
sors. Later, some cost-optimal parallel solvers were pre-
sented, where cost is defined to be the product of time
and the number of processors used [19]. Using a newly
proposed computational model called the mesh-of-unshuf-
fle network, Chung and Lin [7] presented an O(log m
log n)-time parallel algorithm using O(mn/(log m log n))
processors. On a hypercube network, a similar result was
presented by Lin and Chung [20]. Using the pipelining
strategy [11], an O(log n9)-time parallel algorithm was
presented on the same network with O(mn/log n9) proces-
sors [13], where n9 5 max(m, n). Cheng et al. [6] presented
the first constant-time parallel algorithm on a mesh-con-
nected computer with O(mn) processors based on the
Chebyshev iterative method; they also gave the corre-
sponding relative error analysis. Note that their algorithm
[6] is time- and cost-optimal.

Based on the matrix perturbation method, this paper
first presents a novel approximate O(n/p)-time parallel B-
spline curve fitting algorithm for finding the corresponding
n control points that interpolate those n data points on a
linear array processor with p processors, where p # n.
Given m 3 n data points, we then present an O(mn/
(p1 p2))-time parallel algorithm for B-spline surface fitting
on a p1 3 p2 mesh-connected computer, where p1 # m and
p2 # n. The relative error analyses of our two stable and
cost-optimal parallel solvers are also given. When setting
p1 5 m and p2 5 n, a time- and cost-optimal parallel solver
can be derived; our result is a direct method vs. the result
of Cheng et al. [6].

2. PARALLEL B-SPLINE CURVE INTERPOLATOR

Suppose we are given a set of 3-dimensional data points,
Bi 5 (b(1)

i , b(2)
i , b(3)

i) for 1 # i # n. According to [2, 15],
for uniform B-spline curve, each data point can be ex-
pressed by a weighted average of three control points:
Bi 5 Ah(Ci21 1 4Ci 1 Ci11), 1 # i # n, where Ci 5
(c(1)

i , c(2)
i , c(3)

i). They form a system of n equations in n 1
2 unknowns for all given points. In order to completely
solve the system, we need the following two additional
equations to specify how the boundary control points are
interpolated: C0 5 C1; Cn11 5 Cn . For simplicity, we only
consider b 5 (b1 , b2 , ..., bn)T 5 (b(1)

1 , b(1)
2 , ..., b(1)

n)T and
c 5 (c1 , c2 , ..., cn)T 5 (c(1)

1 , c(1)
2 , ..., c(1)

n)T throughout this

JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 35, 205–210 (1996)
ARTICLE NO. 0082

Parallel B-Spline Surface Fitting on Mesh-Connected Computers

KUO-LIANG CHUNG*,1 AND WEN-MING YAN†,2

*Department of Information Management, National Taiwan Institute of Technology, No. 43, Section 4, Keelung Road,
Taipei, Taiwan 10672, Republic of China; and †Department of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan 10764, Republic of China

0743-7315/96 $18.00
Copyright  1996 by Academic Press, Inc.

All rights of reproduction in any form reserved.

205

The solution of uniform bicubic B-spline curve/surface fitting
problem is considered. Based on the matrix perturbation
method, this paper first presents a novel approximate O(n/p)-
time parallel B-spline curve fitting algorithm for finding the
corresponding n control points that interpolate those n data
points on a linear array processor with p processors, where
p # n. Given m 3 n data points, we then present an O(mn/
(p1p2))-time parallel algorithm for solving the uniform bicubic
B-spline surface fitting problem on a p1 3 p2 mesh-connected
computer, where p1 # m and p2 # n. The relative error analyses
of our two stable and cost-optimal parallel solvers are also
given. When setting p1 5 m and p2 5 n, a constant-time parallel
solver for B-spline surface fitting can be derived; this time- and
cost-optimal result is a direct method, in contrast to the parallel
iterative method of Cheng et al. (Parallel B-spline surface inter-
polation on a mesh-connected processor array, J. Parallel Dis-
trib. Comput. 24, 2 (1995), 224–229).  1996 Academic Press, Inc.

