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Abstract

Considering a binary image, a new two-phase representation is presented in this paper to

reduce the memory requirement in the conventional tree-based spatial data structures (SDSs)

such as the linear quadtree, DF-expression, S-tree representation, etc. Experimental results

show that not only our proposed two-phase representation has a better memory-saving effect

but it also can speed up the coding-time when compared to the existing SDSs. We also show

that our proposed two-phase representation has a better computational performance when

running geometric operations, such as computing the area and the centroid, on the proposed

two-phase representation directly.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Quadtree is the most well-known spatial data structure (SDS) for representing bi-

nary images and can reduce the memory requirement through the use of aggregation

of homogeneous blocks (Samet, 1990b). Based on different kinds of SDSs, Samet

(1990a) gave an excellent survey on many applications in computer graphics, image

processing, geographic information systems, image database, pattern recognition,

etc.
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In order to reduce the storage requirement, some memory-saving representations

have been proposed. Gargantini (1982) presented a pointerless SDS, called the linear

quadtree (LQ), which represents a quadtree by encoding only black nodes, and each

black node is encoded by a path from the root to the node. The DF-expression

(Kawaguchi and Endo, 1980) encodes each node of the quadtree in depth first search
(DFS) manner using the symbol �G,� �B,� or �W� to indicate the gray node, black node

or white node, respectively. Bintree is another storage-efficiency SDS representation.

Based on the bintree, Jonge et al. (1994) presented the S-tree representation. The S-

tree is obtained by traversing the bintree in DFS manner using 1 (0) to encode the

external node (internal node) and then using 1 (0) to encode the black (white) exter-

nal node. The bincodes representation proposed by Ouksel and Yaagoub (1992) were

shown to have some space improvement over the LQ in empirical comparisons

(Shaffer et al., 1993).
Given a binary image, this paper first gives an observation that the conventional

SDSs mentioned above spend much amount of memory for storing leaves and the

internal nodes near leaves when the binary image has some detailed texture. In order

to reduce the memory requirement in the conventional SDSs, a new two-phase rep-

resentation is presented in this paper. In the first phase, we follow the conventional

tree-based SDS from root to a specific level, say s, of the tree. There exist three kinds
of leaves at level s representing the entirely white subimages, the entirely black sub-

images, and the gray subimages. The third kind which we name it as the gray leaf is
the most memory consuming part in the conventional SDSs. In the second phase,

each gray leaf obtained from the first phase is coded by the connected component

string (CCS) coding scheme. The CCS is obtained by employing the morphological

technique (Serra, 1982) and can efficiently represent the gray leaf and it leads to the

memory-saving effect. Experimental results show that our improved two-phase SDS

over the conventional SDSs have 66.14, 19.49, 12.33, and 48.83% memory improve-

ment ratios (12.69, 4.66, 2.49, and 18.71% coding-time improvement ratios) when

compared to the LQ, DF-expression, S-tree representation, and the bincodes, respec-
tively. Besides the memory-saving effect and the encoding-time speedup, we also

show that our proposed two-phase representation has a better computational perfor-

mance when running two geometric operations, computing the area and the cen-

troid, on the proposed two-phase representation directly.

The remainder of this paper is organized as follows. Section 2 presents four kinds

of conventional SDSs. Section 3 presents our proposed two-phase representation to

improve the conventional SDSs. In Section 4, two geometric operations for comput-

ing the area and centroid on the proposed two-phase representation directly are dis-
cussed. Some experimental results are illustrated in Section 5. Finally, some

conclusions are addressed in Section 6.

2. Conventional tree-based SDSs

In this section, we take a simple example to introduce the four existing tree-based

SDSs mentioned above.

98 K.-L. Chung et al. / J. Vis. Commun. Image R. 14 (2003) 97–113



For a quadtree, if the images is entirely black (white), then the root node is labeled

with 1 (0). Otherwise, the root node is further divided into four equal-sized sub-

images. For the quadrants, they are labeled sw (southwest), se (southeast), nw (north-

west), and ne (northeast), respectively. The quadtree decomposition is based on

repeatedly subdividing the subimages until the subimage is entirely black or white.
Given a binary image with 8� 8 as shown in Fig. 1, the corresponding quadtree is

shown in Fig. 2.

