

)}
;

I7 =
{
(t1; t2): d1t1 = d2 ¿ d3t2; c3t2 ¿ max

(
c1d2
d1

; c2

)}
;

I8 =
{
(t1; t2): d1t1 = d2 ¿ d3t2; c3t2 ¡ max

(
c1d2
d1

; c2

)}
;

I9 =
{
(t1; t2): d1t1 = d3t2 ¿ d2;max

(
c1d3
d1

c3

)
t2 ¿ c2

}
;

I10 =
{
(t1; t2): d1t1 = d3t2 ¿ d2;max

(
c1d3
d1

c3

)
t2 ¡ c2

}
;

I11 =
{
(t1; t2): d3t2 = d2 ¿ d1t1; c1t1 ¿ max

(
c2;
d2c3
d3

)}
;

326 K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334

I12 =
{
(t1; t2): d3t2 = d2 ¿ d1t1; c1t1 ¡ max

(
c2;
d2c3
d3

)}
:

From I1, suppose the point (t1; t2)∈ I1. Then we have F(t1; t2)= c2=c1 + (p−2)+ t2.
In general, considering each Ii for 16i612 and (t1; t2)∈ Ii, yields

F(t1; t2) =
#it1 + $i

t1 + (p− 2) + %i
or

F(t1; t2) =
#it2 + $i

t2 + (p− 2) + %i ;

where #i; $i, and %i¿0.
By Lemma 3, the minimal value of function F(t1; t2) does not exist at any interior

point in the open interval unless that function is constant. In fact, if the function is
constant, both the interior point in one Ii and the boundary point of the same Ii make
the function constant. Finally, we consider the class of boundary points on all Ii’s.
The third class consists of the following eight points, say P1; P2; : : : ; P8.

P1 = {(t1; t2): c1t1 = c2 = c3t2};

P2 = {(t1; t2): d1t1 = d2 = d3t2};

P3 = {(t1; t2): c1t1 = c2 ¿ c3t2; d2 = d3t2 ¿ d1t1};

P4 = {(t1; t2): c1t1 = c2 ¿ c3t2; d1t1 = d3t2 ¿ d2};

P5 = {(t1; t2): c1t1 = c3t2 ¿ c2; d2 = d3t2 ¿ d1t1};

P6 = {(t1; t2): c1t1 = c3t2 ¿ c2; d1t1 = d2 ¿ d3t2};

P7 = {(t1; t2): c3t2 = c2 ¿ c1t1; d1t1 = d2 ¿ d3t2}

and

P8 = {(t1; t2): c3t2 = c2 ¿ c1t1; d1t1 = d3t2 ¿ d2}:

From Lemmas 2 and 3, we have the following theorem.

Theorem 1. There exists a point (Nt1; Nt2) which belongs to some Pi for 16i68 such
that the function F(t1; t2) has its minimal value at point (Nt1; Nt2).

Consequently, there are at most eight points and at least two points from P1; P2; : : : ; P8
to be put into the function F(t1; t2). We then select the minimal output value. That is,
the load-balancing problem discussed in this paper is equal to computing Min{F(t1; t2)
| (t1; t2)∈

⋃8
i=1 Pi}.

K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334 327

Table 1
Values of t1 and t2

t1 t2

r= s=5 3.27 3.27
r=4, s=6 3.14 2.84
r=6, s=4 3.46 3.83
r=3, s=7 3.06 2.44
r=7, s=3 3.72 4.67

