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a b s t r a c t

Circle detection is fundamental in pattern recognition and computer vision. The randomized approach

has received much attention for its computational benefit when compared with the Hough transform.

In this paper, a multiple-evidence-based sampling strategy is proposed to speed up the randomized

approach. Next, an efficient refinement strategy is proposed to improve the accuracy. Based on different

kinds of ten test images, experimental results demonstrate the computation-saving and accuracy

effects when plugging the proposed strategies into three existing circle detection methods.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Circle detection is important and fundamental in pattern recog-
nition and computer vision [8,10,11,14,19]. In the past two decades,
the detection accuracy and computation performance are two main
concerned issues and many circle detection methods have been
developed. The Hough transform-based (HT-based) approach for
recognizing complex patterns is first presented by Hough [13]. Later
Duda and Hart [9] use the HT to detect curves. Because of
the adaption of voting strategy allowable in the accumulator array,
the HT-based approach has the accuracy advantage. To reduce the
computing time and memory space requirements, several improved
HT-based methods [4,7,12,16–18,20,21,27] have been developed by
using either geometrical properties or the decomposition of the
parameter space. However, the computing time required in these
methods is difficult to be reduced significantly.

To improve the computation performance significantly, several
randomized circle detection methods [3,5,6,22,23,24,25,26,28] have
been developed. In the randomized HT (RHT) method proposed by
Xu et al. [25,26], each time it randomly selects three edge pixels, and
then the corresponding mapped points in the parameter space are
collected by voting on a 3-D accumulator array or a link-list data
structure. Based on the RHT, Lu and Tan [24] presented an iterative
RHT (IRHT) to detect circles, lines, and ellipses. Combining the
sampling strategy in the RHT and particle swarm optimization
technique, Cheng et al. [5] proposed an efficient method for circle
detection. Based on a parameter-free approach without using
any accumulator arrays, the RCD method proposed by Chen and
Chung [3] first randomly samples four edge pixels in which three
selected edge pixels are used to construct a possible circle, and the
remaining edge pixel is used to confirm whether the possible circle
can be promoted to a candidate circle or not. If yes, the RCD
performs a voting process to determine whether the candidate
circle is a true circle or not. Experimental results show that the
RCD is faster than the RHT when the noise level is ranged from light
level to modest level. Here the range between two levels means that
the number of noisy pixels over the number of true circle pixels is at
most 170%. Later, one improved lookup-table based method was
presented in [6] to speed up the computation performance. To
improving the accuracy of the RCD, Lee et al. [23] proposed an
OðjV j2Þ-time refinement strategy where jV j denotes the number of
edge pixels in the edge map. The motivations of our research are
twofold: (1) presenting a new multiple-evidence-based efficient
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sampling strategy to significantly reduce the computation perfor-
mance and (2) presenting a new linear-time, i.e. OðjV jÞ-time,
refinement strategy to improve the accuracy.

In this paper, two novel strategies are presented to improve
the computation and accuracy performance of some existing
randomized circle detection methods. We first present a multiple
-evidence-based sampling strategy which uses three evidences to
discard a large amount of invalid possible circles and candidate
circles, and this strategy leads to a significant computation-saving
effect. For enhancing accuracy, we present a new OðjV jÞ-time
refinement strategy, which is quite different from Lee et al.’s
method, to refine the parameters of the detected true circle. Based
on ten images, experimental results illustrate the computation
and accuracy advantages of our proposed two strategies.

The rest of this paper is organized as follows. Section 2 revisits
the sampling strategy of the RCD and the refinement strategy by
Lee et al.’s. In addition, Section 2 points out the related accuracy and
computation overhead problems. In Section 3, the proposed multi-
ple-evidence-based sampling strategy is presented. In Section 4, the
proposed refinement strategy is presented. Section 5 demonstrates
the computation and accuracy performance improvement. Finally,
some concluding remarks are drawn in Section 6.

2. Problems in RCD’s sampling strategy and Lee et al.’s
refinement strategy

In this section, we first revisit the sampling strategy of the RCD [3]
and point out its inherent computation overhead and the bias
problem. Then, we revisit Lee et al.’s refinement strategy [23] and
highlight the time-consuming problem. The above computation
overhead and accuracy problems motivate the research of this paper.

2.1. The computation overhead and bias problems in the RCD

In the RCD [3], the Sobel edge detector [11] is first applied to the
input image to construct a set of edge pixels V and each edge pixel
in V is denoted by vp ¼ ðxp,ypÞ for 0rpo jV j. Each time, the RCD
randomly selects four edge pixels, say vi, vj, vk, and vl, from V and
use three of them, say vi, vj, and vk, to determine a possible circle
Cijk where the center ðaijk,bijkÞ and the radius rijk are calculated by
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for pA {i,j,k}. Furthermore, we check whether vl is close to Cijk or
not. If no, i.e. the evidence is negative, we kick out Cijk and select
next four edge pixels randomly; otherwise, Cijk is promoted to a
candidate circle, and then the RCD performs a voting process to
count the number of edge pixels lying on Cijk to determine whether
Cijk is a true circle or not.

We now investigate the computation overhead problem in the
RCD. We find that this problem is highly related to the number of
possible circles and candidate circles. Let NP and NC denote the
number of possible circles and candidate circles appeared in the
RCD, respectively. After performing the RCD on ten test images as
shown in Fig. 1, namely coin, cake, insulator, gobang, plates, logo,

speaker, stability-ball, ball, and swatch, with sizes 256�256,
256�256, 256�192, 256�256, 400�360, 283�344, 485�
437, 374�374, 350�350, and 309�356, respectively, Table 1
shows the values of NP and NC for each test image and the average
value of NP is 35 976, and it reveals that a considerable computa-
tional overhead is needed. Precisely speaking, Eqs. (1)–(3) are
called 35 976 times to construct these possible circles. Using the
fourth sampled edge pixel as an evidence checker, the RCD
can discard 95% of possible circles ð ¼NP�NC=NP ¼ 35 976�
1373=35 976Þ and promotes the remaining 1373 possible circles
to candidate circles. It indicates that the voting process will be
called 1373 times for these candidate circles to examine which of
them can be promoted to true circles or not. Running the voting
process 1373 times on these candidate circles costs a large
amount of computation overhead since in real case, only few true
circles are existed in one image. In Section 3, our proposed novel
multiple-evidence-based sampling strategy will be presented to
discard those invalid possible circles and candidate circles to
achieve significant computation-saving effect.

