
Available online at www.sciencedirect.com
www.elsevier.com/locate/jvci

J. Vis. Commun. Image R. 19 (2008) 219–230
Novel efficient two-pass algorithm for closed polygonal
approximation based on LISE and curvature constraint criteria

Kuo-Liang Chung *,1, Po-Hsuan Liao, Jia-Ming Chang

Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology,

No. 43, Section 4, Keelung Road, Taipei 10672, Taiwan, ROC

Received 2 January 2006; accepted 24 January 2008
Available online 21 February 2008
Abstract

Given a closed curve with n points, based on the local integral square error and the curvature constraint criteria, this paper presents a
novel two-pass O(Fn + mn2)-time algorithm for solving the closed polygonal approximation problem where m(�n) denotes the minimal
number of covering feasible segments for one point and empirically the value of m is rather small, and F (�n2) denotes the number of
feasible approximate segments. Based on some real closed curves, experimental results demonstrate that under the same number of
segments used, our proposed two-pass algorithm has better quality and execution-time performance when compared to the previous
algorithm by Chung et al. Experimental results also demonstrate that under the same number of segments used, our proposed two-pass
algorithm has better quality, but has some execution-time degradation when compared to the currently published algorithms by Wu and
Sarfraz et al.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Polygonal approximation (PA) is an important method
for shape representation [4]. The primary goal of PA is to
determine an approximate polygonal curve as the contour
representation of one object. Sometimes the approximate
polygonal curve can be thought as a special compression
method for representing the contour of that object. Given
a polygonal curve C with n vertices, C = hP1,P2,
P3, . . . ,Pni, the PA problem is to find another similar poly-
gon C0 with n0 vertices, where C0 ¼ hP 10 ; P 20 ; P 30 ; . . . ; P n0 i
and jC0j 6 jCj, such that the obtained approximate polygo-
nal curve satisfies some error criteria to retain an accept-
able quality. The determined n0 vertices in C0 must be a
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subset of C. Besides the compression benefit, the closed
approximate polygonal curve C0 can make the manipula-
tion and analysis, e.g., rotation, translation, scaling,
clipping, and partitioning, easy and it leads to a computa-
tional benefit. In addition, the PA approach has also been
applied to the binary image progressive transmission [8]
successfully.

In the past three decades, many efficient PA algorithms
for open curves have been developed. These developed PA
algorithms can be classified into two types, the sub-optimal
algorithms [18,14,13,6,7] and the optimal algorithms
[10,3,17,12,11,1,9]. These heuristic sub-optimal PA algo-
rithms are quite fast, but the obtained approximate polyg-
onal curves usually are local optimal solutions. To extend
the open PA problem to the closed PA (CPA) problem,
naturally we exhaustively examine all vertices in C as the
possible starting points, and finally determine the global
solution within these n possible solutions. For solving the
CPA problem, Sato [17] presented an O(n3)-time algorithm
in which the selected starting point is the farthest point
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Fig. 1. The depiction for the definition of k-cosine value.
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from the center of gravity. The error criterion of arc lengths
between the original curve and the approximating curve is
used. Based on the L1 metric, Zhu and Seneviratne [21]
presented a heuristic O(n3)-time algorithm for solving the
CPA problem. Horng and Li [5] presented a heuristic
O(sn2)-time algorithm where s denotes the number of spec-
ified polygonal segments. Since the above three efficient
algorithms for solving the CPA problem are heuristic, the
optimization of their results can not be guaranteed. In
[12], the global integral square error (ISE) criterion is used.
In [14,13,1], the local ISE (LISE) criterion is used. In [1],
the presented CPA algorithm takes O(n3) time and the
number of polygonal segments determined is minimal.
Basically, the LISE metric can keep more peak information
when compared to the global ISE. Besides using the LISE
error criterion in the CPA problem, the curvature con-
straint is also a common error criterion. Under the same
k-cosine curvature metric, Wu and Wang [19] presented
an efficient coarse-to-fine algorithm for determining domi-
nant points which were connected as the solution of the
CPA problem.

