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Abstract

According to the Manhattan metric, Del Lungo et al. (1998) recently presented an elegant algorithm for finding the medians
of the given discrete point séton 72, where each point is of unit weight. Their algorithm takeg$RyS)|) time, wherg R(S)|
denotes the area of the smallest rectangle contaiiingnder the same time bound, this paper first extends their result to
the weighted case, where each pointSis associated with any weight. Secondly, we use the sparse matrix representation
technique to find the medians 8fin O(|S]) time, i.e., linear time, commonlj§| < |R(S)|. O 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction A positionm on Z? is said to be a median o if the
equality

Given a set of discrete points on the 2D integer
domain Z?, say S, each point with unit weight,
finding the medians of is an interesting problem in
computational geometry [2,3]. In some applications, holds. Therefore, usually more than one median will
for instance, the found medians could be used as thebe found and some medians @f do not belong tc.
central servers for thoseS| discrete nodes in the Recently, Del Lungo et al. [4] presented a very ele-
environment. Using the Manhattan metric, the distance gant method for finding the medians ®f Their algo-
betweenS and one positiorp = (xp, yp) on Z? is rithm takes Q|R(S)|) time, where| R(S)| denotes the

D(m, S) = min D(q, S)
qeZ?

defined by area of the smallest rectangle containfhgommonly
|S] < |R(S)|. From a practical viewpoint, we often
D(p,$) = Zdl(p, q), consider a set of weighted discrete points, still Say
qes The motivations of this research are twofold: extend-
where ing the result of Del Lungo et al. [4] to the weighted
case and presenting a linear-time (i.e(|SD) time) al-
di(p,q) =|xp — xgl + |yp — yql- gorithm for finding the medians d.

Using the same Manhattan metric, this paper first

1Email: Kichung@cs.ntust.edu.tw. Supported by NSC89-2213- €xtends the result of Del Lungo et al. [4] to the
E011-061. weighted case, where the discrete pointsSirare
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weighted. Furthermore, using the sparse matrix rep- of the weights in thegth row. The vertical (horizontal)
resentation technique, the problem of finding medians projection ofR(S) is denoted by a vector

can be solved in QS)) time.

2. Weighted discrete points

Let the discrete poing in S have weightw, € Z,
the distance between the positipron Z?2 and the set
S is defined by

D”(p,S) =Y wy(lxp —xgl +1yp = ¥ql),
ges

@)

where the discrete poigtin S has weightw,. Eq. (1)
makes sense since the discrete pgiint S with weight
w, can be viewed as), points at the same location
(x4, y4), €ach point with unit weight. Therefore, the
element of medians to be determined, sayfor S
must satisfy

D" (m, S) = ;QiZnZqu(m —xgl+1yp = y4l). (@
ges

As shown in Fig. 1, suppose we are given a $et
consisting of 6 discrete weighted points with weights
3,3, 1, 2, 2, and 1. The smallest rectandgtés)
containings is of area 364 6 x 6).

In general, suppos§ is contained in a rectangle
R(S) with aream x n. Following the definition of
horizontal and vertical projections used in [1,4], let
theith vertical projection ofR(S), 0<i <n —1, be
denoted byw;” andv;” is the sum of the weights in the
ith column. Let thejth horizontal projection oR(S),
0<i<m-—1, be denoted bﬁ'f andh’;’ is the sum

5 o’
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pE— o 'S
1 .2
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0 1 2 g 4 5

Fig. 1. An example forS and R(S).

v =(vow,v1w,...,v;l“71)
(H” = (hg,hY, ...,k _1)). Returnto Fig. 1. We thus
haveV =(2,3,0,2,0,5) andH = (1, 2,6, 0,0, 3).

We further define the prefix values of* = (vy,
vy, ) (respectivelyiwz(hw, hy,....hy 1)
by Vg =0 andV/ =37 _ovy fori=0,....n—1
(respectivelyHy = 0 and HY = Y"/_ Y for i =
0,...,m —1). The total weight of is defined by

n—1 m—1
W=> =" hY.
i=0 j=

In Fig. 1, the total weight iS¥ = 12 and we have
vy vhovy vivl vl = (2,5,5,7,7,12) and
(Hy H{,H} HY H} HF)=(1,399912).

3. The main result

Following the similar notations used in [4], in our
weighted case, théth column of R(S) is said to be
a weighted median column if;” | < W/2 < v/ for
0<i <n—1; the jth row of R(S) is said to be a
weighted median row it{/? | < W/2< HY.

