

Information Processing Letters 74 (2000) 103-106

www.elsevier.com/locate/ipl

On finding medians of weighted discrete points

Kuo-Liang Chung¹

Department of Information Management, Institute of Computer Science and Information Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei, Taiwan 10672

> Received 13 January 2000; received in revised form 2 March 2000 Communicated by L. Boasson

Abstract

According to the Manhattan metric, Del Lungo et al. (1998) recently presented an elegant algorithm for finding the medians of the given discrete point set S on \mathbb{Z}^2 , where each point is of unit weight. Their algorithm takes O(|R(S)|) time, where |R(S)| denotes the area of the smallest rectangle containing S. Under the same time bound, this paper first extends their result to the weighted case, where each point in S is associated with any weight. Secondly, we use the sparse matrix representation technique to find the medians of S in O(|S|) time, i.e., linear time, commonly $|S| \leq |R(S)|$. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Algorithms; Computational geometry; Manhattan metric; Medians; Weighted discrete set

1. Introduction

Given a set of discrete points on the 2D integer domain \mathbb{Z}^2 , say *S*, each point with unit weight, finding the medians of *S* is an interesting problem in computational geometry [2,3]. In some applications, for instance, the found medians could be used as the central servers for those |S| discrete nodes in the environment. Using the Manhattan metric, the distance between *S* and one position $p = (x_p, y_p)$ on \mathbb{Z}^2 is defined by

$$D(p,S) = \sum_{q \in S} d_1(p,q),$$

where

$$d_1(p,q) = |x_p - x_q| + |y_p - y_q|.$$

A position *m* on \mathbb{Z}^2 is said to be a median of *S* if the equality

$$D(m, S) = \min_{q \in \mathbb{Z}^2} D(q, S)$$

holds. Therefore, usually more than one median will be found and some medians on \mathbb{Z}^2 do not belong to *S*.

Recently, Del Lungo et al. [4] presented a very elegant method for finding the medians of *S*. Their algorithm takes O(|R(S)|) time, where |R(S)| denotes the area of the smallest rectangle containing *S*, commonly $|S| \leq |R(S)|$. From a practical viewpoint, we often consider a set of weighted discrete points, still say *S*. The motivations of this research are twofold: extending the result of Del Lungo et al. [4] to the weighted case and presenting a linear-time (i.e., O(|S|) time) algorithm for finding the medians of *S*.

Using the same Manhattan metric, this paper first extends the result of Del Lungo et al. [4] to the weighted case, where the discrete points in S are

¹ Email: klchung@cs.ntust.edu.tw. Supported by NSC89-2213-E011-061.

^{0020-0190/00/\$ –} see front matter @ 2000 Elsevier Science B.V. All rights reserved. PII: S0020-0190(00)00049-1

weighted. Furthermore, using the sparse matrix representation technique, the problem of finding medians can be solved in O(|S|) time.

2. Weighted discrete points

Let the discrete point q in S have weight $w_q \in \mathbb{Z}$, the distance between the position p on \mathbb{Z}^2 and the set S is defined by

$$D^{w}(p,S) = \sum_{q \in S} w_{q} (|x_{p} - x_{q}| + |y_{p} - y_{q}|),$$
(1)

where the discrete point q in S has weight w_q . Eq. (1) makes sense since the discrete point q in S with weight w_q can be viewed as w_q points at the same location (x_q, y_q) , each point with unit weight. Therefore, the element of medians to be determined, say m, for S must satisfy

$$D^{w}(m, S) = \min_{p \in \mathbb{Z}^{2}} \sum_{q \in S} w_{q} (|x_{p} - x_{q}| + |y_{p} - y_{q}|).$$
(2)

As shown in Fig. 1, suppose we are given a set *S* consisting of 6 discrete weighted points with weights 3, 3, 1, 2, 2, and 1. The smallest rectangle R(S) containing *S* is of area 36 (= 6 × 6).