Based on the concept of break points, Wu [20] presented
an adaptive, improved CPA algorithm. In Wu’s algorithm,
the set of break points are first filtered out using the curva-
ture criterion. Further, the break points with maximum
curvature are selected as the dominant points which are
considered in his CPA algorithm. In [16], Sarfraz et al. pre-
sented a recursive algorithm for solving the CPA problem.
Their algorithm extracts initial break points as a prepro-
cessing step. Among these initial break points, they first
consider points with angle of 135� as the dominant points
in their CPA algorithm. If no point with 135� angle is
found, then the points with angle of 90� are considered.
If the points with 90� angle are still not available, then
the first break point is considered as the dominant point.
Experimental results demonstrated that the CPA algorithm
by Sarfraz et al. is quite competitive with the one by Wu.
The motivation of this paper is to design a novel, efficient
CPA algorithm under the three error criteria, namely the
LISE, the curvature constraint, and the longest vertical dis-
tance consideration.

This paper presents a novel two-pass O(Fn + mn2)-time
algorithm for solving the CPA problem where m(�n)
denotes the minimal number of covering segments for
one point and empirically the value of m is rather small
and F(�n2) denotes the number of feasible approximate
segments. According to the concept of covering segments
for each point, the first pass of our proposed algorithm
can be performed in O(Fn + mn2) time under the given
LISE criterion; the second pass of our proposed algo-
rithm can be performed in O(n) time under the given cur-
vature constraint and the longest vertical distance
consideration. Because of Fn + mn2� n3 and considering
these criteria, our proposed CPA algorithm has better
time performance and quality when compared to the pre-
vious CPA algorithm by Chung et al. [1] which takes
O(n3) time complexity and considers only the LISE crite-
rion. Based on two real closed curves for representing
French and Italy, experimental results demonstrate that
under the same number of segments used, our proposed
two-pass algorithm has better quality and execution-time
performance when compared to the currently published
algorithm by Chung et al. [1]. Based on two real closed
curves for representing a semicircle and a chromosome,
experimental results demonstrate that under the same
number of segments used, our proposed two-pass algo-
rithm has better quality, but has some execution-time deg-
radation when compared to currently published
algorithms by Wu [20] and Sarfraz et al. [16].

The rest of this paper is organized as follows. Section 2
introduces the concerned two error criteria, the LISE
bound and the curvature constraint. Section 3 presents
new methods for determining all feasible segments and cov-
ering segment sets which will be used in our proposed two-
pass CPA algorithm. Section 4 presents our proposed
whole two-pass CPA algorithm. The definition of longest
vertical distance consideration will be explained in Section
4. Experimental results are demonstrated in Section 5.
Conclusions are addressed in Section 6.

2. Error criteria

In this section, both the LISE and the curvature criteria
are introduced. For exposition, the next paragraph intro-
duces the definition of discrete curvature measure, which
will be used in the second pass of our proposed CPA algo-
rithm, and how to measure it for each point on the original
curve. The curvature constraint accompanied with the lon-
gest vertical distance consideration will be introduced in
Section 4.2. Next, the definition of LISE is given and it will
be used in the first pass of our proposed CPA algorithm.

Curvature can be explained as how much the curve
bends at each point on the curve. It has been defined that
the original polygonal curve is presented by the set
{Pi = (xi,yi)ji = 1, 2, . . . ,n} and Pi denotes the ith point
with coordinate (xi,yi) on the original polygonal curve.
Following the k-cosine value to estimate the curvature of
each point, as shown in Fig. 1, the estimated curvature at
point Pi related to two points Pi�k and Pi+k, is set to be
the k-cosine value cosik.

Definition 1. [15] The k-cosine value at point Pi related to
two k-index apart neighboring points Pi�k and Pi+k is
defined by
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cosik ¼
P iP i�k
���! � P iP iþk

���!

jP iP i�k
���!jjP iP iþk

���!j
ð1Þ

where P iP i�k
���! ¼ ðxi�k � xi; yi�k � yiÞ, P iP iþk

���! ¼ ðxiþk � xi;
yiþk � yiÞ, and jWj denotes the vector length of W; the oper-
ator ‘�’ denotes the inner product operation.

By Definition 1, cosik denotes the cosine value of the
angle between the vector P iP i�k

���!
and the vector P iP iþk

���!
. In

our research, only 1-cosine value is enough in the curvature
measure.

Lemma 1. The 1-cosine value cosi1 can be computed in O(1)

time.

The LISE criterion is now defined as follows.

Definition 2. The LISE between the segment passing
through two points, Pi and Pj, denoted as P iP j, and the
set of points Pi+1,Pi+2, . . . ,Pj�1 is expressed by

LISEi;j ¼
Xj�1

k¼iþ1

d2ðP k; P iP jÞ

where dðP k; P iP jÞ denotes the Euclidean distance from the
point Pk to the approximate segment P iP j (see Fig. 2).
The convention ‘j > i’ is followed through this paper.