Besides the computation overhead problem, the bias problem is
existed in the RCD. The main reason is that although each detected
true circle collects enough number of votes, its center and radius
are only determined by the three edge pixels vi, vj, and vk. Fig. 2
depicts the bias problem. The gray circle as shown in Fig. 2(a) and
the dash-lined biased circle as shown in Fig. 2(b) denote the ideal
detected circle and the circle detected by the RCD, respectively.
Usually, the detected circles by the RCD are somewhat different
from the ideal detected circle and it causes a bias problem. Recently,
Lee et al. presented a refinement strategy to improve the accuracy
of the RCD, but it suffers from the time-consuming problem.

2.2. Time-consuming problem in Lee et al.’s RCD-based refinement

strategy

Suppose Cijk is a biased circle detected by the RCD. Lee et al.’s
refinement strategy first constructs an annulus Aijk composed of
the region lying between two circles concentric with Cijk and their
radii are rijk�D and rijkþD. Let V 0 denote the edge set within Aijk

and it is used to construct a set of new circles. After running the
voting process on each constructed new circle, Lee et al.’s strategy
selects a refined circle with the maximal number of votes. Fixing
two edge pixels, vj and vk, and replacing the remaining one, vi, by
each edge pixel in V 0 except vi, vj, and vk, we can construct
(jV 0j�3) new circles by Eqs. (1)–(3). For each new circle, a voting
process associated with (jV 0j�4) edge pixels is performed. It takes
OðjV 0j2Þ ð ¼ jV 0j2�7jV 0jþ12¼ ðjV 0j�3Þ � ðjV 0j�4ÞÞ time to perform
voting process ðjV 0j�3Þ times. Suppose the circle Cp1jk determined
by vp1

, vj, and vk has the maximal number of votes, then it will be
selected as a better refined circle. Continuing the same way, it
takes OðjV 0j2Þ ð ¼ jV 0j2�7jV 0jþ20¼ ðjV 0j�4Þ � ðjV 0j�5ÞÞ time to
determine the next better refined circle Cp1p2k. Further, it takes
OðjV 0j2Þ ð ¼ jV 0j2�11jV 0jþ30¼ ðjV 0j�5Þ � ðjV 0j�6ÞÞ time to obtain
the final refined circle Cp1p2p3

. Although Lee et al.’s refinement
strategy can improve the accuracy of the RCD, taking OðjV 0j2Þ time
is time-consuming. In Section 4, we will present an OðjV 0jÞ-time
refinement strategy to improve the accuracy. Experimental
results will demonstrate that our proposed refinement strategy
has similar accuracy as Lee et al.’s strategy does, but ours has
significant execution-time superiority.

3. The proposed multiple-evidence-based sampling strategy

In this section, a novel multiple-evidence-based sampling strategy
is presented to significantly alleviate the RCD’s computational over-
head problem. As shown in Fig. 3, our proposed strategy considers
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three evidences where the first evidence can discard invalid possible
circles and the remaining two evidences can discard invalid candidate
circles. Starting from four random selected edge pixels, their gradient
directions are used as the first evidence to determine whether they
have high probability to lie on a circle or not. As the first evidence, if it
is positive, we thus construct a possible circle. Next, the second and
third evidences are used to determine whether the possible circle can

be promoted to the true circle or not. Here, we take the distance
between the fourth edge pixel and the possible circle as the second
evidence. Further, the third evidence is evaluated by checking
whether all gradient directions of four edge pixels point to the center
of possible circle or not.

If all three evidences are positive, we promote the possible
circle to a candidate circle, and then run the voting process on the

Fig. 1. Ten test images: (a) Coin image. (b) Cake image. (c) Insulator image. (d) Gobang image. (e) Plates image. (f) Logo image. (g) Speaker image. (h) Stability-ball image.

(i) Ball image. (j) Swatch image.

Table 1
Number of possible circles and candidate circles appeared in the RCD.

Coin Cake Insulator Gobang Plates Logo Speaker Stability-ball Ball Swatch Average

NP 49051 34704 35928 43868 52048 33377 29362 28259 29254 23910 35976

NC 2143 1871 1809 2041 1562 930 827 849 1011 691 1373

K.-L. Chung et al. / Pattern Recognition 45 (2012) 252–263254
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candidate circle to determine whether it is a true circle or not.
Based on the above hierarchical evidence verification process, a
large amount of invalid possible circles and candidate circles can
be discarded together and it leads to improve the computation
performance of the RCD significantly. In the following two
subsections, the components in Fig. 3 are described in detail.

3.1. Calculation of gradient directions

Our proposed sampling strategy first calculates the two
gradients of each edge pixel vp ¼ ðxp,ypÞ by

Gx
p ¼�

1

2ps4

X
x

X
y

f ðx,yÞ � xe�ðx
2þy2Þ=2s2

ð4Þ

Gy
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where Gx
p and Gy

p denote the gradients in x-direction and
y-direction, respectively; f ðx,yÞ is the gray-level value at location
(x,y) for xp�d3serxrxpþd3se and yp�d3seryrypþd3se; s is
set to 1.25. The gradient direction of vp is obtained by
yp ¼ tan�1ðGy

p=Gx
pÞ where �pryprp.