In general, suppose *S* is contained in a rectangle R(S) with area $m \times n$. Following the definition of horizontal and vertical projections used in [1,4], let the *i*th vertical projection of R(S), $0 \le i \le n - 1$, be denoted by v_i^w and v_i^w is the sum of the weights in the *i*th column. Let the *j*th horizontal projection of R(S), $0 \le i \le m - 1$, be denoted by h_i^w and h_i^w is the sum

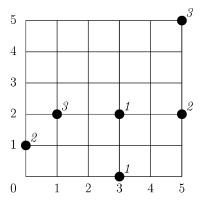


Fig. 1. An example for S and R(S).

of the weights in the *j*th row. The vertical (horizontal) projection of R(S) is denoted by a vector

$$V^w = (v_0^w, v_1^w, \dots, v_{n-1}^w)$$

 $(H^w = (h_0^w, h_1^w, \dots, h_{m-1}^w))$. Return to Fig. 1. We thus have V = (2, 3, 0, 2, 0, 5) and H = (1, 2, 6, 0, 0, 3).

We further define the prefix values of $V^w = (v_0^w, v_1^w, \ldots, v_{n-1}^w)$ (respectively $H^w = (h_0^w, h_1^w, \ldots, h_{m-1}^w)$) by $V_0^p = 0$ and $V_i^p = \sum_{k=0}^i v_k^w$ for $i = 0, \ldots, n-1$ (respectively $H_0^p = 0$ and $H_j^p = \sum_{k=0}^j h_k^w$ for $i = 0, \ldots, m-1$). The total weight of *S* is defined by

$$W = \sum_{i=0}^{n-1} v_i^w = \sum_{j=0}^{m-1} h_j^w.$$

In Fig. 1, the total weight is W = 12 and we have $(V_0^p, V_1^p, V_2^p, V_3^p, V_4^p, V_5^p) = (2, 5, 5, 7, 7, 12)$ and $(H_0^p, H_1^p, H_2^p, H_3^p, H_4^p, H_5^p) = (1, 3, 9, 9, 9, 12).$

3. The main result

Following the similar notations used in [4], in our weighted case, the *i*th column of R(S) is said to be a weighted median column if $V_{i-1}^p \leq W/2 \leq V_i^p$ for $0 \leq i \leq n-1$; the *j*th row of R(S) is said to be a weighted median row if $H_{j-1}^p \leq W/2 \leq H_j^p$.

Let $M^w(S)$ be the set of medians for S and following the proving technique used in [4], the next lemma extends the result of Del Lungo et al. [4] to the weighted case.

Lemma 1. A position $M \in M^w(S)$ if and only if M is the intersection of a weighted median column and a weighted median row of R(S).

Proof. First, we prove the only if part of the theorem. Suppose $M = (x_i, y_j)$ belongs to $M^w(S)$. Considering the adjacent point of M, say $p = (x_p, y_p)$, we first discuss the horizontal case: $x_p = x_i - 1$ and $y_p = y_j$. From Eq. (2), we have

$$D^{w}(p, S) - D^{w}(M, S) = \sum_{r \in S} w_{r} (|x_{p} - x_{r}| + |y_{p} - y_{r}|) - \sum_{r \in S} w_{r} (|x_{i} - x_{r}| + |y_{j} - y_{r}|).$$
(3)

Since $y_j = y_p$, it yields $|y_p - y_r| = |y_j - y_r|$. From $x_p = x_i - 1$, we have

$$|x_p - x_r| = \begin{cases} x_i - x_r - 1 & \text{if } x_r \leq x_p, \\ x_r - x_i + 1 & \text{otherwise.} \end{cases}$$

From Eq. (3), representing x_i and y_i in terms of x_p and y_p , respectively, it yields

$$D^{w}(p, S) - D^{w}(M, S) = \sum \{ w_{r} \mid x_{r} > x_{p}, r \in S \} - \sum \{ w_{r} \mid x_{r} \leqslant x_{p}, r \in S \}.$$
 (4)

From the definition of medians of *S*, since *M* is a median, we have $D^w(p, S) - D^w(M, S) \ge 0$. From Eq. (4), it follows that

$$D^{w}(p, S) - D^{w}(M, S)$$

= $\sum \{ w_{r} | x_{r} > x_{p}, r \in S \}$
- $\sum \{ w_{r} | x_{r} \leq x_{p}, r \in S \}$
= $W - V_{i-1}^{w} - V_{i-1}^{w} \ge 0.$ (5)

We thus have $W/2 \ge V_{i-1}^w$.