The equation of the approximate segment P iP j can be
expressed by y � yi ¼

yj�yi

xj�xi
ðx� xiÞ. We thus have

(yi � yj)x + (xj � xi)y + (xiyj � xjyi) = 0. Let ai,j = yi � yj,
bi,j = xj � xi, and ci,j = xiyj � xjyi, when plugging the three
parameters, ai,j, bi,j, and ci,j, into the above point-slope
form, we have ai,jx + bi,jy + ci,j = 0. Consequently, the
LISE criterion, which is denoted by the shaded area of
Fig. 2, can be written as

LISEi;j ¼
Xj�1

k¼iþ1

d2ðP k; P iP jÞ

¼ 1

a2
i;j þ b2

i;j

Xj�1

k¼iþ1

ðai;jxk þ bi;jyk þ ci;jÞ2

¼ 1

a2
i;j þ b2

i;j

Xj�1

k¼iþ1

½a2
i;jx

2
k þ b2

i;jy
2
k þ c2

i;j

þ 2ai;jbi;jxkyk þ 2ai;jci;jxk þ 2bi;jci;jyk�

ð2Þ

In our proposed two-pass CPA algorithm, the LISE cri-
terion is used in the first pass of the proposed algorithm.
The minimal set of approximate segments determined in
iP jP

kP
1+ –iP
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Fig. 2. The distance from Pk to P iP j and the LISE.
this pass must satisfy that the LISE value of each approx-
imate segment (see Eq. (2) and the shaded area in Fig. 2)
must be less than the specified threshold TLISE. In the sec-
ond pass, for each determined approximate segment,
denoted as P iP j, we first examine 1-cosine values of Pk’s
for i + 1 6 k 6 j � 1. Based on the examining result, we
further identify these points, each point with high curva-
ture, to be the set of high-curvature points. Empirically,
if the curvature of each point is greater than �0.8 [20], it
is claimed to be a high-curvature point. We further calcu-
late the vertical distance from each high-curvature point
to P iP j. Based on these calculated vertical distances, we
select the high-curvature point with the longest vertical dis-
tance as the key point. The corresponding selected key
points in the first pass will be processed further in the sec-
ond pass to obtain the final solution.
3. Determining feasible approximate segments and covering

segment sets

This section first presents a modified fast O(n2)-time
method for determining all feasible approximate segments
in C. From the determined feasible approximate segments,
a novel concept of covering segment sets, which can be
realized in O(Fn) time where F(�n2) denotes the number
of feasible approximate segments, is presented for speeding
up the computation effort in the first pass of our proposed
CPA algorithm.
3.1. O(n2)-time method for determining all feasible
approximate segments

Instead of using nine parameters and thirty six equalities
to help deriving an O(n2)-time method to construct all fea-
sible approximate segments [1], in this subsection, our sim-
pler method only needs five parameters and ten equalities.
Let

S1ði; jÞ ¼
Xj�1

k¼iþ1

x2
k ;

S2ði; jÞ ¼
Xj�1

k¼iþ1

y2
k ;

S3ði; jÞ ¼
Xj�1

k¼iþ1

xkyk;

S4ði; jÞ ¼
Xj�1

k¼iþ1

xk;

and

S5ði; jÞ ¼
Xj�1

k¼iþ1

yk;

then by Eq. (2), we have
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LISEi;j ¼
1

a2
i;j þ b2

i;j

½a2
i;jS1ði; jÞ þ b2

i;jS2ði; jÞ þ ðj� i� 1Þc2
i;j

þ 2ai;jbi;jS3ði; jÞ þ 2bi;jci;jS4ði; jÞ

þ 2ci;jai;jS5ði; jÞ�: ð3Þ
Lemma 2. The values of all LISEi,j’s for 1 6 i,j 6 n can be

computed in O(n2) time in an incremental way.