1. INTRODUCTION

Surface fitting is very important in the fields of CAD,
CAM, robotic path planning, graphics, pattern recognition,
and image processing. Due to the local change property,
B-spline surface interpolation is a good fitting tool to con-
struct a smooth surface that fits those given points in the
space [15, 2]. From the viewpoint of filters, finding the
control points can be solved by using an inverse filtering
operation [17].

Suppose we are given a set of m 3 n data points to be
interpolated. Based on the Gauss–Seidel iteration method,
Ajjanagadde and Patnaik [1] presented the first parallel
algorithm to perform uniform bicubic B-spline surface fit-
ting in O(n 1 p) time using O(pn) processors, where p is
the number of iterations specified by the user. Then Cheng
and Goshtasby [4] presented another parallel iterative
solver based on the SLOR method to find the control
points in O(m log n) time using O(n) processors. Based
on the cyclic reduction method [18], Cheng and Goshtasby
[5] presented the first logarithmic-time parallel algorithm,
which takes O(log m 1 log n) time using O(mn) proces-

1 E-mail: klchung@cs.ntit.edu.tw.
2 E-mail: ganboon@csie.ntu.edu.tw.

which implies that a 2 b 5 4 and 2ab 5 1; this then implies
that b 5 21/a and a 5 2 6 Ï3. Since we wish the matrices
L9 and U 9 to be diagonally dominant, we will select the
sign so that the absolute value of a is greater than 1. There-
fore, let a 5 2 1 Ï3 and b 5 21/a 5 Ï3 2 2.

The computation of a and b provides the Toeplitz factor-
ization of matrix A9q (phase 1 in our algorithm), which can
be computed in parallel by each processor in O(1) time
on the array processor.

2.2. Phase 2: Substitution Procedure

Initially, we partition b into p parts and b 5
(b0T

, b1T
, ..., bp21T

)T, where bi 5 (6biq11 , 6biq12 , ..., 6biq1q)T

for 0 # i # p 2 1. The ith processor first solves A9qzi 5
bi, 0 # i # p 2 1, where zi 5 (ziq11 , ziq12 , ..., ziq1q)T, that
is, the ith processor solves L9q U 9q zi 5 bi. It can be verified
that each processor in the linear array processor needs
about 5q time to perform the forward and backward substi-
tution procedure for solving L9q U 9qzi 5 bi (second phase
in our algorithm) sequentially [16].

Consequently, it follows that

An z 2 b 5 gp en 1 hp e1 1 Op21

i51
(gi eiq 1 hi eiq11), (4)

where

gi 5 ziq11 , hi 5 ziq 1 (2 2 Ï3)ziq11 , 1 # i # p 2 1, (5)

gp 5 zn , hp 5 (3 2 Ï3)z1 . (6)

By (4), the solution of c in (1) will be determined approx-
imately, say, z 2 p, in Section 2.3 later, where Ap P gp en 1
hp e1 1 op21

i51 (gi eiq 1 hi eiq11). To estimate the bound of the
relative error, we need the following two auxiliary results.
Here i ● i denotes the infinity norm of a vector.

LEMMA 1 [13]. If Ax 5 b, where A 5 [aij]n3n is a diago-
nally dominant matrix, then ixi # (1/min1#i#n (uaiiu 2
on

j51, j?i uaiju)) ibi.

For A9 in (2), because min1#i#n (uaiiu 2 on
j51, j?i uaiju) 5 2,

we have the immediate result.

COROLLARY 2 [13]. If A9x9 5 b9, then ix9i # Asib9i.

From A9qzi 5 bi for 0 # i # p 2 1 and by Corollary 2,

izii # Asibii # Asibi. (7)

2.3. Phase 3: Update Procedure

From (4), the solution of c in (1) will be determined
approximately in this section and only local communica-

section. Thus, the above system of linear equations can be
equivalently transformed into

Ac 5 6b, (1)

where

A 51
5 1

1 4 1

? ? ?

1 4 1

1 5
2 .

