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Abstract

Recently, Webb presented some efficient indexing methods for decoding reversible variable length codes (RVLCs)

which are used to encode MPEG-4 DCT coefficients. Given an RVLC, this paper presents two new indexing methods

for decoding the RVLCs of MPEG-4 DCT coefficients. Compromising the time requirement, our proposed decoding

methods need the least row memory requirement when compared to Webb’s methods.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Variable length codes (VLCs) have been used in
the entropy coding phase in some image coding
standards to improve the compression rate. Using
VLCs in a noisy environment, even a single bit
error, the received codes may become useless.
e front matter r 2004 Elsevier B.V. All rights reserve
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Since reversible VLCs (RVLCs) can be decoded in
forward and backward directions, they have been
suggested in H.263+, H.263++ [2], and MPEG-
4 [1] to enhance their error resilience capabilities
[4,5]. Webb [3] presented four efficient indexing
methods for decoding RVLCs which are used to
encode MPEG-4 DCT coefficients. MPEG-4
RVLC B-23 table is used to save the last-run-level
values of the MPEG-4 DCT coefficients.
Without needing any extra row memory re-

quirement, but compromising the time require-
ment, this paper first presents a new indexing
method for decoding RVLCs in the MPEG-4
RVLC B-23 table. Next we propose a faster
decoding method, but need an extra row memory.
Some experiments are carried out to compare the
d.
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performance among our two methods and Webb’s
four methods.
2. Past work by Webb

The RVLCs are used to encode DCT co-
efficients in the MPEG-4 RVLC B-23 table (see
Table 1

Indices of MPEG-4 RVLC B-23 table for decoding DCT coefficients

B-23 index n0 n1 n2 b Type_1 Type_2 Typ

0 0 0 (0) (0) (0)

1 0 1 (1) (1) (1)

2 0 0 1 1 1 1

3 1 0 (2) (2) (2)

4 1 1 (3) (3) (3)

5 1 0 0 32 32 22

6 1 0 1 33 33 23

7 1 1 0 34 34 24

8 1 1 1 35 35 25

9 2 0 (4) (4) (4)

10 2 1 (5) (5) (5)

11 2 0 0 64 64 44

12 2 0 1 65 65 45

13 2 1 0 66 66 46

14 2 1 1 67 67 47

15 2 2 0 68 68 48

16 2 2 1 69 69 49

17 3 0 (6) (6) (6)

18 3 1 (7) (7) (7)

19 3 0 96 96 66

^ ^ ^ ^ ^ ^ ^ ^
55 6 0 0 192 191 132

56 6 0 1 193 190 133

^ ^ ^ ^ ^ ^ ^ ^
152 10 10 1 341 42 241

153 11 0 (22) (22) (22)

154 11 1 (23) (23) (23)

155 11 0 0 352 31 242

156 11 0 1 353 30 243

157 11 1 0 354 29 244

158 11 1 1 355 28 245

159 11 2 0 356 27 246

160 11 2 1 357 26 247

161 11 3 0 358 25 248

162 11 3 1 359 24 249

163 11 4 0 360 23 250

164 11 4 1 361 22 251

165 11 5 0 362 21 252

166 11 5 1 363 20 253

167 11 6 0 364 19 254

168 11 6 1 365 18 255
Table 1). In the last column of Table 1, there are
169 RVLCs and each RVLC consists of a RVLC
prefix concatenated with a 2-bit suffix. After
examining these 169 RVLCs, the RVLC prefix
either starts and ends in a 1 with only 0’s (if any) in
the middle, or starts and ends in a 0 with exactly
one 0 and 1’s (if any) in the middle. Due to the
special structure of these codewords, i.e. RVLCs,
e_3 Type_4 Ours(l) Ours(2) Codeword

(0) 0 0 11 0s’

(1) 1 1 11 1s’

1 2 3 000 1s’

(2) 3 4 101 0s’

(3) 4 5 101 1s’

26 5 6 0010 0s’

27 6 7 0010 1s’

28 7 8 0100 0s’

29 8 9 0100 1s’

(4) 9 10 1001 0s’

(5) 10 11 1001 1s’

52 11 12 00110 0s’

53 12 13 00110 1s’

54 13 14 01010 0s’

55 14 15 01010 1s’

56 15 16 01100 0s’

57 16 17 01100 1s’

(6) 17 18 10001 0s’

(7) 18 19 10001 1s’

78 19 20 001110 0s’

^ ^ ^ ^
155 55 56 001111110 0s’

154 56 57 001111110 1s’