Proof. It is known that S1ði; jÞ ¼
Pj�1

k¼iþ1x2
k , S2ði; jÞ ¼Pj�1

k¼iþ1y2
k , S3ði; jÞ ¼

Pj�1
k¼iþ1xkyk, S4ði; jÞ ¼

Pj�1
k¼iþ1 xk,

and S5ði; jÞ ¼
Pj�1

k¼iþ1yk. The calculations of Sl(i, j + 1)
and Sl(i + 1, j) can be obtained in O(1) time using few arith-
metic operations via Sl(i, j) for l = 1, 2, 3, 4, 5; the related
ten formulas for two cases are expressed below:

Case 1 when j < n:
S1ði; jþ 1Þ ¼
Xj

k¼iþ1

x2
k ¼

Xj�1

k¼iþ1

x2
k þ x2

j ¼ Slði; jÞ þ x2
j

S2ði; jþ 1Þ ¼
Xj

k¼iþ1

y2
k ¼

Xj�1

k¼iþ1

y2
k þ y2

j ¼ S2ði; jÞ þ y2
j

S3ði; jþ 1Þ ¼
Xj

k¼iþ1

xkyk ¼
Xj�1

k¼iþ1

xkyk þ xjyj ¼ S3ði; jÞ þ xjyj

S4ði; jþ 1Þ ¼
Xj

k¼iþ1

xk ¼
Xj�1

k¼iþ1

xk þ xj ¼ S4ði; jÞ þ xj

S5ði; jþ 1Þ ¼
Xj

k¼iþ1

yk ¼
Xj�1

k¼iþ1

yk þ yj ¼ S5ði; jÞ þ yj

Case 2 when i + 1 < j:
S1ðiþ 1; jÞ ¼
Xj�1

k¼iþ2

x2
k ¼

Xj�1

k¼iþ1

x2
k � x2

iþ1 ¼ Slði; jÞ � x2
iþ1

S2ðiþ 1; jÞ ¼
Xj�1

k¼iþ2

y2
k ¼

Xj�1

k¼iþ1

y2
k � y2

iþ1 ¼ S2ði; jÞ � y2
iþ1

S3ðiþ 1; jÞ ¼
Xj�1

k¼iþ2

xkyk ¼
Xj�1

k¼iþ1

xkyk � xiþ1yiþ1

¼ S3ði; jÞ � xiþ1yiþ1

S4ðiþ 1; jÞ ¼
Xj�1

k¼iþ2

xk ¼
Xj�1

k¼iþ1

xk � xiþ1 ¼ S4ði; jÞ � xiþ1

S5ðiþ 1; jÞ ¼
Xj�1

k¼iþ2

yk ¼
Xj�1

k¼iþ1

yk � yiþ1 ¼ S5ði; jÞ � yiþ1

Initially, by Eq. (3), the value of LISE1,2 can be computed in
O(1) time. Then, using the above five equalities in Case 1 for
j < n, the value of LISE1,3 can be obtained in O(1) time via
LISE1,2. Consequently, the values of LISE1,4, . . . , and
LISE1,n can be calculated in O(n) time by such an incremental
way. Using the above five equalities in Case 2 for i + 1 < j,
the value of LISE2,3 can be obtained in O(1) time via LISE1,3.
Similarly, using the above five equalities in case 1 when j < n,
the values of LISE2,4, LISE2,5, . . . , and LISE2,n can be calcu-
lated in O(n) time in an incremental way. By the same
arguments, the values of all LISEi,j’s for 1 6 i,j 6 n can be
computed in O(n2) time. We complete the proof. h

By Lemma 2, all values of LISEi,j’s corresponding to all
possible approximate segments P iP j’s for 1 6 i,j 6 n can be
computed in O(n2) time. Since the number of all possible
approximate segments is bounded by O(n2) and each LISEi,j

would consider distance-calculations from (j � i � 1) points
Pk’s for i + 1 6 k 6 j � 1 to P iP j, the heuristic method can
obtain all values of LISEi,j’s for 1 6 i,j 6 n in O(n3) time
because of

Pn
i¼1

Pn
j¼iðj� i� 1Þ ¼ Oðn3Þ:

Lemma 3. Our proposed O(n2)-time method for computing

all values of LISEi,j’s for 1 6 i,j 6 n is faster than the

heuristic O(n3)-time method.

Definition 3. (Feasible approximate segment) Given a spec-
ified LISE tolerance TLISE, if LISEi,j6 TLISE, the approxi-
mate segment P iP j is called a feasible approximate
segment; otherwise, it is called an infeasible approximate
segment.

By Lemmas 2, 3, and Definition 3, it is easy to verify the
following result.

Theorem 1. Given a closed curve with n points, all the

feasible approximate segments can be determined in O(n2)
time using our proposed method which is faster than the

heuristic method.