For two circles in Fig. 4, at the same position (x,y), the absolute
difference between yp of Fig. 4(a) and yp of Fig. 4(b) is p. On the
contrary, as shown in Fig. 4, the gradient directions at two
different positions may have the same value, e.g. the pixel with
yp ¼ p=4 in Fig. 4(a) and the one with the same gradient in
Fig. 4(b) although the two pixels are located at different positions.
In fact, the pixel with yp ¼ p=4 in Fig. 4(a) is located at a convex
segment while the pixel with yp ¼ p=4 in Fig. 4(b) is located at a
concave segment. In order to solve this gradient direction incon-
sistency problem, in what follows, we present a template-based
approach to calibrate the gradient direction of one pixel to make
the direction point to the center of the circle.

We take an example to explain the proposed gradient direction
calibration scheme. As shown in Fig. 5(a), suppose one pixel is with
gradient direction yp and located at the convex segment of one circle.
Fig. 5(b) depicts one pixel with the same yp, but located at the
concave segment due to different contrast between the circle object
and the background. First, we put a 9�9 mask as shown in
Fig. 5(c) to the pixel, vp, denoted by a black square. Next, we compute
the gradient directions of the 16 pixels covered by the upper-right
gray area of Fig. 5(c), and the median of the corresponding sixteen
gradient directions, say yu, is taken as a representative of the upper-
right gradient direction of vp. Similarly, we take the median of the 16
gradient directions of the pixel vp, say y‘ , covered by the lower-left

Select four edge pixels 
vi, vj, vk, and vl

Are gradient 
directions 

of four edge pixels 
valid to be lied on 

a circle?

Construct possible 
circle Cijk

Is vi lying on Cijk ?

Does gradient 
directions of four 
edge pixels point 

to the center?

Cijk  is a candidate 
circle

End

First evidence

Second evidence Third evidence

Yes

seYseY

No

No No

Fig. 3. The flowchart of the proposed multiple-evidence-based sampling strategy.

vi
vj

Cijk

vk

vi

vj

vk
Cijk

Fig. 2. Bias problem occurred in the RCD. (a) Ideal detected circle denoted by gray line. (b) Biased circle, which is denoted by black dash line, detected by the RCD.
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gray area of Fig. 5(c) as the representative of the lower-left gradient
direction of vp. For Fig. 5(a), yu should be larger than y‘ and it yields
p=8rypr3p=8. For Fig. 5(b), yu should be less than y‘ and it yields
�5p=8ZypZ�7p=8. By the same argument, for Fig. 5(d), yu should
be larger than y‘ and it yields �p=8ryprp=8; for Fig. 5(e), it yields
�7p=8rypr7p=8 because yuoy‘. For saving space of the context,
we omit the discussion of the remaining cases.

Following the above gradient direction calibration scheme, as
shown in Fig. 6, we quantize any gradient direction yp into one of
eight values, f�3,�2,�1,0,1,2,3,4g, by performing yp ¼ round
ðyp=p=4Þ and setting yp ¼ 4 if yp ¼�4. For each quantized yp, a
9�9 window is utilized to collect a set of neighboring quantized

gradient directions, and then the value of quantized yp is calibrated
by using the proposed gradient direction calibration scheme.

3.2. Verify the validity of possible circles and candidate circles by

multiple-evidence-based sampling strategy

In our proposed multiple-evidence-based sampling strategy
mentioned in Fig. 3, we adopt three evidences to perform a
hierarchical verification process to discard invalid possible circles
and candidate circles. As shown in Fig. 7(a), four examples are taken
to explain how the first evidence is used to discard the trial for
constructing possible circles. In Fig. 7(a), assume vi is the first
random selected edge pixel and its gradient direction, yi, is 1. If vi

and the second selected edge pixel vj are lying on the same circle
and vj is on the upper side of vi, i.e. yjoyi, the quantized gradient
direction of yj must be 1, 2, or 3; otherwise, as shown in Fig. 7(b),
i.e. yiryj, the quantized gradient direction of yj must be in
f0,1,3,4,�1,�2,�3g. The above argument is easy to tackle the case
when vj is on the left side of vi or on the right side of vi, i.e. xjoxi or
xjZxi, respectively. For example, in Fig. 7(c), vj is on the right side
of vi, it is easy to know that yj must be in f1,2,3,4,�1,�2,�3g.
On the contrary, in Fig. 7(d), vj is on the left side of vi and yj must be
0, 1, or �1. We thus claim that for cases in Fig. 7(a) and (b), the set
of valid quantized gradient directions of yj’s should be f1,2,3g
(¼ f1,2,3g \ f1,2,3,4,�1,�2,�3g); for cases in Fig. 7(c) and (d), the
set of valid quantized gradient directions of yj’s should be f0,1,�1g
ð ¼ f0,1,3,4,�1,�2,�3g \ f0,1,�1gÞ. In other words, given the gra-
dient direction of vi, yi, if the quantized gradient direction of yj is
not in the valid set, we stop constructing the possible circle.

According to the above description, given vi ¼ ðxi,yiÞ and yi,
the valid gradient direction set of vj, i.e. valid yj’s, is obtained by

Yðvi,yi,vjÞ ¼YV ðyi,yi,yjÞ \YHðxi,yi,xjÞ ð6Þ

where YV ðyi,yj,yiÞ and YHðyi,yj,yiÞ are used to determine the valid
gradient direction set of vj ¼ ðxj,yjÞ for case_1 and case_2, respec-
tively, and they are defined in Table 2. Based on Eq. (6), we mainly
examine the three conditions, yjAYðvi,yi,vjÞ, ykAYðvi,yi,vkÞ\

Yðvj,yj,vkÞ, and ylAYðvi,yi,vlÞ\ Yðvj,yj,vlÞ \Yðvk,yk,vlÞ, where
yi, yj, yk, and yl are gradient directions of vi, vj, vk, and vl,
respectively. If any of the three conditions are violated, the
construction of possible Cijk can be discarded in advance; otherwise,
we perform Eqs. (1)–(3) to calculate the center ðaijk,bijkÞ and the
radius ri,jk of the possible circle Cijk.