^ ^ ^ ^
30 152 153 0111111111100 1s’

(22) 153 154 1000000000001 0s’

(23) 154 155 1000000000001 1s’

25 155 156 00111111111110 0s’

24 156 157 00111111111110 1s’

23 157 158 01011111111110 0s’

22 158 159 01011111111110 1s’

21 159 160 01101111111110 0s’

20 160 161 01101111111110 1s’

19 161 162 01110111111110 0s’

18 162 163 01110111111110 1s’

17 163 164 01111011111110 0s’

16 164 165 01111011111110 1s’

15 165 166 01111101111110 0s’

14 166 167 01111101111110 1s’

13 167 168 01111110111110 0s’

12 168 169 01111110111110 1s’
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using the conventional VLC decoding method to
decode RVLCs is not an efficient way. Recently,
Webb [3] presented four efficient indexing methods
to decode RVLCs. In what follows, we briefly
introduce Webb’s four efficient indexing methods.
If the received codeword begins with 1, any one

of Webb’s four methods applies the following
formula to obtain the table index of the received
codeword, say indexw0:

indexw0 ¼ 2� n0 þ b; (1)

where n0 denotes the number of 0’s in the RVLC
part and b denotes the value of the first bit in the 2-
bit suffix part. Since the value of n0 ranges from 0
to 11 and b is either 0 or 1, the value of indexw0

ranges from 0 to 23 with no gaps. For example, if
the received codeword is ‘110s’ where s denotes the
value of the sign bit, by Eq. (1), we have indexw0 ¼

2� 0þ 0 ¼ 0: In addition, if the received code-
word is ‘10000000000011s’, then we have
indexw0 ¼ 2� 11þ 1 ¼ 23:
If the received codeword begins with 0, in what

follows, Webb presents four efficient indexing
methods, namely Type_1, Type_2, Type_3, and
Type_4. In fact, throughout this paper, Webb’s
Type_i method consists of the decoding method
for the received codeword beginning with 1
(mentioned in the last paragraph) and beginning
with 0 (mentioned in the remaining paragraphs of
this section).

2.1. Type_1

Webb’s first method applies the following
formula to derive the table index indexw1:

indexw1 ¼ 32� n1 þ 2� n2 þ b; (2)

where n1 denotes the number of l’s in the RVLC
part; n2 denotes the number of l’s before the 2nd 0
in the RVLC part, and b has been defined in Eq.
(1). When the value of n1 ranges from 0 to 10, n2
ranges from 0 to n1. Specifically, when n1 is 11, n2
ranges from 0 to 6. However, if n1 equals to 0, b

has only a ‘1’. Consequently, the possible values of
indexw1 are 1, 32, 33, 34, 35,y, 365. For example,
if the received codeword is ‘0001s’, we have
indexw1 ¼ 32� 0þ 2� 0þ 1 ¼ 1: If the received
codeword is ‘011111101111101s’, we have the
maximal index value indexw1 ¼ 32� 11þ 2� 6þ
1 ¼ 365: Although indexw1 can be formed by
concatenating (shift and or operations) n1 (4 bits)
with n2 (4 bits) and b (1 bit), the value of indexw1

ranges from 0 to 365. However, only 145 ð¼ 169�
24Þ row entries are used. Therefore, Webb’s
Type_1 method needs 390 ð¼ 366þ 24Þ row en-
tries, but 221 ð¼ 390� 169Þ row entries are wasted.
In Table 1, the sixth column denotes the mapped
indices by using Eqs. (1) and (2) based on Webb’s
Type_1 method.

2.2. Type_2

In order to reduce the amount of extra row
entries in the table, Webb’s second method applies
Eq. (3) to get the table index indexw2:

indexw2 ¼ 32� n1 þ 2� n2 þ b

if ðindexw2X192Þ indexw2 ¼ 383� indexw2: ð3Þ

Using Eq. (3) to reduce gaps in the table entries,
the value of indexw2 ranges from 0 to 191, but 47
( ¼ 192�145) row entries are wasted. For example,
if the received codeword is ‘0011111100s’, we first
have indexw2 ¼ 32� 6þ 2� 0þ 0 ¼ 192: Then,
we have the folded index value, indexw2 ¼ 383�
192 ¼ 191; which is the maximal index value in
this method. As a result, Webb’s Type_2 method
needs 216 ð¼ 192þ 24Þ row entries, but 47 ð¼
216� 169Þ row entries are wasted. The mapped
indices are shown in the seventh column of
Table 1.