2.1. Linear quadtree: LQ

Without using pointers, a LQ (Kawaguchi and Endo, 1980) represents the quad-

tree by a set of codes, and each code is obtained by encoding a path from the root to

the black node, i.e., external node, in the quadtree. Let the sw quadrant, the se quad-
rant, the nw quadrant, and the ne quadrant be encoded with 0, 1, 2, and 3, respec-

tively. Fig. 3 illustrates the assigned codes on each quadrant. The node c in Fig. 3

is encoded by 030 and the node a is encoded by 1X where X is a don�t-care symbol.

The don�t-care symbol X denotes this node being not at the bottom level of the tree

and its code is ended at X . By traversing the quadtree in DFS manner to code the

black nodes, the quadtree in Fig. 3 is coded as 030 031 032 1X 31X 330 331 333.

2.2. DF-expression

Given a quadtree, the DF-expression (Kawaguchi and Endo, 1980) is obtained by

traversing the quadtree in DFS manner. The DF-expression is a sequence consisting

of three symbols �G,� �W,� and �B,� which denote the gray node, white node, and black

node, respectively. During the traversal, if a gray node is encountered, the symbol �G�
is appended to the DF-expression; if a white node is encountered, the symbol �W� is
appended to the DF-expression, and the symbol �B� is appended if a black node is

encountered. For example, the DF-expression of Fig. 2 is GGWWWGBBBW

BWGWBWGBBWB.

Fig. 1. A binary image example.
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2.3. S-tree

The S-tree is based on the bintree (Samet, 1990b) structure. Given an image, the

corresponding bintree is obtained by recursively subdividing the image into two

equal-sized subimages until the subimage is totally black or white. At each step,

the partition is alternated between the x- and y-axes. The corresponding bintree of

Fig. 1 is shown in the right side of Fig. 4 and the partitioned subimages are shown
in the left side of Fig. 4.

Fig. 4. The bintree representation of Fig. 1.

Fig. 3. The assigned digits of the LQ.

Fig. 2. The quadtree representation of Fig. 1.
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The S-tree representation is obtained by traversing the bintree in breadth-first

search (BFS) manner and the traversed result is stored in two array tables, namely,

the linear-tree table and the color table. While traversing the bintree, a �1� (�0�) is
emitted to the linear-tree table when an external (internal) node is encountered.

Meanwhile, a �1� (�0�) is emitted to the color table when a black (white) leaf node
is encountered. For example, the S-tree representation for Fig. 4 is listed below:

linear-tree table: 0 00 0110 1010 1010 1001 1111

color table: 010001111010

2.4. Bincodes

Given an image, the representation of bincodes (Ouksel and Yaagoub, 1992) is

obtained by traversing the corresponding bintree in DFS manner and encoding each

black node by a location code. For a 2N � 2N binary image, the representation of

bincodes for a black node at location ðx; yÞ and level l of its corresponding bintree

is denotes bðl; x; yÞ. The location ðx; yÞ is the coordinate of the left-bottom corner

of the corresponding subimage. For example, the black node c in Fig. 4 denoted
by bð5; 2; 4Þ is at level 5 of the bintree and at the location (2,4) of the image. The en-

coding expression is bðl; x; yÞ ¼
PN�1

k¼0 ðxk � 24kþ3Þ þ
PN�1

k¼0 ðyk � 24kþ1Þ þ
P2N�1

k¼0

ðsk � 22kÞ, where xN�1xN�2 � � � x0 and yN�1yN�2 � � � y0 denote the binary representation

of x and y, respectively, and s ¼ 22N � 22N�l ¼ ðs2N�1s2N�2 � � � s0Þ2. In fact, the en-

coded bincode for the black node bðl; x; yÞ is expressed as the sequence

ðxN�1s2N�1yN�1s2N�2xN�2s2N�3 � � � x0s1y0s0Þ2.
For the black node c in Fig. 4, we encoded as bð5; 2; 4Þ ¼ ð011111010100Þ2 , since