From the constructed possible Cijk, we proceed to use the
second and third evidences to determine whether Cijk is a
candidate circle or not. The second evidence is to check whether
vl is close to Cijk enough or not. If the second evidence is positive,
we further proceed to adopt the third evidence; otherwise, we

0

/2

/4 3/4

- /4

- /2

-3/4

0

/2

/43/4

- /4

- /2

-3/4

Fig. 4. Gradient direction inconsistence problem. (a) Gradient directions along the circle image with gray foreground and white background. (b) Gradient directions along

the circle image with white foreground and gray background.

Fig. 5. Gradient direction calibration scheme. (a) and (b) Two cases for

p=8ryp r3p=8. (c) The template used to calibrate the gradient direction of

(b). (d) and (e) Two cases for �p=8ryp rp=8. (f) The template used to calibrate

the gradient direction of (e).
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-1
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1/8
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-1/8

-3/8 -5/8
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Fig. 6. The quantization of gradient directions.
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stop the circle detection job and randomly select the next four
edge pixels. Suppose the first and second evidences are positive
for the four edge pixels vi, vj, vk, and vl, then we examine the third
evidence: the gradient directions of the four edge pixels should
point to the center of Cijk. The ideal gradient direction, yn

i , yn

j , yn

k ,
and yn

l , can be calculated by

yn

s ¼ tan�1 ys�bijk

xs�aijk
, sAfi,j,k,lg ð7Þ

Quantizing yn

i , yn

j , yn

k , and yn

l , each quantized gradient direction is in
f�3,�2,�1,0,1,2,3,4g. Based on the eight quantized ideal gradient
directions, if the following four conditions, yi ¼ yn

i , yj ¼ yn

j , yk ¼ yn

k ,
and yl ¼ yn

l , hold, the third evidence is said to be positive. When
three evidences are positive, Cijk is promoted to be a promising
candidate circle and we run the voting process to determine
whether Cijk is a true circle or not; otherwise, the possible circle

Cijk is discarded and we randomly select next four edge pixels from
V and repeat the above process until all circles have been found.

In this paragraph, based on ten test images in Fig. 1, we show
some experimental data to demonstrate the computation-saving
effect of the proposed multiple-evidence-based sampling strategy.
Table 3 illustrates the number of possible circles and candidate
circles, N0P and N0C , respectively, by using the proposed sampling
strategy. When compared with Table 1, we observe that the first
evidence used in the proposed strategy can discard 73%
ð ¼NP�NP

0=NP ¼ ð35 976�9791Þ=35 976) of invalid possible circles
in the RCD and it indicates that a lot of unnecessary calculations in
Eqs. (1)–(3) can be avoided. Besides that, based on the second and
third evidences, the number of candidate circles identified by our
proposed strategy is only 4% ð ¼NC

0=NC ¼ 52=1373Þ of that in the
RCD and it results in a significant computation-saving effect since
the proposed strategy could eliminate 96% of voting time required
in the RCD.

It is natural to combine the proposed multiple-evidence-based
sampling strategy with any existing voting schemes, such as the
voting scheme in the RCD [3] or the LUT-based voting scheme [6],
to constitute faster circle detection methods. Let Tf denote the
number of failures that we can tolerate and Tr be the ratio thresh-
old. The two threshold values will be discussed in Section 5. Note
that an edge pixel is said to lie on Cijk provided the distance
between the fourth edge pixel and Cijk is less than or equal to one
pixel. Our proposed multiple-evidence-based RCD is shown below:

1 Input test image I.
2 Perform Sobel edge detector on I to obtain the set of edge

pixels, V.

3 Calculate gradient direction of each edge pixel vpAV , yp.

4 f’0

Fig. 7. Valid gradient direction set of yj when given vi and yi . (a) and (b) Case_1. (c) and (d) Case_2.

Table 2
Determination of valid gradient direction set.

yi YV ðyi,yj ,yiÞ YHðxi ,xj ,yiÞ

yj oyi yj Zyi xj oxi xj Zxi

0 0,1,2,3,4 0,�1,�2,�3,4 0 0,71,72,73,4

1 1,2,3 0,71,�2,73,4 0,71 71,72,73,4

2 2 0,71,72,73,4 0,71,72 72,73,4

3 1,2,3 0,71,�2,73,4 0,71,72,73 73,4

4 0,1,2,3 0,�1,�2,�3,4 0,71,72,73,4 4

�1 0,71,2,73,4 �1,�2,�3 0,71 71,72,73,4

�2 0,71,72,73,4 �2 0,71,72 72,73,4

�3 0,71,2,73,4 �1,�2,�3 0,71,72,73 73,4

K.-L. Chung et al. / Pattern Recognition 45 (2012) 252–263 257
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5 while f rTf do

6 Randomly select four edge pixels, vi, vj, vk, and vl, from V.
7 if yjAYðvi,yi,vjÞ, ykAYðvi,yi,vkÞ \Yðvj,yj,vkÞ, and

ylAYðvi,yi,vlÞ \Yðvj,yj,vlÞ \Yðvk,yk,vlÞ then

8 Calculate ðaijk,bijkÞ and rijk for constructing the possible

circle Cijk by Eqs. (1)–(3).
9 if vl is lying on Cijk then
10 Calculate yn

i , yn

j , yn

k , and yn

l by Eq. (7) and then

quantize them.
11 if yn

i ¼ yi, y
n

j ¼ yj, y
n

k ¼ yk, and yn

l ¼ yl then

12 Perform voting process to count the number of edge
pixels lying on Cijk and save the counted number in NV.

13 if NV Z2prijk � Tr then

14 Cijk is a true circle.
15 f’0.
16 else
17 f’f þ1.
18 else
19 f’f þ1.
20 else
21 f’f þ1.
22 else
23 f’f þ1.

4. The proposed new refinement strategy

In this section, a novel refinement strategy is proposed to solve
the bias problem mentioned in Section 2. From the detected circle
Cijk and the bandwidth D, an annulus Aijk defined in Section 2.2 is
constructed to cover the set of edge pixels V 0 as the input of our
proposed refinement strategy. In Lee et al.’s refinement strategy,
it takes OðjV 0j2Þ-time to create OðjV 0jÞ new circles by Eqs. (1)–(3),
and then run a voting process on each created new circle. Quite
different from Lee et al.’s strategy, our proposed refinement
strategy only needs OðjV 0jÞ-time to create OðjV 0jÞ new circles from
V 0 in a more simple way, especially omitting the extra voting
process which is required in Lee et al.’s method.