Our parallel solver consists of three phases called the
Toeplitz factorization, the substitution procedure, and the
update procedure, respectively. Suppose we have a linear
array processor with p processors. Figure 1 shows a linear
array processor with four processors, where the processor
identity inside the square box denotes the address of the
processor. For convenience, suppose n is a multiple of the
number of processors used, i.e., n 5 pq. Throughout the
remainder of this section, matrices are represented by up-
percase letters, vectors by bold lowercase letters, and sca-
lars by plain lowercase letters. The superscript T corres-
ponds to the transpose operation. We now show how each
phase can be accomplished on the linear array network in
a highly parallel way.

2.1. Phase 1: Toeplitz Factorization

Let

A9q 51
a 1

1 4 1

? ? ?

1 4 1

1 4
2

q3q

5 L9q U 9q , (2)

L9q 51
1

2b 1

? ?

2b 1

2b 1
2

q3q

, and

U 9q 51
a 1

a 1

? ?

a 1

a
2

q3q

, (3)

206 CHUNG AND YAN

FIG. 1. A linear array processor with four processors.

tions between adjacent processors on the linear array pro-
cessor will be needed. Then, the bound of the relative error
will be analyzed.

From a 2 b 5 4 and 2ab 5 1, we have 1 1 4b 1 b2 5
0. Let pk 5 (0, ..., 0, 1, b, ..., bt, 0, ..., 0)T and qk 5     

k n2k

(0, ..., 0, bt, ..., b, 1, 0, ..., 0)T for q # k # n 2 q 1 1.     
k n2k

Here we assume that q . t. In addition, we let p1 5
(1, b, ..., bt21, bt, 0, ..., 0)T and qn 5 (0, ..., 0, bt, bt21, ..., b,
1)T. Accordingly, we have

Apk 5 ek21 1 (2 1 Ï3)ek 1 bt(2bek1t 1 ek1t11), (8)

Aqk 5 bt(ek2t21 2 bek2t) 1 (2 1 Ï3)ek 1 ek11, (9)

Ap1 5 (3 1 Ï3)e1 1 bt(2bet11 1 et12), (10)

Aqn 5 (3 1 Ï3)en 1 bt(en2t21 2 ben2t). (11)

By (8), (9), (10), and (11), for 1 # i # p 2 1, we have

A(uipiq11 1 viqiq) 5 (ui 1 (2 1 Ï3)vi)eiq

1 ((2 1 Ï3)ui 1 vi)eiq11

1 uibt(2beiq1t11 1 eiq1s12)

1 vibt(eiq2t21 2 beiq2t), (12)

A(upp1 1 vpqn) 5 (3 1 Ï3)vpen 1 (3 1 Ï3)upe1

1 upbs(2bet11 1 et12)

1 vpbt(en2t21 2 ben2t). (13)

Let ui 1 (2 1 Ï3)vi 5 gi and (2 1 Ï3)ui 1 vi 5 hi for
1 # i # p 2 1; (3 1 Ï3)vp 5 gp and (3 1 Ï3)up 5 hp ,
by (5) and (6),

ui 5
gi 2 (2 1 Ï3)hi

26 2 4Ï3
5

(2 1 Ï3)ziq

6 1 4Ï3
,

vi 5
hi 2 (2 1 Ï3)gi

26 2 4Ï3
5

2Ï3ziq11 2 ziq

6 1 4Ï3
,

1 # i # p 2 1, (14)

up 5
hp

3 1 Ï3
5

3 2 Ï3

3 1 Ï3
z1 , vp 5

gp

3 1 Ï3
5

zn

3 1 Ï3
. (15)

Let

p 5 (upp1 1 vpqn) 2 Op21

i51
(uipiq11 1 viqiq), (16)

by (12), (13), (14), and (15), we have Ap P gpen 1

hpe1 1 op21
i51 (gieiq 1 hieiq11). Recall that the solution of c

in (1) is determined approximately by c 5 z 2 p; then we
have the bound of the corresponding relative error.