N ¼ 3, x ¼ ð010Þ2, y ¼ ð100Þ2, and s ¼ ð111110Þ2. By traversing the bintree in DFS
manner and encoding the black nodes, the bincodes representation of Fig. 4 is a

strictly increasing ordered sequence as (2004, 2015, 3840, 3568, 3545, and 3548) in

decimal representation.

3. Proposed two-phase representation

In this section, we first describe the idea of the proposed two-phase representa-
tion. Second, how to apply the morphological dilation operator to perform the con-

nected component analysis is introduced. Then, the CCS coding scheme for

representing the connected components is described. Finally, the formal algorithms

for encoding and decoding the CCS are presented.

3.1. The idea

In the first phase, we adopt any one of the conventional SDSs to represent the gi-
ven binary image. Instead of subdividing each subimage into an entirely black or

white subimage, we stop the tree decomposition to a specified level to obtain an

approximate quadtree or bintree for the image. Fig. 5 is an example of the approx-

imate quadtree which is obtained by stopping the decomposition at level 1. The
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approximate tree has three kinds of leaves, namely, the black leaves, the white leaves,

and the gray leaves. Each black leaf represents an entirely black subimage; each

white leaf represents an entirely white subimage, and each gray leaf represents a gray

subimage. The gray leaf should be a subtree in the conventional SDS. As described

before, the gray leaves are the memory consuming part in the conventional SDSs. To

reduce the memory requirement, in the second phase, we code the gray leaves using

the connected component string (CCS) coding scheme. A CCS is a bit-stream which

can efficiently represent a connected component in a subimage. The CCSs are ob-
tained by employing the morphological technique in the connected components anal-

ysis for the subimages represented by gray leaves.

For example, the binary image shown in Fig. 1 can be represented by the quadtree

in Fig. 2 using the conventional SDSs. Instead of decomposing the tree to level 3, we

stop the decomposition at level 1 and obtain the approximate quadtree as in Fig. 5.

The nodes marked as D�s in Fig. 5 are the gray leaves which will be coded using the

CCS coding scheme in the second phase.

3.2. Connected component analysis

To find a connected component for the subimage represented by a gray leaf, we

employ the morphological dilation operation. Consider a set A to which the dilation

operation will be associated with the structuring element B. Let � denote the mor-

phological dilation operator. The dilated set A� B is defined to be the union of all

pixels under the support of the structuring element B. An example of the dilation op-

eration is shown in Fig. 6 where each square box in A and B is a pixel of the binary
image.

Fig. 5. The approximate quadtree of Fig. 1.

Fig. 6. The morphological dilation operation.
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Let Y represent a connected component contained in the subimage G. Scanning G
in a raster manner, we get a starting point of Y , say p. Then the following iterative

expression (Gonzalez and Woods, 2002; Serra, 1982) yields all the pixels of Y

Xk ¼ ðXk�1 � BÞ \ G for k ¼ 1; 2; 3; . . . ; ð1Þ
where X0 ¼ p and \ is the pixel-wise intersection. For each iteration, Xk�1 extends to

its connected neighbors by the shape of structuring element B within the subimage G.
The iterations will stop at Xn when all the neighbors of Xn within G are visited. Here,

the set Xn is indeed the the connected component Y contained in the subimage G.
Since there may be more than one connected component in the subimage G, we can
easily continue the raster scanning to find the starting point of the next connected

component. Each connected component in the subimage G is represented by a
starting point following by a connected component string (CCS). Previously, the

morphological operations were also used in reducing the wavelet data in Chai et al.

(1999). The next subsection describes how to generate the bit-stream CCS from

Eq. (1).