The main concept of the proposed refinement strategy is
depicted in Fig. 8. As shown in Fig. 8(a) and (b), we take two edge
pixels vp and vq from V 0 and crate a new circle Cpq denoted by a
dash-lined circle where the midpoint of segment vpvq is the center
of Cpq. By this way, we can construct OðjV 0j2Þ total circles and the
circles with the same center and radius are collected as a group.
Among the collected groups, the three parameters of the largest
group is selected as the initial parameters to be refined later.

In order to decrease the computation overhead, we can reduce
the number of the created new circles by pairing two edge pixels
which are located on the opposite sides of Cijk each other. As
shown in Fig. 8(c), for each edge pixel vp in V 0, we circumscribe a

Table 3
Number of possible circles and candidate circles constructed by the proposed sampling strategy.

Coin Cake Insulator Gobang Plates Logo Speaker Stability-ball Ball Swatch Average

N0P 10810 12507 13500 11370 16317 7307 4454 7900 7495 6247 9791

N0C 87 85 87 29 58 13 16 62 27 58 52

Fig. 8. Depiction of our proposed refinement strategy. (a) and (b) Create new circle Cpq by pairing edge pixel vp and the other edge pixel vq in Aijk. (c) For edge pixel vp, circumscribe a

square region of size ð2Dþ1Þ � ð2Dþ1Þ on the opposite side of vp. (d) Create new circle Cpq by pairing vp and the other edge pixel vq in the ð2Dþ1Þ � ð2Dþ1Þ square region.
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square region of size ð2Dþ1Þ � ð2Dþ1Þ centered at the pixel
symmetric to vp about the center of Cijk and let V 0OS denote the
set of edge pixels in the square region. The setting of the
bandwidth D will be discussed in Section 5. Since each vp is
paired with each one in V 0OS (see Fig. 8(d)), it totally creates jV 0OSj �

jV 0j new circles. Without loss of generality, the cardinality of V 0,
jV 0OSj is bounded by a constant c due to the fact jV 0OSj5 jV

0j.
Consequently, the proposed refinement strategy may have a
chance to take OðjV 0jÞ (¼ jV 0OSj � jV

0j ¼ c � jV 0j) time to refine each
detected circle. In what follows, we shall detail our refinement
strategy.

Naturally, we adopt a 3-D accumulator array A½n,n,n� to save
these OðjV 0jÞ constructed new circles and count the number of
circles of each group although in the next paragraph, a new
memory reduction scheme will be presented to reduce it to
constant size. Each element of A is set to 0 initially. For each
edge pixel vp ¼ ðxp,ypÞ in V 0, 0rpo jV 0j, its corresponding position
on the opposite side of Cijk is calculated by

xOS
p ¼ aijk�ðxp�aijkÞ ð8Þ

yOS
p ¼ bijk�ðyp�bijkÞ ð9Þ

From the position ðxOS
p ,yOS

p Þ, a square region S is circumscribed and
its top-left corner and bottom-right corner are ðxOS

p �D,yOS
p �DÞ and

ðxOS
p þD,yOS

p þDÞ, respectively. After collecting all edge pixels in S

to constitute the set V 0OS, our refinement strategy pairs vp and
each edge pixel vq ¼ ðxq,yqÞ in V 0OS, 0rqo jV 0OSj, and to create a
segment vpvq . The created segment is used to determine a new

circle Cpq with center ðapq,bpqÞ and radius rpq where

apq ¼
xpþxq

2
ð10Þ

bpq ¼
ypþyq

2
ð11Þ

and

rpq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxp�xqÞ

2
þðyp�yqÞ

2
q

2
ð12Þ

For each Cpq, the assignment statement A½apq,bpq,rpq� ¼

A½apq,bpq,rpq�þ1 is performed, and it means that the number of
circles belonging to that group is increased by 1. After counting
the number of circles in each group, the center ðaR

ijk,bR
ijkÞ and the

radius rR
ijk of the refined circle CR

ijk is determine by

faR
ijk,bR

ijk,rR
ijkg ¼ arg max

a,b,r
A½a,b,r� ð13Þ

To verify whether the refined CR
ijk is better than the candidate circle

in the RCD, Cijk, or not, we count the number of edge
pixels lying on Cijk and CR

ijk, say NV1 and NV2, respectively, and decide
that CR

ijk is better than Cijk if the condition NV1oNV2 holds;
otherwise, Cijk is better than CR

ijk. Consequently, the better one
of CR

ijk and Cijk is the final result of the proposed refinement strategy.
In order to reduce the memory required in the 3-D accumulator

array, i.e. OðN3Þ memory where N�N denotes the image size, a
constant-sized accumulator array Ar ½n,n,n� is used in our refinement
strategy and the memory size is dependent on the bandwidth
Dð5NÞ between Cijk and Aijk. For each determined Cpq, we first

calculate Dapq ¼ apq�aijk, Dbpq ¼ bpq�bijk, and Drpq ¼ rpq�rijk. Since

only edge pixels lying on Aijk are considered in the refinement

process, the values of Dapq, Dbpq, and Drpq are ranged from �D
to D. Therefore the size of the reduced accumulator array Ar½n,n,n� is

only ð2Dþ1Þ3 (¼ OðD3
Þ). Based on the reduced accumulator array

Ar½n,n,n�, the original statement A½apq,bpq,rpq� ¼ A½apq,bpq,rpq�þ1 is

replaced by Ar½DapqþD,DbpqþD,DrpqþD� ¼ Ar½DapqþD,DbpqþD,

DrpqþD�þ1 and it leads to a significant memory-saving effect. The

whole refinement algorithm is presented below.