5. Experimental results

Given diMerent r, s, p, and n, we have implemented the proposed load-balanced
parallel banded system solver on the nCUBE 2=E [13, 14] with 1, 2, 4, and 8 processors.
Here, the time units required in one division, one multiplication, and one addition are
15, 5, and 1, respectively. That is, a=15 and b=5. The performance when compared
to that one without load-balancing consideration is also demonstrated.
In our implementation, the data sizes, n’s, are 2048 and 4096. Five diMerent combi-

nations of r and s are given. Table 1 illustrates the optimal solutions (t1; t2)’s, which
are found by the load balancing analysis described in Section 4, for diMerent cases.
The time requirement and the speedup for all the cases are listed in Table 2. The

performance improvement of using the proposed load-balancing strategy is also listed
in Table 2, where Rp=(Sp(Load balance)−Sp(No load balance)=Sp(No load balance).
Using 4 (8) processors, the speedup improvement ratio ranges from 47% to 66%
(from 12% to 24%) when compared to the parallel banded-system solver without load-
balancing consideration.
The number of equations, i.e. the load, assigned to each processor using the proposed

load-balancing scheme for each case is listed in Table 3, where n0, ni, and np−1 denote
the number of equations assigned to Processor 1, Processor i for 26; : : : ; p − 1 and
Processor p, respectively.

6. Conclusions

This paper presents a load-balancing strategy for solving banded systems in parallel.
The proposed strategy can speed up the existing parallel solvers for large banded sys-
tems signiIcantly when the number of processors used is small. The main contribution
of this paper is to present a nontrivial but rather general load-balancing analysis to
determine how many loads should be assigned to diMerent processors in order to min-
imize the time bound required. Some experimentations are carried out on the nCUBE
2E multiprocessor. Using 4 (8) processors, the speedup improvement ratio ranges from
47% to 66% (from 12% to 24%) when compared to the parallel banded-system solver
without load-balancing consideration.

328 K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334

Table 2
Execution time, speedup, and performance improvement

Execution time(Tp)=speedup(Sp)

Sequential No load balance Load balance Performance
improvement

n p=1 4 8 4 8 R4(%) R8(%)

2048 0.54 0.38 0.23 0.24 0.20 59 14
r=5 1 1.42 2.35 2.25 2.69
s=5 4096 1.09 0.70 0.41 0.47 0.35 50 17

1 1.56 2.63 2.33 3.07

2048 0.54 0.38 0.23 0.24 0.20 59 17
r=4 1 1.40 2.33 2.22 2.72
s=6 4096 1.07 0.74 0.41 0.47 0.35 61 19

1 1.43 2.60 2.30 3.10

2048 0.53 0.36 0.23 0.24 0.21 47 12
r=6 1 1.41 2.55 2.18 2.57
s=4 4096 1.06 0.75 0.41 0.47 0.36 61 14

1 1.41 2.55 2.27 2.92

2048 0.50 0.38 0.23 0.24 0.19 63 21
r=3 1 1.32 2.19 2.15 2.65
s=7 4096 1.01 0.75 0.41 0.45 0.33 66 24

1 1.35 2.45 2.24 3.04

2048 0.49 0.38 0.23 0.23 0.20 64 13
r=7 1 1.28 2.13 2.10 2.40
s=3 4096 0.98 0.75 0.41 0.45 0.36 66 15

1 1.31 2.37 2.17 2.72

Table 3
Number of equations to be assigned to each processor

p=4 p=8

n n0 ni np−1 n0 ni np−1

r=5 2048 785 239 785 535 163 535
s=5 4096 1569 479 1569 1070 326 1070

r=4 2048 803 256 733 533 170 495
s=6 4096 1630 513 1460 1070 341 980

r=6 2048 761 220 847 532 154 592
s=4 4096 1522 440 1694 1065 308 1183

r=3 2048 835 273 667 544 178 436
s=7 4096 1670 546 1334 1089 356 871

r=7 2048 732 197 922 528 142 668
s=3 4096 1465 394 1843 1056 284 1336

K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334 329

In fact, the proposed load-balancing result can be applied to the design of load-
balanced parallel solvers for solving the banded systems based on some other methods
[2, 3], e.g. cyclic reduction method. The main reason of this applicability is that under
the situation when the number of processors is small and the size of the system is large
enough, the load in the Irst=last processor is less than that in any other processor, so
the optimization-based load-balancing analysis discussed in this paper can be used to
determine how many loads should be assigned to each processor in order to minimize
the time bound requirement, i.e. F(t1; t2). Since the optimization-based load-balancing
analysis is rather general, the detailed load-balancing analysis could be derived if we
know the related parameters in diMerent parallel machine, e.g. IBM SP=2 supercomputer
[3], and diMerent implementation, e.g. ScaLAPACK [5].
SpeciIcally, the spirit of this paper has been applied successfully to plug the load-