3.3. The CCS coding scheme

The subimage G is corresponding to one gray leaf on the approximate tree. For
preserving better geometric connectivity, the structuring element B used is 8-connect-

ed as shown in Fig. 6. When applying the dilation operation Xk�1 � B in Eq. (1) for

each pixel in Xk�1, there are eight neighbors of that pixel to be checked.

Initially, the set X0 contains only one pixel, say p. To find its connected pixels, we

start from the east neighbor of p and go clockwise to visit its eight neighbors. Upon

visiting one neighbor, if this neighbor is not a black pixel, that means it is not a con-

nected pixel, then we emit the bit �0� to the CCS. On the other hand, if this neighbor

is a black pixel, that means it is a connected pixel, then the bit �1� is emitted to the
CCS and then recursively go through the eight neighbors of this connected pixel.

An example of CCS coding simulation is illustrated in Fig. 7. In Fig. 7, the sub-

image G is of size 4� 4 and its CCS is obtained by using five iterations. It is observed

that the CCS needs only 10 bits and 4 bits for the location of the starting point, so

totally 14 bits are required in this example. If this subimage is represented by a quad-

tree, there are 10 leaf nodes to be encoded. For Fig. 7, no matter how efficient the

conventional tree-based SDS is, the memory required in these leaf nodes is relatively

larger than that of the CCS coding scheme. This is the main reason why the proposed
two-phase representation has a better memory-saving effect when compared to the

conventional tree-based SDSs.

As described above, the proposed two-phase representation follows the conven-

tional SDSs in the first phase to a specific tree level, then in the second phase, the

CCS coding scheme is followed and has the memory-saving advantage when com-

pared to the conventional tree-based SDSs. However, the concerning dilation oper-

ation in our method is time consuming for small subimages, such as for size 2� 2

and 2� 1. In order to improve the encoding and decoding time, the bit pattern of
such a small subimage is recorded directly. For example, in Fig. 2, the most right
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subtree at level 2 represents a subimage of size 2� 2. This 2� 2 subimage has three

black pixels, f , g, and h, and one white pixel. We record the bit pattern �1101� instead
of iteratively performing the dilation operation.

3.4. The encoding and decoding procedures for CCS

In this subsection, the encoding and the decoding procedures for CCS are illus-

trated. As described before, the first phase can be any one of the conventional

tree-based SDSs, their encoding (decoding) procedure can do as usual to the specific

tree level and obtain the gray leaves of the approximate tree. Whenever a gray leaf is

encountered, the CCS encoding (decoding) procedure is called to process the corre-
sponding subimage G which is with respect to the gray leaf.

Initially, the location of the starting point p is given. As mentioned above, the p is

obtained by scanning the subimage G in a raster manner. The subimage G is repre-

sented by a 2-D array pixel[ , ], each entry being BLACK or WHITE. In order to

realize the morphological dilation operation in Eq. (1), eight-neighbors traversal

technique is used. The recursive procedure encode CCSðx; yÞ is recursively called for

each visited pixel. The input parameter ðx; yÞ indicates the coordinate of the current
visited pixel. The structuring element B is represented by a 1-D array named
direction[ ] with eight neighbors recording the clockwise visiting sequence. In addi-

tion, a 2-D boolean array named visited[ , ] indicates whether the corresponding pixel
is visited or not.

recursive procedure encode CCSðx; yÞ;

Fig. 7. CCS coding example.
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/
 The direction[ ] is a constant variable.
/
/
 The pixel[ , ] and visited[ , ] are global variables.
/
/
 The i, dx, and dy are local variables. 
/
begin

for i ¼ 1 to 8 do /
 Go through the eight neighbors. 
/
begin

ðdx; dyÞ ¼ direction[i]; /
 Get the next neighbor�s location. 
/
if (ðxþ dx; y þ dyÞ is within the subimage G) and