After describing our proposed method to determine all
feasible approximate segments and its time complexity
analysis, the proposed covering segment set concept is pre-
sented in Section 3.2.

3.2. O(Fn)-time method for determining all covering

segment sets

Based on the determined feasible approximate segments
(see Definition 3), a feasible approximate segment P iP j,
1 6 i,j 6 n, is said to be a covering segment for point Pk,
i 6 k 6 j.

Definition 4. (Covering segment set) The covering segment
set of point Pk, 1 6 k 6 n, is denoted by
SCSðP kÞ ¼ fP i1 P j1

; P i2 P j2
. . . ; P il P jl

g P im P jm
, 1 6 m 6 l 6 n

and 1 6 il < jl 6 n, is a covering segment of point Pk and
it satisfies im 6 k 6 jm.

Given an example as shown in Fig. 3 by Definition 4, the
covering segment sets for points P3, P4, P5, and P6 are
denoted by SCSðP 3Þ ¼ fP 1P 4; P 2P 7; P 2P 8g, SCSðP 4Þ ¼ fP 1P 4;
P 2P 7;P 2P 8;P 4P 7;P 4P 8g, SCSðP 5Þ¼fP 2P 7;P 2P 8; P 4P 7;P 4P 8g,
and SCSðP 6Þ¼fP 2P 7; P 2P 8;P 4P 7, P 4P 8g; respectively.



Fig. 3. One example for demonstrating covering segment sets.
Fig. 4. The depiction for showing Theorem 3.
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After introducing the definition of the covering segment
set for each point, the time complexity analysis for deter-
mining all covering segment sets is shown below.

Theorem 2. Given a closed curve C with n points, let F

denote the number of all feasible approximate segments of C,

all the covering segment sets of these n points can be

determined in O(Fn) time.

Proof. For each feasible approximate segment P ik P jk
,

1 6 k 6 F and 1 6 ik < jk 6 n, we save the covering seg-
ment information P ik P jk

into the points P ik , P ikþ1, . . .,
P jk�1, and P jk

. Since each point can keep at most F covering
segments, it takes O(F) time in the worst case to save the
information of these covering segments and these saved
covering segment form the so called covering segment set
for that point (see Definition 4). Considering the given n

points in C, it takes O(Fn) time to save the information
of all concerned covering segment sets. We complete the
proof. h

Theorem 3. Given a closed curve C with n points, each edge

of the final approximate polygon belongs to the covering seg-
ment sets of at least one original point.

Proof. For exposition, in Fig. 4, the symbol C0 denotes the
final approximate polygon with four feasible approximate
segments. By Theorem 2, we have SCSðP 5Þ ¼ fP 1P 7, P 2P 6;
P 3P 8, P 4P 7g.

Considering any feasible approximate segment P iP j in
C0, it exists at least one original point Pk, 1 6 k 6 n, such
that Pk is covered by the segment P iP j for i 6 k 6 j. That
is, the segment P iP j belongs to SCS(Pk). We complete the
proof. h

Up to now, each point Pk, 1 6 k 6 n, in the original
curve C has known its own covering segment set SCS(Pk)
and the corresponding cardinality jSCS(Pk)j. After checking
all the cardinalities of covering segment sets for all points
Pk’s for 1 6 k 6 n, we have the following result:

Theorem 4. The minimal covering segment set Min-

k{jSCS(Pk)j} can be determined in O(n) time.
4. The Proposed Two-Pass Algorithm for Solving CPA

Problem

In this section, the proposed novel two-pass efficient
algorithm for solving the CPA problem is presented.

4.1. First-pass of the proposed CPA algorithm

Given an original closed curve C and the specified LISE
criterion threshold TLISE, the first pass of the proposed
CPA algorithm consists of the following three steps:

Step 1. By Eq. (3), it takes O(n2) time to compute all LISE
pairs LISEi,j’s for 1 6 i,j 6 n. For each LISEi,j of
P iP j, if LISEi,j 6 TLISE, P iP j is set to a feasible
approximate segment with weight 1. Finally, the
corresponding directed graph G = (V,E) is con-
structed where the node set V denotes the original
set of points in C and the edge set E denotes the set
of all feasible segments.

Step 2. For all points Pk’s for 1 6 k 6 n, it takes O(Fn)
time to build up all the covering segment sets
SCS(Pk)’s. Further, it takes O(n) time to determine
the minimal covering segment set and the associ-
ated point P k0 . This step takes O(Fn + n) time.