2.3. Type_3

Webb’s third method applies the following
formula to obtain the table index indexw3:

indexw3 ¼ 22� n1 þ 2� n2 þ b: (4)

It is easy to check that indexw3 ranges from 0 to
255, but 111 row entries are wasted. For example,
if the received codeword is ‘011111101111101s’, we
have indexw3 ¼ 22� 11þ 2� 6þ 1 ¼ 255: Conse-
quently, Webb’s Type_3 method needs 280 ð¼
256þ 24Þ row entries, but 111 ð¼ 280� 169Þ row
entries are wasted. In Table 1, the eightieth column
denotes the mapped indices.
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2.4. Type_4

In Webb’s last method, Webb applies the
following formula to get the table index indexw4:

indexw4 ¼ 26� n1 þ 2� n2 þ b

if ðindexw4X156Þ indexw4 ¼ 311� indexw4: ð5Þ

Using the above reordering method, the gaps in
the table entries can be reduced significantly. The
value of indexw4 ranges from 0 to 155 and 11
entries are wasted. For example, if the received
codeword is ‘0011111100s’, we first have indexw4 ¼

26� 6þ 2� 0þ 0 ¼ 156: Then, we have
indexw2 ¼ 311� 156 ¼ 155: Therefore, Webb’s
Type_4 method needs 180 ð¼ 156þ 24Þ row en-
tries, but 11 ð¼ 180� 169Þ row entries are wasted.
In Table 1, the ninth column denotes the mapped
indices by using Eqs. (1) and (5).
3. The proposed decoding method

In any one of Webb’s methods, there are at least
11 wasted row entries. In this section, given a
codeword, we first present a new formula to obtain
the corresponding table index without needing any
extra row entry. Then, we present a faster method,
but need an extra row entry. For convenience, our
proposed first method is called Ours(l) and the
proposed second method is called Ours(2).

3.1. Ours(1)

If the received codeword begins with 1, we apply
the following formula to obtain the table index,
say indexc1:

if ðn0 ¼ 0Þ indexc1 ¼ b

else indexc1 ¼ n0 � ðn0 þ 3Þ þ b � 1; ð6Þ

where n0 and b have been defined in Section 2 and
have the same ranges as in Eq. (1). The possible
values of indexc1 are 0, 1, 3, 4,y,153, and 154.
These mapped indices are consistent with the
original table indices. For example, if the received
codeword is ‘110s’, we have indexc1 ¼ b ¼ 0: If the
received codeword is ‘10000000000011s’, we have
indexc1 ¼ 11� ð11þ 3Þ þ 1� 1 ¼ 154:
If the received codeword begins with 0, we use
the following formula to derive the table index
indexc1:

indexc1 ¼ ðn1 þ 1Þ � ðn1 þ 2Þ þ 2� n2 þ b � 1;

(7)

where n1, n2 and b have the same definitions and
ranges as in Eq. (2). Thus, the indexc1 in Eq. (7)
has the possible values 2, 5, 6, 7, 8,y,167, and 168.
These mapped indices are consistent with the
original table indices. For example, if the received
codeword is ‘0001s’, we have indexc1 ¼ ð0þ 1Þ �
ð0þ 2Þ þ 2� 0þ 1� 1 ¼ 2: If the received code-
word is ‘011111101111101s’, we have indexc1 ¼

ð11þ 1Þ � ð11þ 2Þ þ 2� 6þ 1� 1 ¼ 168: In Ta-
ble 1, the tenth column denotes the mapped indices
by using Eqs. (6) and (7). Therefore, using the
above mapped indices to decode the MPEG-4
RVLC B-23 table, no gap is in the table entries. On
the other hand, the proposed Ours(l) method only
needs 169 row entries without any extra row entry
required.

3.2. Ours(2)

In order to reduce the execution time require-
ment, we further modify the formulas in Eqs. (6)
and (7) to obtain the new table index indexc2. If the
received codeword begins with 1, we apply the
following formula to obtain the table index
indexc2:

indexc2 ¼ n0 � ðn0 þ 3Þ þ b: (8)

Since the value of n0 ranges from 0 to 11 and b is
either 0 or 1, the possible values of indexc2 are 0,1,
4, 5,y, 154, and 155.
If the received codeword begins with 0, we apply

the following formula to obtain the table index
indexc2:

indexc2 ¼ ðn1 þ 1Þ � ðn1 þ 2Þ þ 2� n2 þ b: (9)