(visited½xþ dx; y þ dy� ¼ false) then

set visited½xþ dx; y þ dy� to be true;

if pixel½xþ dx; y þ dy� ¼ BLACK then

/
 This is a connected pixel. 
/
output the bit �1�; /
 Emit bit �1� to CCS. 
/
encode CCSðxþ dx; y þ dyÞ; /
 Recursively calling the neighbor.
/

else

/
 This is not a connected pixel. 
/
output the bit �0�; /
 Emit bit �0� to CCS. 
/

end if;

end if;

end for;

end procedure;

By the same arguments, the recursive procedure decode CCSðx; yÞ is recursively called

for each decoded pixel. Initially, the 2-D array pixel[ , ] representing the decoded

subimage is set to be WHITE for all entries. Each decoded pixel will be set the value

BLACK at the corresponding location in the array pixel[ , ].

recursive procedure decode CCSðx; yÞ;
/
 The direction[ ] is a constant variable.
/
/
 The pixel[ , ] and visited[ , ] are global variables.
/
/
 The i, dx, dy, and bit are local variables. 
/
begin

for i ¼ 1 to 8 do /
 Go through the eight neighbors. 
/
begin

ðdx; dyÞ ¼ direction[i]; /
 Get the next neighbor�s location.
/
if ((xþ dx; y þ dy) is within the subimage G)
and (visited½xþ dx; y þ dy� ¼ false) then

set visited½xþ dx; y þ dy� to be true;
bit ¼ next CCSðÞ; /
 Get the next bit in CCS. 
/
if bit is �1� then

/
 This is a connected pixel. 
/
pixel½xþ dx; y þ dy� ¼ BLACK; /
 Draw the pixel on the subim-

age. 
/
decode CCSðxþ dx; y þ dyÞ; /
 Recursively calling the neighbor.


/
end if;
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end if;

end for;

end procedure;

We now analyze the computational time complexity among the conventional SDSs

and our proposed two-phase SDS. For simplicity, we take the quadtree-based SDSs,

such as the LQ and the DF-expression, as the representative although the following

time complexity analysis can also be applied to the binary tree-based SDSs, such as

the S-tree and the bincodes. Since the built quadtree-like structures will dominate the

encoding-time complexity, we thus focus on the time complexity for building up the
quadtree-like structures by using the conventional one-phase method and our pro-

posed two-phase method. Given an input image, let Tone and Ttwo be the time to build

up the corresponding quadtree structure and the quadtree-like structure using the

one-phase method and our proposed two-phase method, respectively. Suppose each

subimage (with respect to the CCS coded subimage G) is of size k � k and the

number of these subimages in the built quadtree-like structure using our two-phase

method is m.
Considering theworst case, for each subimageG, it takesOðk2 log kÞ time to build up

the related subquadtree (Cormen et al., 2001) when using the one-phase method since

the depth of the built subquadtree is Oðlog kÞ and at each level there are Oðk2Þ pixels to
be processed. Since there are m subimages G�s to be considered, it takes Oðmk2 log kÞ
time to build up these m corresponding subquadtrees. Therefore, Tone ¼ OðT 0þ
mk2 log kÞ, where T 0 denotes the time complexity required in building up the whole

quadtree except thosem subquadtreeswith respect to them subimagesG�s. For one sub-
image G with size k � k, it takes Oðk2Þ time to build up the bit-stream CCS using our

proposed two-phase method since each pixel in G is scanned at most twice. Conse-
quently, we have Ttwo ¼ OðT 0 þ mk2Þ. Comparing Tone and Ttwo, it yields Tone P Ttwo. Be-
sides thememory-saving effect, we thus claim that our proposed two-phasemethod has

a faster encoding performance. In Section 5.1, the compression and encoding-time ben-

efits of our proposed two-phase representation are demonstrated.

4. Two geometric operations

In this section, the geometric operations for calculating the area and centroid on

the proposed two-phase representation are described. The area and the centroid

(Gonzalez and Woods, 2002; Samet, 1990a) are two important regional descriptors.

Especially, the centroid is often used in the central moments which are very useful in

shape analysis.