Step 3. Selecting each covering segment in SCSðP k0 Þ as the
starting segment, let the two end points of the
selected segment be denoted by A and B. Since
the given curve is closed, taking the point A as
the starting source and taking the point B as the
ending target, we run the Dijkstra’s single-source
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Fig. 5. Taking both the curvature constraint and the longest vertical
distance consideration into account. (a) The high-curvature point Pk with

the longest vertical distance dðP k ; P i1 P j1
Þ. (b) The highest-curvature point

P k0 with the vertical distance dðP k ; P i1 P j1
Þ which is not the longest.
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and single-target shortest-path algorithm [2] on G

to find the temporary approximate polygon in
O(n2) time. Since there are m (¼ jSCSðP k0 Þj) con-
cerned covering segments, in total, it needs to run
the Dijkstra’s algorithm m times and hence takes
O(mn2) time to obtain these m possible temporary
approximate polygon solutions. Finally, it takes
O(m) time to select the temporary approximate
polygon solution with minimal cost as the final
approximate polygon solution. This step takes
O(mn2 + m) time.

We thus have the following result:

Theorem 5. The first pass of our proposed CPA algorithm

can be done in O(Fn + mn2) (=O(Fn + n + mn2 + m)) time,

where F� n2 and m(�n) is rather small empirically.

Note that under the same LISE criterion, the set of
polygonal segments determined by the first pass of our pro-
posed algorithm is minimal and is the same as that
obtained by the currently published CPA algorithm [1].
However, the time complexity required in the first pass of
our proposed algorithm is O(Fn + mn2)(�n3) and is less
than the previous one by Chung et al. [1] which needs
O(n3) time.
4.2. Second-pass of the proposed CPA algorithm

In the second pass, the curvature constraint associated
with the longest vertical distance is used to refine the tem-
porary approximate polygon solution obtained in the first
pass in which these n0 segments are denoted by the
ordered set TP ¼hS1;S2; . . . ;Sn0 i¼ hP i1 P j1

;P i2 P j2
; . . . ;P in0P jn0 i,

16 i1< j1¼ i2< j2¼ i3< j3 . . .< in0 < jn0 . We pick up the first
segment S1¼P i1 P j1

. By Definition 1, the 1-cosine values of
Pk’s for i1 + 1 6 k 6 j1 � 1 are computed. If the 1-cosine
value of point Pk is greater than the given curvature con-
straint TCUR, the point Pk is set to be a high-curvature
point. Besides adopting the curvature constraint to pre-
serve the peak information of the high-curvature point,
we also consider the vertical distance from each high-cur-
vature point Pk to the first segment S1 in TP. For segment
S1, based on these calculated vertical distances, we select
the high-curvature point Pk with the longest vertical dis-
tance as the key point (see Fig. 5(a)) and the two new seg-
ments P i1 P k and P kP j1

are constructed to replace the
temporary segment P i1 P j1

. For example, in Fig. 5(b), if
we only select the high-curvature point Pk as the key point,
the two segments P i1 P k0 and P k0P j1

are newly constructed. It
is observed that the LISE value of Fig. 5(a) is less than the
LISE value of Fig. 5(b). On the other hand, besides consid-
ering the LISE criterion in the first pass, taking both the
curvature and the longest vertical distance between the
high-curvature point to the concerned segment into
account could generate better polygonal approximation
quality. This is why we consider the LISE criterion, the cur-
vature constraint, and the longest vertical distance consid-
eration in our proposed two-pass CPA algorithm.

Initially, we set q = 1. The second pass of our proposed
CPA algorithm consists of the following four Steps:

Step 1. Consider the approximate segment Sq ¼ P iq P jq
. By

Definition 1, compute the 1-cosine values of Pk’s
for iq + 1 6 k 6 jq � 1. If the curvature of each
point Pk is greater than the curvature constraint
TCUR, it is set to be a high-curvature point.

Step 2. For each determined high-curvature point Pk in
Step 1, we calculate the vertical distance
dðP k; P i1 P j1

Þ.
Step 3. Select the high-curvature point Pk with the longest

vertical distance as the key point and the two new
segments P iq P k and P kP jq

are constructed to replace
the temporary segment P iq P jq

.
Step 4. q = q + 1. Repeat Steps 1–4 until q = n0.