1 Input the initial detected circle Cijk by the RCD.
2 Initialize each entry of Ar ½n,n,n� to 0.
3 Construct an annulus Aijk concentric with Cijk and the two

radii of Aijk are rijk�D and rijkþD.

4 Collect all edge pixels within Aijk to obtain the set V 0.
5 for each pixel vpAV 0 do

6 Determine ðxOS
p ,yOS

p Þ by Eq. (8).

7 Circumscribe a square region S with the top-left corner

ðxOS
p �D, yOS

p �DÞ and the bottom-right corner

ðxOS
p þD,yOS

p þDÞ.

Table 5
Average differences between the parameters of each circle detected by the HT and that detected by the RCD, the LRCD, and the GRCD.

Image RCD LRCD GRCD GLRCD

ðDa,DbÞ Dr ðDa,DbÞ Dr ðDa,DbÞ Dr ðDa,DbÞ Dr

Coin (0.65,0.62) 0.50 (0.69,0.66) 0.69 (0.63,0.57) 0.54 (0.74,0.63) 0.67

Cake (0.65,0.78) 0.67 (0.67,0.88) 0.71 (0.50,0.70) 0.59 (0.55,0.76) 0.62

Insulator (0.90,1.06) 0.66 (0.84,1.10) 0.73 (0.83,0.97) 0.63 (0.88,1.06) 0.67

Gobang (0.96,0.92) 0.86 (1.04,1.18) 0.97 (0.85,0.95) 0.78 (0.89,1.01) 0.77

Plates (0.77,0.88) 0.77 (0.84,0.90) 0.75 (0.69,0.82) 0.65 (0.73,0.84) 0.68

Logo (0.45,0.51) 0.18 (0.49,0.52) 0.11 (0.33,0.54) 0.16 (0.49,0.57) 0.10

Speaker (0.43,0.43) 0.52 (0.43,0.54) 0.48 (0.27,0.29) 0.47 (0.27,0.10) 0.40

Stability-ball (0.54,0.74) 0.55 (0.67,0.75) 0.54 (0.63,0.73) 0.58 (0.70,0.77) 0.56

Ball (0.46,0.45) 0.60 (0.51,0.48) 0.47 (0.51,0.49) 0.57 (0.64,0.67) 0.68

Swatch (0.61,0.98) 0.98 (0.91,1.43) 1.31 (0.69,0.83) 0.95 (0.86,1.53) 1.53

Average (0.64,0.74) 0.63 (0.71,0.84) 0.68 (0.59,0.69) 0.59 (0.68,0.69) 0.67

Table 4
Execution-time performance comparison in the RCD, the LRCD, the GRCD, and the

GLRCD in terms of milliseconds.

Image RCD LRCD GRCD GLRCD

Coin 103 62 28 25

Cake 80 53 26 24

Insulator 92 48 25 24

Gobang 112 66 30 27

Plates 180 114 48 45

Logo 194 68 54 48

Speaker 106 51 30 29

Stability-ball 130 76 34 32

Ball 95 52 28 26

Swatch 132 48 46 40

Average time 122 64 35 32

Execution-time

improvement ratio
71% ¼

122�35

122

� �
50% ¼

64�32

64

� �

K.-L. Chung et al. / Pattern Recognition 45 (2012) 252–263 259



Author's personal copy

8 Collect edge pixels within S to obtain the set V 0OS.

9 for each pixel vqAVOS
0 do

10 Determine the center ðapq,bpqÞ and the radius rpq of the

new circle Cpq by Eqs. (10)–(12).
11 Dapq’apq�aijk, Dbpq’bpq�bijk, Drpq’rpq�rijk.

12 Ar ½DapqþD,DbpqþD,DrpqþD�’Ar½DapqþD,

DbpqþD,DrpqþD�þ1

13 Determine the center ðaR
ijk,bR

ijkÞ and the radius rR
ijk of the

refined circle CR
ijk by Eq. (13).

14 Count the number of edge pixels lying on Cijk and CR
ijk and

save the counted numbers to NV1 and NV2, respectively.
15 if NV14NV2 then
16 Output Cijk as the final result.
17 else
18 Output CR

ijk as the final result.

5. Experimental results

In this section, some experimental results are demonstrated to
show the execution-time and accuracy advantages of our pro-
posed new multiple-evidence-based sampling strategy and new
refinement strategy. All concerned experiments are performed on
the Intel CPU E8400 Processor with 3.0 GHz and 2 GB RAM. The
operating system adopted is MS-Windows XP and the program-
ming environment is Borland Cþþ Builder 6.0. To evaluate the
accuracy of each concerned method, the traditional HT [9,13] is
run on ten test images and the three parameters of each detected

circle are taken as the ideal center and radius of the correspond-
ing test image. To meet a high accuracy requirement, the x-
coordinate and the y-coordinate of center and the length of radius
are quantized to one pixel precision in the traditional HT.

Before evaluating the execution-time and accuracy performance of
the concerned circle detection methods, we first discuss two thresh-
olds, Tf and Tr, used in our proposed sampling strategy and the
bandwidth D used in our proposed refinement strategy. The first
threshold Tf is related to the ratio of edge pixels lying on circles over
that of total edge pixels. For each test images in Fig. 1, the number of

Table 6
Execution-time performance comparison in Lee et al.’s

refinement strategy, the IRHT, the RCD-R, and the LRCD-

R in terms of milliseconds.