Under the same horizontal case, we consider another adjacent point of M, i.e., $x_p = x_i + 1$ and $y_q = y_j$. By the similar argument as in Eq. (5), it follows that $V_i^w \ge W/2$. Combining the result $W/2 \ge V_{i-1}^w$, we have $V_{i-1}^w \le W/2 \le V_i^w$.

Considering the vertical adjacent point of M, it is not hard to derive that $H_{j-1}^w \leq W/2 \leq H_j^w$. We have completed the only if part of the theorem.

Finally, we prove the if part of the theorem. Suppose $M = (x_i, y_j)$ is the intersection of a median column and a median row of *S*. We want to prove that $M \in M^w(S)$. From the premise, we have

$$0 \leqslant V_1^w \leqslant V_2^w \leqslant \dots \leqslant V_{i-1}^w \leqslant W/2$$
$$\leqslant V_i^w \leqslant \dots \leqslant V_{m-1}^w \leqslant V_m^w$$

and

$$0 \leqslant H_1^w \leqslant H_2^w \leqslant \dots \leqslant H_{j-1}^w \leqslant W/2$$
$$\leqslant H_j^w \leqslant \dots \leqslant H_{n-1}^w \leqslant H_n^w.$$

Following the lattice path proving technique used in [4], the if part of the theorem can be proved. For saving space, we omit the detailed derivation. We complete the proof. \Box

From Lemma 1, it is known that it takes O(|R(S)|) time to find the median of *S*. We first calculate the horizontal and vertical projections using O(|R(S)|) time. Next, from the intersection of a weighted median column and a weighted median row, the time complexity is bounded by O(|R|) to find the median.

In Fig. 1, it is known that $V^w = (2, 3, 0, 2, 0, 5)$, $H^w = (1, 2, 6, 0, 0, 3)$, and W/2 = 6. The prefix values of V^w and H^w are denoted by $(V_0^p, V_1^p, V_2^p, V_3^p, V_4^p, V_5^p) = (2, 5, 5, 7, 7, 12)$ and $(H_0^p, H_1^p, H_2^p, H_3^p, H_4^p, H_5^p) = (1, 3, 9, 9, 9, 12)$, respectively. Since $5 = V_2^p \le 6 \le V_3^p = 7$ and $3 = H_1^p \le 6 \le H_2^p = 9$, the found median is the point with coordinate (3, 2).

Suppose the weighted discrete points set *S* is stored in a row-major order. For example, the set *S* in Fig. 1 is stored by $\langle (5, 5), (1, 2), (3, 2), (5, 2), (0, 1), (3, 0) \rangle$. Using the sparse matrix representation technique, the input set *S* can be represented by a linked list data structure. Based on the row-major scanning order, it takes O(|S|) time to construct the corresponding linked list representation for *S*.

In our example, the vertical projection of *S* can be represented by

$$V^{sparse} = (v_0^w, v_1^w, v_3^w, v_5^w) = (2, 3, 2, 5);$$

the horizontal projection of S can be represented by

$$H^{sparse} = \left(h_0^w, h_1^w, h_2^w, h_5^w\right) = (1, 2, 6, 3).$$

The prefix values of V^{sparse} are denoted by $(V_0^p, V_1^p, V_3^p, V_5^p) = (2, 5, 7, 12)$ and the prefix values of H^{sparse} are denoted by $(H_0^p, H_1^p, H_2^p, H_5^p) = (1, 3, 9, 12)$. It is clear that it takes O(|S|) time to construct the vertical/horizontal projections and the corresponding prefix values.

From Lemma 1 and using the sparse matrix representation technique described in the previous two paragraphs, we have the main result.

Theorem 1. Given a weighted discrete points set S, the problem of finding the median of S can be solved in O(|S|) time.

References

 E. Barcucci, A. Del Lungo, M. Nivat, R. Pinzani, Reconstructing convex polyominoes from their horizontal and vertical projections, Theoret. Comput. Sci. 155 (1996) 321–347.

- [2] V. Chepoi, F. Dragan, Computing a median point of a simple rectilinear polygon, Inform. Process. Lett. 49 (1994) 281–285.
- [3] Y. Métivier, N. Saheb, Medians and centres of polyominoes, Inform. Process. Lett. 57 (1996) 175–181.
- [4] A. Del Lungo, M. Nivat, R. Pinzani, L. Sorri, The medians of discrete sets, Inform. Process. Lett. 65 (1998) 293–299.