Since the first phase is the same as the conventional SDSs, we only discuss the re-

maining operations for the CCS coded subimage.

4.1. Computing area

The area of a binary image is defined as the number of black pixels of the whole

image. As described in Section 3, we emit a bit �1� whenever a black pixel is encoun-

106 K.-L. Chung et al. / J. Vis. Commun. Image R. 14 (2003) 97–113



tered in encoding the CCS. Therefore, the number of �1�s in the CCS is the area of its

corresponding connected component. Given a CCS of the subimage G, we can easily

obtain the area of G by counting the number of �1�s in the CCS. If there exists any

other connected components in the subimage, the area of each connected component

can be computed from its CCS and they are summed up together to obtain the area
of G. For example, the subimage in Fig. 7, its CCS is �1011100100.� The number of

�1�s in the CCS is 5, so the area of this subimage is 5.

Following the same analysis technique as in Section 3.4, we still take the quadtree-

based SDS as the representative. Suppose the quadtree structure and the quadtree-

like structure using the one-phase method and our two-phase method, respectively,

have been built up. From Sections 3.4 and 2, it is clear that in the worst case, there

are Oðmk2 log kÞ nodes in those m subquadtrees to be considered when computing the

area on the one-phase representation, but there are only Oðmk2Þ nodes in those m
subquadtrees to be considered when computing the area on our two-phase represen-

tation. Given an input image, let T g
one and T g

two be the time to compute the area on the

corresponding quadtree structure and the quadtree-like structure using the one-

phase method and our proposed two-phase method, respectively. We thus have that

T g
one ¼ OðTg þ mk2 log kÞ, where Tg denotes the time complexity required in scanning

the whole quadtree except those m subquadtrees with respect to the m subimages G�s
in order to accumulate the temporary results of the area. On the contrary, we have

T g
two ¼ OðTg þ mk2Þ. Since T g

one P T g
two, we claim that computing the area on our pro-

posed two-phase representation described is faster than that on the one-phase repre-

sentation.

4.2. Computing centroid

Assume a binary image is of size 2N � 2N . The origin of the image is at the top-left

corner and the coordinate of the bottom-right pixel is (2N � 1; 2N � 1). The centroid

ðX ; Y Þ is defined by

X ¼ Rxi=A;

Y ¼ Ryi=A;

where ðxi; yiÞ, 16 i6 k, is the coordinate of each black pixel and A (¼ k) is the area of

the given image.

Given a CCS, the recursive decoding procedure must be performed first to get the

coordinate of each black pixel. The following is the process for computing the sum of

x-coordinates and the sum of y-coordinates for the black pixels represented by the

CCS. Initially, the input parameters sumx and sumy are set to be zeros. Except to

the actions of summing xi�s and summing yi�s, the recursive procedure

sum xyðx; y; sumx; sumyÞ is similar to the recursive procedure decode CCSðx; yÞ in Sec-
tion 3. The sub-sum of all the xi�s and all the yi�s of the subimage G will be easily

passed to the first phase to obtain the centroid value of the whole image. Since

the computational bound required in computing the centroid is the same as that

in computing the area, we omit the related complexity analysis.
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recursive procedure sum xyðx; y; sumx; sumyÞ;
/
 The direction[ ] is a constant variable.
/
/
 The visited[ , ] is a global variable.
/
/
 The i, dx, dy, and bit are local variables. 
/
begin
for i ¼ 1 to 8 do

begin

ðdx; dyÞ ¼ direction[i];
if ((xþ dx; y þ dy) is within the subimage G)
and (visited½xþ dx; y þ dy� ¼ false) then

set visited½xþ dx; y þ dy� to be true;

bit ¼ next CCSðÞ; /
 Get next bit in CCS. 
/
if bit is �1� then

sumx ¼ sumxþ xþ dx; /
 Sum up the decoded x-coordinate value.


/
sumy ¼ sumy þ y þ dy; /
 Sum up the decoded y-coordinate value.