balanced advantage into the parallel solvers for solving the tridiagonal systems [5, 12].
However, since the tridiagonal system is a special case of the banded system, a simpler
load-balancing analysis has been derived in [16]. Experimental results show that the
parallel tridiagonal system-solver proposed by Amodio and Mastronardi [1] has 43%
(21%) speedup improvement when employing the proposed load-balancing considera-
tion on the nCUBE 2E multiprocessor with 4 (8) processors.

Appendix A. Proof of Lemma 1

In this appendix, we Irst present the algorithm for solving Eq. (1) sequentially
based on the LU -decomposition approach, that is, the banded matrix A=LU . Then we
analyze the number of FLOPs required in the algorithm.
The formal algorithm for LU -decomposition of A is shown below. Following the

notations used in [8], the resulting matrices L and U are obtained according to the
order U (1 : 1 : s+1)= [u11u12 : : : u1(s+1)], L(2 : 1 : 2)= [l21l22]; U (2 : 2 : s+2); L(3 :
1 : 3), and so on.

Input: A= [aij]n×n is a banded matrix with r lower diagonals and s upper diagonals.
Output: The resulting matrices L and U which are overlapped into A= [aij]n×n.

L= [lij]n×n and U = [uij]n×n are obtained by setting lii=1; lij = aij for j¡i6j +
r; lij =0 for i¡j or i¿j + r; uii=1=aii, uij = aij for i¡j6i+ s, and uij =0 for j¡i
or j¿i + s.

for i ← 1 to n
for j ← max(1; i − r) to i − 1

aij ← −ajj ∗ aij
for k ← max(1; j + 1) to min(n; j + s)

aik ← aik + aij ∗ ajk
end for

end for

330 K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334

aii ← 1
aii

end for

In the ith iteration of the outer for-loop, it needs mi multiplications, ai additions,
and one division, where mi and ai will be analyzed later. Temporarily, it is said that
the above procedure needs

∑n
i=1mi multiplications,

∑n
i=1 ai additions, and n divisions.

For analyzing the number of FLOPs, let

mi =

{
(i − 1)(s+ 1) for 16 i 6 r;

r(s+ 1) for r + 16 i 6 n− s+ 1;

mn−s+i+1 = mn−s+i − i for 16 i 6 r;

mn−s+r+i+1 = mn−s+r+i − r for 16 i ¡ s− r (A.1)

and

ai =

{
(i − 1)s for 16 i 6 r;

rs for r + 16 i 6 n− s+ 1;

an−s+i+1 = an−s+i − i for 16 i 6 r;

an−s+r+i+1 = an−s+r+i − r for 16 i ¡ s− r: (A.2)

The number of multiplications required in the above algorithm is equal to
∑n

i=1 mi.
From the Irst and second equalities in (A.1), we have

n∑
i=1

mi =
n∑
i=1

r(s+ 1)−
n∑
i=1

[r(s+ 1)− mi]

= nr(s+ 1)−
r∑
i=1

[r(s+ 1)− mi]−
s∑
i=1

[r(s+ 1)− mn−s+i]

= nr(s+ 1)−
r∑
i=1

(r − i + 1)(s+ 1)−
s∑
i=1

[mn−s+1 − mn−s+i]

= nr(s+ 1)− 1
2
r(r + 1)(s+ 1)−

s∑
i=1

[mn−s+1 − mn−s+i]:

We now further complete the asymptotical analysis of
∑s

i=1[r(s+1)−mn−s+i]. From
the third and fourth equalities in (A.1), we have mn−s+1 + mn¿mn−s+1 = r(s + 1),
mn−s+2 + mn−1¿mn−s+1 + mn¿r(s + 1), mn−s+3 + mn−2¿mn−s+2 + mn−1¿r(s + 1),

K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334 331

and so on. Hence we have
s∑
i=1

mn−s+i ¿
1
2
rs(s+ 1):

Since each mn−s+i6r(s+ 1) for i=1; 2; : : : ; s, we have

s∑
i=1

mn−s+i 6 rs(s+ 1):

So, it yields

06
s∑
i=1

[r(s+ 1)− mn−s+i]6 1
2
rs(s+ 1):

Finally, we have[
n− 1

2
(r + s+ 1)

]
r(s+ 1)6

n∑
i=1

mi 6
[
n− 1

2
(r + 1)

]
r(s+ 1):

The number of multiplications required for the above LU decomposition algorithm
is between [n− 1

2 (r + s+ 1)]r(s+ 1) and [n− 1
2 (r + 1)]r(s+ 1).

In addition, the number of additions required is equal to
∑n

i=1 ai. From the Irst and
second equalities in (A.2), we have

n∑
i=1

ai =
n∑
i=1

rs−
n∑
i=1

(rs− ai)

= nrs−
r∑
i=1

(rs− ai]−
s∑
i=1

(rs− an−s+i)

= nrs−
r∑
i=1

(r − i + 1)s− s∑
i=1

(rs− an−s+i)

= nrs− 1
2
r(r + 1)s−

s∑
i=1

(rs− an−s+i):

We now give the asymptotical analysis for
∑s

i=1[rs − an−s+i]. From the third and
fourth equalities in (A.2), we have an−s+1 + an¿rs, an−s+1 + an−1¿an−s+1 + an¿rs,
an−s+2 + an−2¿an−s+1 + an−1¿rs, and so on. Hence, we have

s∑
i=1

an−s+i ¿
1
2
rs2:

Since each an−s+i6rs for i=1; 2; : : : ; s, we have

s∑
i=1
an−s+i 6 rs2:

So, it yields

06
s∑
i=1

[rs− an−s+i]6 1
2
rs2:

332 K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334

Finally, we have[
n− 1

2
(r + s+ 1)

]
rs6

s∑
i=1

an−s+i 6
[
n− 1

2
(r + 1)

]
rs:

Consequently, the number of additions required in the LU decomposition algorithm is
between [n− 1

2 (r + s+ 1)]rs and [n− 1
2 (r + 1)]rs.

After discussing the LU decomposition for A=LU , we further analyze the number
of FLOPs required in solving Ly= b and Ux= y. We can solve Ly= b using the
forward substitution. The related procedure is shown below:

y1 ← b1
for i ← 2 to n

yi ← bi
for j ← max(1; i − r) to i − 1

yi ← yi − lij ∗ yj
end for

end for

In the ith iteration of the outer for-loop, it needs ci multiplications and ci subtractions,
where

ci =

{
i − 1 for 26 i 6 r;

r for r + 16 i 6 n:
(A.3)

We have assumed that the time required for one subtraction is equal to that required
for one addition. The number of additions (multiplications) in the above procedure is
equal to

n∑
i=2

ci =
n∑
i=2

r −
n∑
i=2

[r − ci]

= (n− 1)r −
r∑
i=2

[r − i + 1]

= nr −
r∑
i=1

[r − i + 1]

= nr − r(r + 1)
2

= [n− 1
2 (r + 1)]r:

Afterward, we can solve Ux= y using forward substitution and the procedure is
shown below:

xn ← yn=unn /* performed by yn ∗ ann */
for i ← n− 1 downto 1

K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334 333

xi ← yi
for j ← i + 1 to min(i + s; n)

xi ← yi − uij ∗ xj
end for
xi ← xi=uii /* performed by xi ∗ aii */

end for

In the ith iteration of the outer for-loop, it needs di + 1 multiplications and di
additions, where

di =

{
s for 16 i 6 n− s;
n− i for n− s ¡ i 6 n− 1: (A.4)