Image Lee et al.’s IRHT RCD-R LRCD-R

Coin 160 577 115 83

Cake 134 362 91 57

Insulator 208 325 102 80

Gobang 168 1255 120 67

Plates 591 1015 197 133

Logo 650 3279 224 103

Speaker 186 869 114 63

Stability-ball 389 449 112 66

Ball 304 455 109 59

Swatch 998 3100 164 86

Average 379 1169 135 80

Table 7
Average differences between the parameters of each circle detected by the HT and that detected by Lee et al.’s refinement

strategy, the IRHT, the RCD-R, and the LRCD-R.

Image Lee et al.’s IRHT RCD-R LRCD-R

ðDa,DbÞ Dr ðDa,DbÞ Dr ðDa,DbÞ Dr ðDa,DbÞ Dr

Coin (0.43,0.55) 0.42 (0.45,0.42) 0.32 (0.49,0.36) 0.46 (0.61,0.44) 0.58

Cake (0.47,0.50) 0.41 (0.48,0.58) 0.50 (0.38,0.66) 0.45 (0.42,0.69) 0.50

Insulator (0.54,0.67) 0.37 (0.35,0.74) 0.28 (0.32,0.60) 0.44 (0.34,0.60) 0.46

Gobang (0.66,0.66) 0.35 (0.52,0.50) 0.47 (0.45,0.50) 0.55 (0.47,0.41) 0.60

Plates (0.44,0.56) 0.45 (0.48,0.64) 0.42 (0.55,0.50) 0.57 (0.55,0.55) 0.57

Logo (0.19,0.48) 0.06 (0.12,0.48) 0.02 (0.02,0.40) 0.20 (0.03,0.40) 0.23

Speaker (0.17,0.53) 0.31 (0.18,0.29) 0.40 (0.26,0.01) 0.46 (0.28,0.08) 0.38

Stability-ball (0.61,0.74) 0.43 (0.43,0.65) 0.49 (0.43,0.69) 0.45 (0.44,0.69) 0.49

Ball (0.35,0.20) 0.28 (0.39,0.43) 0.39 (0.32,0.36) 0.44 (0.35,0.38) 0.45

Swatch (0.47,0.78) 0.54 (0.25,0.73) 0.78 (0.40,0.65) 0.73 (0.42,0.82) 0.95

Average (0.43,0.58) 0.36 (0.37,0.55) 0.41 (0.36,0.47) 0.48 (0.39,0.51) 0.52

Table 8
Execution-time performance comparison

between the GRCD-R and the GLRCD-R in

terms of milliseconds.

Image GRCD-R GLRCD-R

Coin 36 36

Cake 31 30

Insulator 35 35

Gobang 48 48

Plates 71 71

Logo 88 86

Speaker 38 36

Stability-ball 50 47

Ball 38 36

Swatch 86 83

Average 52 51

Table 9
Average differences between the parameters of each circle

detected by the HT and that detected by the GRCD-R and

the GLRCD-R.

Image GRCD-R GLRCD-R

ðDa,DbÞ Dr ðDa,DbÞ Dr

Coin (0.55,0.34) 0.47 (0.54,0.37) 0.50

Cake (0.43,0.67) 0.46 (0.47,0.67) 0.51

Insulator (0.31,0.57) 0.45 (0.39,0.64) 0.46

Gobang (0.38,0.43) 0.50 (0.40,0.45) 0.51

Plates (0.50,0.54) 0.52 (0.53,0.51) 0.52

Logo (0.02,0.40) 0.06 (0.02,0.43) 0.09

Speaker (0.26,0.01) 0.46 (0.28,0.07) 0.37

Stability-ball (0.42,0.65) 0.51 (0.43,0.71) 0.48

Ball (0.28,0.35) 0.50 (0.23,0.45) 0.59

Swatch (0.41,0.63) 0.71 (0.45,0.86) 0.96

Average (0.36,0.46) 0.46 (0.37,0.52) 0.50
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circles is ranged from 2 to 7 and the ratio of edge pixels lying on
circles is ranged from 0.16 to 0.62. Empirically, we set Tf to 16 000
and it is applicable to ten test images. The second threshold Tr is
dependent on the completeness degree of the circle and in ten test
images, the circle completeness degree is ranged from 60% to 100%.
Considering the detected circle is a digital zone, instead of setting
Tr¼0.6, we set Tr¼0.8 in our implementation. The bandwidth D used
in the proposed refinement strategy is dependent on the radius
of each circle which is ranged from 30 to 147 for ten test
images. Empirically, we set D to 5% of the maximal radius, i.e.
D¼ roundð147� 5%Þ ¼ 7.

To illustrate the execution-time improvement power of the
proposed sampling strategy, we first plug the proposed sampling
strategy into the RCD [3]. To broaden the comparison, we also apply

the proposed sampling strategy to the LUT-based RCD (LRCD) [6].
For convenience, two modified circle detection methods are called
the GRCD and the GLRCD. Table 4 indicates that on average, the
GRCD and the GLRCD have 71% and 50% execution-time improve-
ment ratios when compared to the RCD and the LRCD, respectively.
Because the proposed sampling strategy can discard a large amount
of invalid possible and candidate circles involved in the RCD and the
LRCD. The average differences between the parameters of each circle
detected by the HT and that detected by the RCD, the LRCD, the
GRCD, and the GLRCD are given in Table 5. In Table 5, ðDa,DbÞ and Dr

denote the average differences between the center and radius of each
circle detected by the HT and that in any one of the concerned four
methods. Table 5 shows that the accuracy of the proposed sampling
strategy is very close to that in the RCD and the LRCD.

Fig. 9. Detected circles by the GRCD-R. (a) Coin image. (b) Cake image. (c) Insulator image. (d) Gobang image. (e) Plates image. (f) Logo image. (g) Speaker image.