/
sum xyðxþ dx; y þ dy; sumx; sumyÞ; /
 Recursively decode the

neighbor. 
/
end if;

end if;
end for;

end procedure;

5. Experimental results

In this section, under three binary images, first some experiments are included

to demonstrate the compression improvements and the encoding-time improve-
ment of our proposed two-phase SDS over the conventional four one-phase

SDSs, such as the LQ, the DF-expression, the S-tree, and the bincode represen-

tation. Next the computational improvements of our proposed two-phase SDS for

computing the area and the centroid, respectively, are demonstrated. As shown

in Fig. 8a–c, respectively, the three used binary images are the butterfly, the

Fig. 8. Three testing images.
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floodmap, and the cup. Each image is of size 256� 256 and requires 65,536 bits.

The experiments are performed on the IBM compatible personal computer

Pentium III microprocessor with 667MHz and 128 MB RAM. The operation

system is MS-Windows 2000 and the program developing environment is Borland

C++ Builder 5.0.

5.1. Compression and encoding-time improvements

The input image is first encoded using the methods of LQ, DF-expression, S-

tree, and the bincode representation. Their compression (encoding-time) costs in

terms of the number of bits (10�6 s, i.e., microseconds for Table 2) are shown in

the third column of Table 1 (Table 2). Next, applying the CCS to the gray leaves

from the first phase at a specific level, a better compression ratio is obtained. The
fourth column denotes the number of bits (microseconds for Table 2) needed in

our proposed two-phase SDS. Four different kinds of the subimages� sizes corre-

sponding to the four one-phase SDSs, respectively, are shown in the fifth column.

The compression (encoding-time) improvement ratios are shown in the last column

and they reveal that our improved two-phase representation over the conventional

SDSs have 66.14, 19.49, 12.33, and 48.83% compression (12.69, 4.66, 2.49, and

18.71% encoding-time) improvement ratios when compared to the LQ, DF-expres-

sion, S-tree representation, and the bincodes, respectively. The encoding-time im-
provements of our proposed two-phase SDS over the conventional one-phase

SDSs listed in Table 2.

Table 1

Compression improvement

Method One-phase

M1 bits

Two-phase

M2 bits

CCS coded

subimage size

Improvement ratio

ðM1 �M2Þ=M1 (%)

Butterfly

LQ 30,399 11,143 8� 8 63.34

DF 9330 7242 2� 2 22.37

S-tree 7898 6854 1� 2 13.21

Bincode 42,208 20,302 2� 4 51.90

Floodmap

LQ 20,388 6751 8� 8 66.88

DF 4794 4066 2� 2 15.18

S-tree 4148 3746 1� 2 9.69

Bincode 19,648 11,573 2� 4 41.09

Cup

LQ 30,342 9648 8� 8 68.20

DF 9386 7422 2� 2 20.92

S-tree 8483 7287 1� 2 14.09

Bincode 40,768 18,952 2� 4 53.51
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5.2. Execution-time improvements for geometrical operations

Table 3 (Table 4) lists the computation improvements of our proposed two-

phase method over the conventional one-phase methods for computing the area

Table 2

Encoding-time improvement

Method One-phase T1 Two-phase T2 CCS coded

subimage size

Improvement

ratio ðT1 � T2Þ=T1
(%)

Butterfly

LQ 55,019 48,289 8� 8 12.23

DF 46,157 43,903 2� 2 4.88

S-tree 68,078 66,708 1� 2 2.01

Bincode 81,708 63,572 2� 4 22.19

Floodmap

LQ 39,828 37,875 8� 8 4.90

DF 37,524 36,102 2� 2 3.78

S-tree 54,329 53,517 1� 2 1.49

Bincode 59,336 52,405 2� 4 11.68

Cup

LQ 53,647 42,401 8� 8 20.96

DF 46,707 44,214 2� 2 5.33

S-tree 69,080 66,336 1� 2 3.97

Bincode 82,629 64,212 2� 4 22.28

Table 3

Execution-time improvement for computing area

Method One-phase T1 Two-phase T2 CCS coded

subimage size

Improvement

ratio ðT1 � T2Þ=T1
(%)