THEOREM 3 [13]. Let c 5 A21b; i.e., let c be the exact
solution of Ax 5 b; then

iAnc 2 bi # 0.173ubtu ibi and
ic 2 ci

ici
0.519ubtu.

207PARALLEL B-SPLINE SURFACE FITTING

The above three-phase parallel algorithm for solving (1)
can be written as follows, where the ith, 0 # i # p 2 1,
processor in the linear array processor returns the partial
solution vector ci.

ALGORITHM 1

FOR i :5 0 TO p 2 1 DO IN PARALLEL
(1) Solve Azi 5 bi;
(2) Evaluate ui , vi11;
(3) ci r zi 2 ui(1, b, b2, ..., bt, 0, ..., 0)T 2 vi11(0, ..., 0,

bt, ..., b2, b, 1)T;
END

Following the above algorithm, the parallel pseudo code
performed by processor (node) i, 0 # i # p 2 1, is referred
to [13]. Since each processor wants to solve a small linear
system of size O(n/p) and only local communications be-
tween adjacent processors on the linear array processor
are needed, we have the following result.

THEOREM 4. Given n data points, the uniform B-spline
curve fitting problem can be solved in O(n/p) time on the
linear array processor with O(p) processors; the relative
error is #0.519(2 2 Ï3)t for t , n/p.

When setting p 5 O(n), a constant-time parallel algorithm
for B-spline curve fitting is obtained. However, it is a trade-
off between the time needed and the relative error desired.

We have presented the parallel B-spline curve fitting on
the linear array processor. The next section will extend
this result to solve the B-spline surface fitting on the mesh-
connected computer and derive the corresponding rela-
tive error.

3. PARALLEL B-SPLINE SURFACE INTERPOLATOR

Suppose we are given a set of 3-dimensional points,
Bi,j 5 (b(1)

i, j , b(2)
i, j , b(3)

i, j) for 1 # i # m, 1 # j # n. The uniform
bicubic B-spline surface for interpolating these m 3 n data
points consists of (m 2 1) 3 (n 2 1) patches Si, j(u, v) for
0 # u, v , 1, 1 # i # m 2 1, and 1 # j # n 2 1. Each
patch is defined by a bicubic polynomial si, j(u, v) 5
(1/36)[u3, u2, u, 1]NQi,j Nt[v3, v2, v, 1]t, where

N 5 1
21 3 23 1

3 26 3 0

23 0 3 0

1 4 1 0
2 and

Qi,j 5 1
Ci21, j21 Ci21, j Ci21, j11 Ci21, j12

Ci, j21 Ci,j Ci, j11 Ci, j12

Ci11, j21 Ci11, j Ci11, j11 Ci11, j12

Ci12, j21 Ci12, j Ci12, j11 Ci12, j12

2,

Since B can be factorized into B 5 CD, where

C 51
An

An

.

.

.

An

An

2
m3m

and

D 51
5In In

In 4In In

. . .

. . .

. . .

In 4In In

In 5In

2
m3m

,

the above system, Bc 5 b, can be transformed into

An3nhkil 5 bkil for 1 # i # m, (17)

Am3mc[j] 5 h[j] for 1 # j # n, (18)

where

hkil 5 (hi,1 , hi,2 , ..., hi,n)T, bkil 5 (bi,1 , bi,2 , ..., bi,n)T

for 1 # i # m,

c[j] 5 (c1, j , c2, j , ..., cm, j)T, h[j] 5 (h1, j , h2, j , ..., hm, j)T

for 1 # j # n.

Therefore, B-spline surface interpolation becomes a
two-part process, namely, solving the m special tridiagonal
systems in (17) for hkil, 1 # i # m, first and then solving
the n tridiagonal systems in (18) for c[j], 1 # j # n. We
now present the parallel algorithm for B-spline surface
fitting on a mesh-connected computer. The mesh-con-
nected computer with p1 3 p2 processors is shown in Fig.
2, where all the rows and columns are linear array proces-
sors. For simplicity, suppose m 5 p1q1 and n 5 p2q2 .