It is easy to verify that the possible values of
indexc2 are 3, 6, 7, 8, 9,y,168, and 169. Using the
proposed modified method, only one extra row
entry is needed. The new table index indexc2 can be
viewed as shifting one position after the index 1.
As a result, our proposed Ours(2) method needs
170 row entries with only one wasted row entry. In
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Table 1, the eleventh column illustrates the
mapped indices of our proposed second method.
Table 3

Memory and time comparison

Method Memory Time

Table size No. of wasted entries

Type_l [3] 390 221 5.16

Type_2 [3] 216 47 14.61

Type_3 [3] 280 111 10.27

Type_4 [3] 180 11 18.29

Ours(l) 169 0 16.80

Ours(2) 170 1 14.29
4. Experimental results

Some experiments are carried out to evaluate
the performance among Webb’s four methods and
our proposed two methods. The used machine is
Pentium III PC with 450MHz and the used
language is C language. To assure a fair compar-
ison between Webb’s indexing methods and our
indexing methods, all of the unknown variables
and the concerned branches are generated by the
random number generator.
Table 2 shows the concerned equations and the

operation types required in Webb’s four indexing
methods and our two indexing methods. Table 3
shows the memory requirement, i.e. the row entries
in the table, and the time requirement for the six
methods. The time unit is 10�9 s. In our indexing
methods, the Ours(l) method has no redundancy in
the table entries and the Ours(2) method has only
one extra row entry in the table but it is faster than
the proposed Ours(l) method. However, any one
of Webb’s methods has at least 11 extra row
entries in the table. Specifically, our two indexing
Table 2

Concerned equations and operation types required in the six method

Method Concerned equations

Type_l [3] 1-start: indexw0 ¼ 2� n0 þ b

0-start: indexw1 ¼ 32� n1 þ 2� n2 þ b

Type_2 [3] 1-start: indexw0 ¼ 2� n0 þ b

0-start: indexw2 ¼ 32� n1 þ 2� n2 þ b

if (indexw2X192) indexw2 ¼ 383�in

Type_3 [3] 1-start: indexw0 ¼ 2� n0 þ b

0-start: indexw3 ¼ 22� n1 þ 2� n2 þ b

Type_4 [3] 1-start: indexw0 ¼ 2� n0 þ b

0-start: indexw4 ¼ 26� n1 þ 2� n2 þ b

if (indexw4X156) indexw4 ¼ 311�in

Ours(l) 1-start: if ðn0 ¼ 0Þ indexc1 ¼ b

else indexc1 ¼ n0 � ðn0 þ 3Þ þ b � 1

0-start: indexc1 ¼ ðn1 þ 1Þ � ðn1 þ 2Þ þ 2

Ours(2) 1-start: indexc2 ¼ n0 � ðn0 þ 3Þ þ b

0-start: indexc2 ¼ ðn1 þ 1Þ � ðn1 þ 2Þ þ 2
methods need less execution time when compared
to Webb’s Type_4 method.
5. Conclusion

RVLCs have been suggested in the emerging
video coding standards to enhance their error
resilience capabilities in a noisy environment.
Given an RVLC, this paper has presented two
new indexing methods for decoding the RVLCs of
MPEG-4 DCT coefficients. Under reasonable
execution time requirement, in our two methods,
the first method has no redundancy in the table
entries and the second method has only one extra
s

Operation types

2 assignments, 3 shifts,

3 or’s

2 or 3 assignments, 3 shifts,

3 or’s, 1 if,

dexw2 0 or 1 subtraction

2 assignments, 3 additions,

3 multiplications

2 or 3 assignments, 3 additions,

3 multiplications, 1 if,

dexw4 0 or 1 subtraction

2 assignments, 4 or 6 additions,

2 or 3 multiplications, 1 if else,

� n2 þ b � 1 1 or 2 subtractions

2 assignments, 6 additions,

� n2 þ b 3 multiplications
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row entry in the table. However, there are at least
11 extra table entries in any one of Webb’s
methods.
Efficient decoding in terms of both memory and

time requirements is critical for the noisy environ-
ment such as low-power wireless devices. Accord-
ing to the memory and time comparison in Table
3, the users are suggested selecting Webb’s Type_l
method or Type_2 method due to the computa-
tional advantage if the decoder doesn’t provide
fast multiplication capability. Otherwise, if the
decoder provides fast multiplication capability, the
users are suggested selecting any one of our
proposed two methods, Ours(l) and Ours(2) due
to the memory-saving advantage and the modest
time requirement. In other words, the users can
determine the best way to decode the RVLCs
according to their requirements and the used
decoder environments.
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