5. Experimental results

In this section, two testing images, the Italy image and
the French image are first used to compare the perfor-
mance between our proposed two-pass CPA algorithm
and the previous CPA algorithm by Chung et al. [1]. The
two testing images are illustrated in Fig. 6. Both algorithms
are implemented by using Borland C++ Builder 6.0 lan-
guage and the Pentium 4 3.2 GHz PC with 512 MB
RAM. Besides such a comparison, based on the other test-
ing images, the comparison with the currently published
CPA algorithms [20,16] is also demonstrated later.

From Fig. 7, it is observed that our proposed two-pass
CPA algorithm has better polygonal approximation qual-
ity. For each testing image, the quality of the four sub-
polygonal approximations (denoted by four circles)
obtained by using our proposed CPA algorithm is superior
to the one by using the previous CPA algorithm by Chung
et al. [1]. From Table 1, it is observed that our proposed
two-pass CPA algorithm also has better execution-time
performance in terms of seconds when compared to the



Fig. 6. Two testing images for comparing the performance between the previous CPA algorithm by Chung et al. [1] and our proposed CPA algorithm. (a)
Italy image. (b) French image.
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previous algorithm by Chung et al. This confirms the time
complexity analysis. The average execution-time improve-
ment ratio of our proposed CPA algorithm over the previ-
ous algorithm by Chung et al. is 97.5% (¼ T Prev�T Ours

T Prev
) where

TPrev denotes the execution-time required in the previous
algorithm by Chung et al. [1] and TOurs denotes the execu-
tion-time required in our proposed two-pass CPA algo-
rithm. Consequently, our proposed two-pass CPA
algorithm has the quality and execution-time advantages
when compared to the previous CPA algorithm by Chung
et al. [1].

Based on the same testing images used in [20], namely
the semicircle image (see Fig. 8(a)) and the chromosome
image (see Fig. 8(b)), Fig. 9 is used to demonstrate the
polygonal approximation quality comparison between the
dominant point-based CPA algorithm [20] and our pro-
posed two-pass CPA algorithm. For fair comparison, the
relevant thresholds are tuned to guarantee that the number
of approximate segments required in each concerned CPA
algorithm for one testing image is equivalent. In the imple-
mentation of Wu’s CPA algorithm, when the curvature
constraint threshold TCUR is set to �0.8, the number of
required approximate segments is 27(17) for Fig. 9(a) and
(c). In the implementation of our proposed two-pass
CPA algorithm, when the specified threshold TLISE is set
to 40 and the curvature constraint threshold TCUR is set
to �0.63, the number of required approximate segments
is 27 for Fig. 9(b); when the specified threshold TLISE is
set to 120 and the curvature constraint threshold TCUR is
set to �0.4, the number of required approximate segments
is 17 for Fig. 9(d). From the quality comparison between
Fig. 9(a) and (b) and the quality comparison between
Fig. 9(c) and (d), it is observed that under the same number
of approximate segments used, our proposed two-pass
CPA algorithm has better polygonal approximation qual-
ity when compared to Wu’s CPA algorithm, but takes
about four times the execution-time required by Wu.

Based on the above four testing images, finally we com-
pare the performance between our proposed algorithm and
the recently published algorithm by Sarfraz et al. Fig. 10 is
used to demonstrate the polygonal approximation quality
comparison between the Sarfraz et al.’s CPA algorithm
[16] and our proposed CPA algorithm. In the implementa-
tion of Sarfraz’s CPA algorithm, when the threshold value
e is set to 0.18, 0.22, 0.47, and 0.27, the numbers of required
approximate segments are 82, 70, 27, and 17 for Fig. 10(a),
(c), (e) and (g). From the quality comparison between
Fig. 10(a), (b) and 10(c–h), it is observed that under the
same number of approximate segments used, our proposed
two-pass CPA algorithm has better polygonal approxima-
tion quality when compared to Sarfraz et al.’s CPA algo-
rithm, but takes about 4.3 times the execution-time
required by Sarfraz et al.
6. Conclusions

The proposed novel two-pass O(Fn + mn2)-time algo-
rithm for solving the CPA problem has been presented where
n denotes the number of points in the given closed curve;
m(�n) denotes the minimal number of covering feasible seg-
ments for point and empirically the value of m is rather small;
F(�n2) denotes the number of feasible approximate seg-
ments. The four testing images in Section 5 with their n, F,
and m, respectively, are listed in Table 2 and they demon-



Fig. 7. Polygonal approximation quality comparison between the previous CPA algorithm by Chung et al. [1] and our proposed two-pass CPA algorithm
for Italy image and French image. (a) The approximation result using the previous algorithm by Chung et al. [1] for Italy image (TLISE = 20,
time = 0.3612 s). (b) The approximation result using our proposed algorithm for Italy image (TLISE = 20, TCUR = �0.8, time = 0.0102 s). (c) The
approximation result using the previous algorithm by Chung et al. [1] for French image (TLISE = 20, time = 0.4609 s). (d) The approximation result using
our proposed algorithm for French image (TLISE = 20, TCUR = �0.8, time = 0.0112 s).