The linear array processor in row j, 0 # j # p1 2 1, is
responsible for solving An3nhkkl 5 36bkkl for jq1 1 1 # k #
(j 1 1)q1 by applying Algorithm 1 q1 times. Since each
system An3nhkil 5 bkil can be solved in O(n/p2) time, totally
it takes O(mn/(p1p2)) time for solving (17) and it gives
iAn3nhkil 2 bkili # 0.173ubtu ibkili. Therefore, we have

iCh 2 bi # 0.173ubtu max
1#i#m

ibkili 5 0.173ubtu ibi.

where Ci,j 5 (c(1)
i, j , c(2)

i, j , c(3)
i, j), 0 # i # m 1 1, 0 # j # n 1

1, are the control points of the surface to be determined.
Our task is to compute these control points.

Each data point can be expressed by a weighted average
of nine control points: Bi,j 5 (1/36)(Ci21, j21 1 4Ci,j21 1
Ci11, j21 1 4Ci21, j 1 16Ci,j 1 4Ci11, j 1 Ci21, j11 1 4Ci,j11 1
Ci11, j11) for 1 # i # m, 1 # j # n. They form a system of
mn equations in (m 1 2)(n 1 2) unknowns. In order to
completely solve the system, commonly we need the fol-
lowing 2(m 1 n 1 2) 5 (m 1 2)(n 1 2) 2 mn additional
equations to specify how the boundary control points are
interpolated: C0, j 5 C1, j ; Cm11, j 5 Cm, j , 1 # j # n; Ci,0 5
Ci,1; Ci,n11 5 Ci,n , 0 # i # m 1 1. For simplicity, we only
consider Bi, j 5 b(1)

i, j , 1 # i # m and 1 # j # n. Throughout
the remainder of this section, matrices are also represented
by uppercase letters, vectors by bold lowercase letters,
and scalars by plain lowercase letters. The superscript T
corresponds to the transpose operation. That is, we con-
sider the given set of data points

bT 5 36(b(1)
1,1 , b(1)

1,2 , ..., b(1)
1,n , b(1)

2,1 , b(1)
2,2 , ..., b(1)

2,n , ...,

b(1)
m,1 , b(1)

m,2 , ..., b(1)
m,n)

5 (b1,1 , b1,2 , ..., b1,n , b2,1 , b2,2 , ..., b2,n , ...,

bm,1 , bm,2 , ..., bm,n)

and the corresponding control points (to be determined)

cT 5 (c(1)
1,1 , c(1)

1,2 , ..., c(1)
1,n , c(1)

2,1 , c(1)
2,2 , ..., c(1)

2,n , ...,

c(1)
m,1 , c(1)

m,2 , ..., c(1)
m,n)

5 (c1,1 , c1,2 , ..., c1,n , c2,1 , c2,2 , ..., c2,n , ...,

cm,1 , cm,2 , ..., cm,n).

Employing those additional boundary conditions, our
task becomes to solve Bc 5 b, where B is a block tridiagonal
matrix of the following form:

Bmn3mn 51
5An An

An 4An An

. . .

. . .

. . .

An 4An An

An 5An

2
m3m

,

and An has been defined in (1).

208 CHUNG AND YAN

In contrast, the linear array processor in column j, 0 #
j # p2 2 1, is responsible for solving Am3mc[k] 5 h[k] for
jq2 1 1 # k # (j 1 1)q2 by applying Algorithm 1 q2 times.
Each system Am3mc[i] 5 h[i] can be solved in O(m/p1) time,
so it takes O(mn/(p1p2)) time in total to solve (18). We
have iAm3mc[j] 2 h[j]i # 0.173ubtu ih[j]i. Then we have

iDc 2 hi # 0.173ubtu max
1#j#n

ih[j]i 5 0.173ubti ihi.