Butterfly

LQ 9084 1452 8� 8 84.01

DF 9384 6279 2� 2 33.08

S-tree 11,747 10,415 1� 2 11.33

Bincode 10,475 5418 2� 4 48.27

Floodmap

LQ 4677 1061 8� 8 77.31

DF 4837 3735 2� 2 22.78

S-tree 5939 5578 1� 2 6.07

Bincode 5478 3465 2� 4 36.74

Cup

LQ 9143 1462 8� 8 84.00

DF 9413 6479 2� 2 31.16

S-tree 12,748 11,126 1� 2 12.72

Bincode 11,236 5809 2� 4 48.30
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(centroid). Using the four one-phase methods, the third column shows the execu-

tion-time in terms of microseconds for computing the area (centroid). Using our

two-phase method, the fourth column shows the execution-time in terms of

microseconds for computing the area (centroid). The execution-time improvement

ratios for computing the area (centroid) are shown in the last column of Table 3

(Table 4) and they reveal that our improved two-phase method over the conven-

tional one-phase methods have 81.77, 29.00, 10.04, and 44.43% (55.69, 26.53,

10.81, and 35.77%) improvement ratios when compared to the LQ-based method,
DF-expression-based method, S-tree representation-based method, and the bin-

codes-based method, respectively.

6. Conclusion

We have presented the two-phase SDS to reduce the memory requirement re-

quired in the conventional tree-based SDSs. The related promising time complexity
analyses are also provided. Experimental results show that our improved two-phase

representation over the conventional SDSs have 66.14, 19.49, 12.33, and 48.83%

memory improvement ratios (12.69, 4.66, 2.49, and 18.71% coding time improve-

ment ratios) when compared to the LQ, DF-expression, S-tree representation, and

the bincodes, respectively. We also show that our proposed two-phase representation

has a better computational performance when running geometric operations, such as

computing the area and the centroid, on the proposed two-phase representation di-

rectly. For computing the area (centroid), experimental results reveal that our im-
proved two-phase SDS over the conventional one-phase SDSs have 81.77, 29.00,

Table 4

Execution-time improvement for computing centroid

Method One-phase T1 Two-phase T2 CCS coded

subimage size

Improvement

ratio ðT1 � T2Þ=T1
(%)

Butterfly

LQ 9564 4076 8� 8 57.38

DF 9083 6418 2� 2 29.34

S-tree 11,937 10,656 1� 2 10.73

Bincode 10,334 6259 2� 4 39.43

Floodmap

LQ 4847 2624 8� 8 45.86

DF 4677 3617 2� 2 22.66

S-tree 6029 5501 1� 2 8.75

Bincode 5418 3895 2� 4 28.11

Cup

LQ 9614 3475 8� 8 63.85

DF 9133 6611 2� 2 27.61

S-tree 12,869 11,201 1� 2 12.96

Bincode 11,076 6670 2� 4 39.77
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10.04, and 44.43% (55.69, 26.53, 10.81, and 35.77%) improvement ratios when com-

pared to the LQ, DF-expression, S-tree representation, and the bincodes, respec-

tively.

Recently, Chung and Wu (2000) presented an improved S-Tree method, called the

STC method, for compressing gray images. The STC method improves the execution
time of Distasi et al.�s method (Distasi et al., 1997) in the ratio less than 1/2 while

preserving the same image quality and bits rates. The STC method can be viewed

as an extension of the conventional SDS from binary images to gray images. Al-

though under the same bpp, the JPEG (Wallace, 1991) has a better PSNR when

compared to the STC method. However, since the regular geometrical relationship

among those partitioned blocks are reserved in the linear tree table of the STC meth-

od, the STC method has fruitful applications in image manipulations (Chung et al.,

2002). How to plug our proposed two-phase representation of this paper into the
STC method in order to improve the related performance for compressing gray im-

ages is the future research issue.
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