The number of additions required in the above algorithm is equal to

n−1∑
i=1

di =
n−1∑
i=1

s−
n−1∑
i=1

[s− di]

= (n− 1)s−
n−1∑

i=n−s+1
[s− n+ i]

= ns−
n∑

i=n−s+1
[s− n+ i]

= ns− s(s+ 1)
2

= [n− 1
2 (s+ 1)]s:

The number of multiplications required in the above algorithm is equal to

n−1∑
i=1

(di + 1) = ns− s(s+ 1)
2

+ n

= [n− 1
2 s](s+ 1):

In summary, solving Ux= y needs [n − 1
2 (s + 1)]s additions and [n − 1

2 s](s + 1)
multiplications.

Acknowledgements

The authors are indebted to the anonymous reviewers, Prof. M. Nivat, and S. Smit
for their valuable suggestions that lead to the improved version of the paper.

334 K.-L. Chung et al. / Theoretical Computer Science 289 (2002) 313–334

References

[1] P. Amodio, N. Mastronardi, A parallel version of the cyclic reduction algorithm on a hypercube, Parallel
Comput. 19 (1993) 1273–1281.

[2] P. Arbenz, A. Cleary, J. Dongarra, M. Hegland, A comparison of parallel solvers for diagonally dominant
and general narrow-anded linear systems, UT-CS-99-414, University of Tennessee, 1999, USA.

[3] P. Arbenz, A. Cleary, J. Dongarra, M. Hegland, A comparison of parallel solvers for diagonally dominant
and general narrow-banded linear systems II, UT-CS-99-415, University of Tennessee, 1999, USA.

[4] D. Bini, Victor Y. Pan, Polynomial and Matrix Computations, BirkhSauser, Boston, 1994, pp. 208–211.
[5] A. Cleary, J. Dongarra, Implementation in ScaLAPACK of divide-and-conquer algorithms for banded

and tridiagonal systems, UT-CS-97-358, University of Tennessee, 1997, USA.
[6] J.J. Dongarra, L. Johnsson, Solving banded systems on a parallel processor, Parallel Comput. 5 (1987)

219–246.
[7] J.J. Dongarra, A.H. Sameh, On some parallel banded system solvers, Parallel Comput. 1 (1984)

223–235.
[8] G.H. Golub, C.F. Van Loan, Matrix Computations, Section 4:3: Banded Systems, Johns Hopkins

University Press, Baltimore, 1989, pp. 149–159.
[9] S.L. Johnsson, Solving narrow banded systems on ensemble architectures, ACM Trans. Math. Software

11 (3) (1985) 271–288.
[10] S. Lakshmivarahan, S.K. Dhall, Analysis and Design of Parallel Algorithms: Arithmetics and Matrix

Problems, McGraw-Hill, New York, 1990.
[11] D.H. Lawrie, A.H. Sameh, The computation and communication complexity of a parallel banded system

solver, ACM Trans. Math. Software 10 (2) (1984) 185–195.
[12] U. Meier, A parallel partition method for solving banded systems of linear equations, Parallel Comput.

2 (1985) 33–43.
[13] nCUBE 2 Processor Manual, nCUBE company, Foster City, CA, 1993.
[14] nCUBE 2 Programmer’s Guide, nCUBE company, Foster City, CA, 1993.
[15] H.H. Wang, A parallel method for tridiagonal equations, ACM Trans. Math. Software 7 (1981)

170–183.
[16] W.M. Yan, K.L. Chung, J.G. Wu, Load-balanced parallel tridiagonal system solver, Research Report,

Dept. of Information Mgmt. and Inst. of Computer Science and Information Eng., National Taiwan
University of Science and Technology, 1999.