Because of iCh 2 bi # 0.173ubtu ibi, iDc 2 hi # 0.173ubtu
ihi, and iCi # 6, it follows that

iChi # iCh 2 bz 1 ibi

(1 1 0.173ubtu)ibi,

ihi # AsiChi

#
1 1 0.173ubtu

2
ibi,

iBc 2 bi 5 iCDc 2 bi

iCi iDc 2 hi 1 iCh 2 bi

6 3 0.173ubtu ihi 1 0.173ubtu ibi

0.173ubtu[3(1 1 0.173ubtu) 1 1]ibi.

By c 5 B21b and Corollary 2, we have

ic 2 ci # As iDc 2 Dci # AfiCDc 2 CDci 5 AfiBc 2 bi

and

ibi 5 iBci # iBiyici 5 36ici.

Combining the above two inequalities, we have

ic 2 ci # AfiBc 2 bi

#
0.173

4
ubtu[3(1 1 0.173ubtu) 1 1]ibi

0.173 3 9ubtu[3(1 1 0.173ubtu) 1 1]ici,

that is, ic 2 ci/ici # 1.557ubtu[3(1 1 0.173ubtu) 1 1].

209PARALLEL B-SPLINE SURFACE FITTING

To save space, we omit the parallel pseudo code for B-
spline surface fitting. Finally, we have the main result.

THEOREM 5. Given m 3 n data points, the uniform B-
spline surface fitting problem can be solved in O(mn/(p1p2))
time on the mesh-connected computer with O(p1p2) proces-
sors; the relative error is # 1.557u(2 2 Ï3)tu[3(1 1 0.173u
(2 2 Ï3)tu) 1 1] for t , min(m/p1 , n/p2).

When setting p1 5 m and p2 5 n, a constant-time parallel
solver for B-spline surface fitting can be obtained.

4. CONCLUSIONS

The significance of B-spline surface fitting is due to its
popular use in the areas of computer graphics, CAD, CAM,
image processing, etc. Our main contribution is to present
a novel approximate parallel algorithm for solving B-spline
interpolation problem and to show that on the mesh-con-
nected computer with O(p1p2) processors, our algorithm
can be performed in O(mn/(p1p2)) time. The relative error
analyses have also been given.

Using the same matrix perturbation method proposed
in this paper and the Sherman–Morrison formula [3], the
product-expansion based vectorized algorithms for solving
B-spline curve and surface fitting were presented in [8, 9,
10]. The extension to solve the special tridiagonal systems
has been developed in [23, 14]. Further, our parallel algo-
rithm can be applied to solve the closed B-spline surface
fitting problem on a torus (wraparound mesh) multiproces-
sor directly. In addition, the results of this paper can also be
applied to solve the diagonally dominant block tridiagonal
system to achieve better performance.

It is interesting to employ the other parallel tridiagonal
solvers [21, 22] to handle the same surface fitting problem.

ACKNOWLEDGMENTS

The authors appreciate the help of the three referees, Dr. F. Cheng,
Dr. J. Gustafson, and Dr. S. Sahni which led to an improved version of
this paper. This research was supported in part by the National Science
Council of the Republic of China under Contract NSC85-2121-M001-002.

REFERENCES

1. Ajjanagadde, V. G., and Patnaik, L. M., Systolic architecture for B-
spline surfaces. Int. J. Parallel Programming 15, 6 (1986), 551–565.

2. Bartels, R. H., Beatty, J. C., and Barsky, B. A., ‘‘An Introduction to
Splines for Use in Computer Graphics and Geometric Modeling.’’
Morgan Kaufmann, San Mateo, CA, 1987.

3. Bartlett, M. S. An inverse matrix adjustment arising in discriminant
analysis. Ann. Math. Statist. 22 (1951), 107–111.

4. Cheng, F., and Goshtasby, A. B-spline surface interpolation using
SLOR method with parallel relaxation. Technical Report 96-87, De-
partment of Computer Science, University of Kentucky, Lexing-
ton, 1987.

5. Cheng, F., and Goshtasby, A. A parallel B-spline surface fitting algo-
rithm. ACM Trans. Graphics 8, 1 (1989), 41–50.

6. Cheng, F., Wasilkowski, G. W., Wang, J., Zhang, C., and Wang, W.
Parallel B-spline surface interpolation on a mesh-connected processor
array. J. Parallel Distrib. Comput. 24, 2 (1995), 224–229.