(h) Stability-ball image. (i) Ball image. (j) Swatch image.
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To evaluate the performance of the proposed refinement
strategy, we combine our proposed refinement strategy with
the RCD and the LRCD to obtain two modified circle detection
methods, called the RCD-R and the LRCD-R, respectively. Table 6
shows the execution-time requirement for Lee et al.’s refinement
strategy [23], the IRHT proposed by Lu and Tan [24], the RCD-R,
and the LRCD-R. Table 6 shows that both RCD-R and LRCD-R take
less execution-time when compared to the IRHT and Lee et al.’s
refinement strategy and it confirms the computation advantage of
our proposed refinement strategy. Table 7 shows the average
differences between the parameters of each circle detected by the
HT and that detected by the concerned four methods. In [24], each
time, Lu and Tan randomly sample five edge pixels to determine
the parameters of an ellipse, and in order to apply the IRHT to
circle detection, each time, we randomly sample three edge pixels
to determine the parameters of a circle. From Tables 5 and 7, we
observe that the accuracies of the RCD-R and the LRCD-R are very
close to that of the IRHT and Lee et al.’s refinement strategy; two
tables indicate that the accuracies of the RCD and the LRCD have
been improved by our proposed refinement strategy.

Combining our proposed multiple-evidence-based sam-
pling strategy and refinement strategy with the RCD and the
LRCD, the proposed two modified versions, the GRCD-R and
the GLRCD-R, illustrate the execution-time and accuracy
advantages in Tables 8 and 9, respectively. From Tables 6–9,
the proposed GRCD-R and GLRCD-R have better execution-
time performance when compared to the RCD-R and the LRCD-
R, and their accuracies are very close to Lee et al.’s refinement
strategy. Fig. 9 illustrates the resultant circles detected by
using the GRCD-R. These detected circles reveal that the
GRCD-R can detect circles efficiently. Note that the circles
detected by the other concerned methods are similar to those

in Fig. 9, so we only demonstrate the detected results of the
GRCD-R for saving space of the context.

Finally, in order to demonstrate the robustness of our proposed
sampling strategy and refinement strategy, we add noises to the
edge maps of test images and run the GRCD-R and the GLRCD-R on
these noisy test edge maps. It is known that the edge map of each
test image contains jV j edge pixels. We sprinkle jV j edge pixels
whose gradient directions are randomly given on the noise-free
edge map so that the number of noisy edge pixels over that of
original edge pixels is 100%; Fig. 10(a)–(c) are noisy edge maps of
Fig. 1(a)–(c), respectively. After setting Tf to 48 000 and running the
GRCD-R and the GLRCD-R on ten noisy edge maps, the execution-
time and accuracy performance comparisons are shown in Tables 10
and 11, respectively. From Tables 8–11, although the execution-time
and accuracy performance are degraded for noisy edge maps, the
resultant performance of the GRCD-R and GLRCD-R is still better than
that obtained by running RCD and LRCD on noise-free edge maps
(see Tables 4 and 5).

6. Conclusion

We have presented the proposed new multiple-evidence-based
sampling strategy and refinement strategy to improve both the
execution-time performance and the detection accuracy for some
existing randomized circle detection methods. First, from the com-
putation overhead analysis of the RCD’s sampling strategy, an
efficient multiple-evidence-based sampling strategy is presented to
alleviate this computation overhead problem. By using the proposed
three evidences, the execution-time performance can be improved
significantly since a large amount of possible circles and candidates,
which will not be promoted to true circles eventually, can be

Fig. 10. The noisy edge maps. (a) Coin image. (b) Cake image. (c) Insulator image.

Table 10
Execution-time performance comparison

in the GRCD-R and the GLRCD-R for the

noisy edge maps in terms of milliseconds.

Image GRCD-R GLRCD-R

Coin 88 77

Cake 81 81

Insulator 98 93

Gobang 115 114

Plates 188 187

Logo 202 203

Speaker 68 65

Stability-ball 117 109

Ball 99 95

Swatch 172 160

Average 123 118

Table 11
Average differences between the parameters of each circle

detected by the HT and that in each noisy edge map

detected by the GRCD-R and the GLRCD-R.

Image GRCD-R GLRCD-R

ðDa,DbÞ Dr ðDa,DbÞ Dr

Coin (0.74,0.65) 0.91 (0.77,0.77) 0.94

Cake (0.60,0.72) 0.21 (0.66,0.83) 0.72

Insulator (0.44,0.68) 0.64 (0.58,0.82) 0.52

Gobang (0.60,0.96) 0.75 (0.65,0.99) 0.76

Plates (0.76,0.51) 0.75 (0.78,0.55) 0.80

Logo (0.20,0.47) 0.33 (0.22,0.22) 0.66

Speaker (0.35,0.08) 0.51 (0.45,0.10) 0.40

Stability-ball (0.57,0.08) 0.65 (0.64,0.81) 0.63

Ball (0.42,0.51) 0.70 (0.23,0.55) 0.61

Swatch (0.50,0.70) 0.80 (0.70,1.05) 1.10

Average (0.52,0.54) 0.55 (0.57,0.67) 0.71
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discarded in advance. To solve the bias problem existed in the RCD, a
fast linear-time refinement strategy is presented to enhance the
accuracy. Specially, a constant-sized accumulator array is proposed to
realize the voting process on a smaller set of edge pixels. Based on ten
test images, experimental results demonstrate that under the similar
accuracy, the proposed sampling strategy significantly improves the
execution-time performance of the RCD and the GLRCD. Experimental
results also demonstrate that the bias problem in the RCD can be
overcome by using our proposed refinement strategy. When com-
pared to the IRHT and Lee et al.’s refinement strategy, our proposed
refinement strategy provides a considerable execution-time improve-
ment under the similar accuracy.
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