Let M¥(S) be the set of medians fof and
following the proving technique used in [4], the next
lemma extends the result of Del Lungo et al. [4] to the
weighted case.

Lemma 1. A positionM € M™(S) if and only if M
is the intersection of a weighted median column and a
weighted median row aR(S).

Proof. First, we prove the only if part of the theorem.
Supposé = (x;, y;) belongs taV* (S). Considering
the adjacent point o/, say p = (x,, y,), we first
discuss the horizontal case; =x; —1 andy, = y;.
From Eq. (2), we have

DY (p,S)— D" (M, S)
:Zwr(|xp — xr| + |)’p _yr|)

reS

= 2 wr(lxi = x4 1y = yil)- (3)

res§
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Sincey; = y,, ityields |y, — y-| =|y; — y-|. From

xp, =x; — 1, we have
xi—xr—1

x, —x; +1 otherwise.

if x, <xp,

|xp_xr| Z{

From Eq. (3), representing andy; in terms ofx, and
yp, respectively, it yields

D¥(p,S)— D" (M, S)
:Z{w,|xr>x,,, r e S}
- Z{wr | x, gxpa resSy. (4)

From the definition of medians of, sinceM is a
median, we haveD¥(p, S) — D¥(M, S) > 0. From
Eq. (4), it follows that

DY (p,S)— D" (M, S)
:Z{w, | xp > xp, r €85}

=D {wr % <xp, res)

=W =V~ V>0 (5)

We thus havev/2> VY.

Under the same horizontal case, we consider an-
other adjacent point of/, i.e.,x, = x; + 1 andy, =
y;. By the similar argument as in Eq. (5), it follows
that vV > W/2. Combining the resul//2 > V" ,,
we haveV,”; < W/2< VY.

Considering the vertical adjacent point &f, it is
not hard to derive thaH}{l <W/2< H]'.“. We have
completed the only if part of the theorem.

Finally, we prove the if part of the theorem. Suppose
M = (x;,y;) is the intersection of a median column
and a median row of. We want to prove thaM €
M™(S). From the premise, we have

OS V< VY <<V < W)2
V<KV, <

and

O<HY <HY <---<H”;<W/2
<HP<---<HY;<H

Following the lattice path proving technique used
in [4], the if part of the theorem can be proved. For
saving space, we omit the detailed derivation. We
complete the proof. O
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From Lemma 1, it is known that it takes([R(S)|)
time to find the median of. We first calculate the hor-
izontal and vertical projections using([®(S)|) time.
Next, from the intersection of a weighted median col-
umn and a weighted median row, the time complexity
is bounded by @R]) to find the median.

In Fig. 1, it is known thatV" = (2,3,0,2,0,5),

H" =(1,2,6,0,0,3),andW/2 = 6. The prefix val-
ues of V¥ and H" are denoted byV), v/, v}, vZ,
V), V) =(25,577,12 and (H], H], H) , HY .
H} HY)=(1,3,9,9,9,12), respectively. Since 5
V<6< Vi=7and 3=H <6< H) =09, the
found median is the point with coordinai® 2).

Suppose the weighted discrete points$ét stored
in a row-major order. For example, the sein Fig. 1
is stored by((5,5), (1, 2), (3,2), (5, 2), (0, 1), (3,0)).
Using the sparse matrix representation technique, the
input setS can be represented by a linked list data
structure. Based on the row-major scanning order,
it takes @|S|) time to construct the corresponding
linked list representation faf.

In our example, the vertical projection 6§fcan be
represented by

ysparse_ (v(l)v, vy, vy, Ué‘”) =(2,3,2,5);

the horizontal projection of can be represented by
HPSe= (n p¥ hY, h¥) = (1,2,6,3).

The prefix values ofV/SPa'se are denoted by(V{,
vl vy vl = (257 12) and the prefix values of
HSPaseare denoted byHy, HY , HY . HY) = (1, 3,9,
12). Itis clear that it takes QS]) time to construct the
vertical/horizontal projections and the corresponding
prefix values.

From Lemma 1 and using the sparse matrix rep-
resentation technique described in the previous two
paragraphs, we have the main result.

Theorem 1. Given a weighted discrete points s&t
the problem of finding the median Sfcan be solved
in O(|S]) time.
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