FIG. 2. A mesh-connected computer with 4 3 4 processors.

17. Goshtasby, A., Cheng, F., and Barsky, B. A. B-spline curves and
surfaces viewed as digital filters. Comput. Vision Graphics Image
Process. 52, 2 (1990), 264–275.

18. Hockney, R. W. A fast direct solution of Poisson’s equation using
Fourier analysis. J. Assoc. Comput. Mach. 12 (1965), 95–113.

19. Leighton, F. T. Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo, CA, 1992.

20. Lin, F. C., and Chung, K. L. Cost-optimal B-spline surface fitting on
hypercube. Inter. Conf. on Parallel Process. 1990, pp. III–185–192.

21. Sun, X. H., Zhang, H., and Ni, L. Efficient tridiagonal solvers on
multicomputers. IEEE Trans. Comput. 41, 3 (1992), 286–296.

22. Wang, H. H. A parallel method for tridiagonal equations. ACM
Trans. Math. Software 7, 2 (1981), 170–183.

23. Yan, W. M., and Chung, K. L. A fast algorithm for solving special
tridiagonal systems. Computing 52 (1994), 203–211.

KUO-LIANG CHUNG received the B.S., M.S., and Ph.D. in computer
science and information engineering from the National Taiwan University
of the Republic of China. He is now a professor in the Department of
Information Management of the National Taiwan Institute of Technology.
His current research interests include machine vision, computer graphics,
data compression, parallel and distributed computing, and matrix compu-
tations. He is a member of ACM, IEEE, and SIAM.

WEN-MING YAN received the B.S. and M.S. in mathematics from
the National Taiwan University of the Republic of China. He is now a
lecturer in the Department of Computer Science and Information Engi-
neering of the National Taiwan University. His current research interests
include parallel computing and matrix computations.

7. Chung, K. L., and Lin, F. C. A cost-optimal parallel algorithm for
B-spline surface fitting. CVGIP: Graph. Models Image Process. 53,
6 (1991), 601–605.

8. Chung, K. L., and Shen, L. Z. Vectorized algorithm for B-spline
curve fitting on CRAY X-MP EA/16se. Proc. of Supercomputing.
IEEE Computer Society, Silver Spring, MD, 1992, pp. 166–169.

9. Chung, K. L., Peng, Y. C., and Yan, W. M. Vectorization of B-
spline surface fitting. 1st Workshop on Computer Graphics. Academia
Sinica, Republic of China, 1993, pp. 21–26.

10. Chung, K. L., and Yan, W. M. Computing quadratic B-spline curve
fitting on CRAY X-MP. Proc. National Computer Symposium, Chi-
ayi, Republic of China, 1993, pp. 401–407.

11. Chung, K. L., and Chang, H. W. Novel pipelining and processor
allocation strategy for monoid computations on unshuffle-exchange
network. Parallel Process. Lett. 3, 2 (1993), 189–193.

12. Chung, K. L. On parallel algorithm for B-spline surface fitting. Tech.
Report, Dept. of Inform. Mgmt., National Taiwan Inst. of Tech.,
Apr., 1994.

13. Chung, K. L., and Yan, W. M. Parallel B-spline surface fitting on mesh.
Tech. Report, Department of Information Management, National
Taiwan Institute of Technology, Dec. 1994.

14. Chung, K. L., Yan, W. M., and Wu, J. G. A parallel algorithm for
solving special tridiagonal systems on ring networks. Computing,
in press.

15. de Boor, C. A Practical Guide to Splines. Springer-Verlag, New
York, 1978.

16. Golub, G. H., and Van Loan, C. F. Matrix Computations. 2nd ed.,
Chap. 4. The Johns Hopkins University Press, Baltimore, 1989.

210 CHUNG AND YAN

Received January 13, 1995; revised March 22, 1996; accepted March
25, 1996