Table 1
Execution-time (in seconds) comparison between the previous CPA algorithm by Chung et al. [1] and our proposed two-pass CPA algorithm for Italy and
French images

Previous algorithm by Chung et al. [1] Proposed algorithm

Italy image (s) French image (s) Italy image (s) French image (s)

TLISE = 20 0.3612 0.4609 0.0102 0.0112
TLISE = 30 0.3602 0.4606 0.0092 0.0107
TLISE = 40 0.3600 0.4604 0.0090 0.0105

Average execution-time improvement ratio 97.37% 97.64%
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strate the applicability of our proposed algorithm. Accord-
ing to the concept of covering segment set for each point,
we speed up the first pass of our proposed CPA algorithm
under the given LISE criterion. In the second pass of our pro-
posed algorithm, we further consider the curvature con-
straint and the longest vertical distance consideration to



Fig. 8. Two testing images for evaluating the quality performance between the previous CPA algorithm by Wu [20] and our proposed CPA algorithm. (a)
Semicircle image. (b) Chromosome image.

Fig. 9. Quality comparison between the previous dominant point-based CPA algorithm by Wu [20] and our proposed two-pass CPA algorithm for
semicircle image and chromosome image. (a) Polygonal approximation result using the previous algorithm by Wu [20] for semicircle image (TCUR = �0.8,
time = 0.0024 s). (b) Polygonal approximation result using our proposed algorithm for semicircle image (TCUR = �0.63, TLISE = 40, time = 0.0062 s). (c)
Polygonal approximation result using the previous algorithm by Wu [20] for chromosome image (TCUR = �0.8, time = 0.0010 s). (d) Polygonal
approximation result using our proposed algorithm for chromosome image (TCUR = �0.4, TLISE = 120, time = 0.0042 s).
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Fig. 10. Quality comparison between Sarfraz et al.’s CPA algorithm and our proposed two-pass CPA algorithm for four testing image. (a) Polygonal
approximation result using the previous algorithm by Safraz et al. [16] for Italy image (e = 0.18, time = 0.002 s). (b) Polygonal approximation result using
our proposed algorithm for Italy image (TCUR = �0.8, TLISE = 20, time = 0.0102 s). (c) Polygonal approximation result using the previous algorithm by
Safraz et al. [16] for French image (e = 0.22, time = 0.0041 s). (d) Polygonal approximation result using our proposed algorithm for French image
(TCUR = �0.8, TLISE = 45, time = 0.02 s). (e) Polygonal approximation result using the previous algorithm by Safraz et al. [16] for semicircle image
(e = 0.47, time = 0.0019 s). (f) Polygonal approximation result using our proposed algorithm for semicircle image (TCUR = �0.63, TLISE = 40,
time = 0.0062 s). (g) Polygonal approximation result using the previous algorithm by Safraz et al. [16] for chromosome image (e = 0.27, time = 0.0014 s).
(h) Polygonal approximation result using our proposed algorithm for chromosome image (TCUR = �0.4, TLISE = 120, time = 0.0042 s).

Table 2
Four testing images (TLISE = 200) with their n, F, and m

Italy image French image Semicircle image Chromosome image

n 151 181 99 60
F 680 1212 566 256
m 2 3 3 2
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find the key point for refining each temporary approximate
segment obtained in the first pass. Experimental results dem-
onstrate that under the same number of segments, our pro-
posed two-pass algorithm has better quality and execution-
time performance when compared to the previous algorithm
by Chung et al. [1]. Under the same number of segments, our



Fig. 10 (continued )
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proposed two-pass algorithm has better quality, but has
some execution-time degradation when compared to cur-
rently published algorithms by Wu [20] and Sarfraz et al.
[16]. It is still a challenge problem to design efficient CPA
algorithm with a good tradeoff between the quality and the
execution-time.
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