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Binarization plays an important role in document image processing, especially in degraded documents.

For degraded document images, adaptive binarization methods often incorporate local information to

determine the binarization threshold for each individual pixel in the document image. We propose a

two-stage parameter-free window-based method to binarize the degraded document images. In the

first stage, an incremental scheme is used to determine a proper window size beyond which no

substantial increase in the local variation of pixel intensities is observed. In the second stage, based on

the determined window size, a noise-suppressing scheme delivers the final binarized image by

contrasting two binarized images which are produced by two adaptive thresholding schemes which

incorporate the local mean gray and gradient values. Empirical results demonstrate that the proposed

method is competitive when compared to the existing adaptive binarization methods and achieves

better performance in precision, accuracy, and F-measure.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decades, many document image operations, such as
document layout analyzing [1,2], data hiding [3], skew estimation
[4,5], stroke extraction [6], document block classification [7], and
optical character recognition [8], have been developed for storing,
transmitting, and managing digital documents. Among the different
types of document image operations, binarization is a preliminary
process and the resultant binary images usually affect the perfor-
mance of the succeeding processes, such as the document image
segmentation and the optical character recognition. For binarization,
each pixel in a document image is classified as a foreground or a
background pixel. Pixels inside characters, lines, and curves in a
document image are foreground pixels and should be binarized as
black pixels and the remaining background pixels should be binar-
ized as white pixels.

For maximizing the between-class variance of foreground and
background pixels, Otsu [9] proposed an automatic thresholding
scheme to determine a global threshold for the input image. Kapur
et al. [10] determined a global threshold by maximizing the entropy
of two partitioned subimages. For document images with satisfactory
quality, Otsu’s and Kapur et al.’s methods usually yield good resultant
binary images. However, the determined global threshold may not be
ll rights reserved.
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applicable for degraded document images since intensities of fore-
ground and background pixels are contaminated at different posi-
tions of the images. To alleviate the problem caused by the
degradation of document images, adaptive binarization schemes
[11–16] which incorporate the information from local statistics of
an image are proposed to improve the Otsu’s and Kapur et al.’s
methods. Niblack [11] presented a window-based method to deter-
mine the threshold for each pixel by incorporating the information of
the mean and the standard deviation of gray levels within each
window. Sauvola and Pietikäinen [12] modified Niblack’s method by
proposing different weights on the mean and the standard deviation
of gray levels within each window. For blueprint images, Zhao et al.
[13] utilized geometric features and proposed an efficient window-
based thresholding method. Kim et al. [17] proposed an adaptive
method by first transforming an input document image into a three-
dimensional terrain and then generating the binarized image by
iteratively performing the water flowing process. Oh et al. [18]
improved Kim et al.’s method by concentrating on the specific
regions of importance and achieved better performance in terms of
computational efficiency and image quality. Gatos et al. [14] binar-
ized the document image by contrasting the document image to the
background surface which is constructed by interpolating the back-
ground pixels after removing the binarized foreground pixels via
Sauvola and Pietikäinen’s method. Based on the edge map detected
by the Canny edge-detector [19], Chen et al. [15] binarized the input
document image using a pair of high and low thresholds. The
resultant binary images achieve higher sensitivity (i.e. the proportion
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of foreground pixels that are correctly binarized) but lower precision
(i.e. the proportion of correctly binarized foreground pixels). Moghad-
dam and Cheriet [16] proposed a multi-scale window-based thresh-
olding scheme which first generates several binarized images based
on different window sizes and then iteratively combines the binar-
ized images to yield the final binarized image. Empirical results
showed that the quality of the resultant binarized image was
significantly affected by the binarized image generated by using the
largest window size.

In this paper, we present a two-stage parameter-free window-
based method to binarize the degraded document images. In the
first stage, based on rough foreground pixels determined by Otsu’s
method, an incremental scheme is used to automatically determine
a proper window size beyond which no substantial increase in the
local variation of gray levels is observed. The reason for considering
the foreground pixels only is because the variation of gray values
within windows around foreground pixels increases substantially as
the window size smaller than necessary increases until a proper
window size is reached. In the second stage, based on the deter-
mined window size, a noise-suppressing scheme delivers the final
binary image by contrasting two binarized images produced by two
adaptive thresholding schemes which incorporate the local mean
gray and gradient values. Empirical results demonstrate that the
proposed method is competitive when compared to the six existing
adaptive binarization methods—Niblack’s method [11], Sauvola and
Pietikäinen’s method [12], Zhao et al.’s method [13], Gatos et al.’s
method [14], Chen et al.’s method [15], and Moghaddam and
Cheriet’s method [16], and achieves better performance in precision,
accuracy, and F-measure.
2. Challenges in adaptive binarization

The adaptive binarization scheme needs to deal with two chal-
lenges: (a) the determination of a proper window size used for
Fig. 1. Window size effect on large-scale and small-scale characters when using Sauv

window, (c) binarized image using 33�33 window, (d) original image, (e) binarized im
extracting the local information and (b) the trade-off between detail
preservation and noise suppression. Observations on the two chal-
lenges are given to motivate the research of this paper and are
addressed in this section.

The quality of the resultant binary document images produced
by the existing adaptive binarization methods often are very
sensitive to the window size used [11–14]. Proper window size
usually depends on the scale of objects in the document images.
The document images with large objects require large window
size in the adaptive binarization scheme. For documents with
large characters as shown in Fig. 1(a), using smaller than necessary
window size in Sauvola and Pietikäinen’s method may erroneously
binarize foreground pixels to background pixels as shown in
Fig. 1(b), where large characters are binarized as hollow characters.
Fig. 1(c) illustrates a better binarized result of Fig. 1(a) when a large
windows size is used. However, adaptive binarization scheme with
larger than necessary window size will not significantly increase the
quality of the binarized images, as shown in Fig. 1(e) and (f), but
incurs higher computational cost.

For proper window size, Gatos et al. [14] suggest that window
size should cover at least one to two characters. However,
detecting character size usually requires image segmentation
and is difficult for degraded documents. Chen et al. [15] apply a
3�3 window and determine two thresholds based on the edge
pixels detected by the Canny edge detector. The quality of the
binarized image heavily depends on the correctness of the edge
map which is usually poor for degraded documents. Moghaddam
and Cheriet [16] propose a scheme that starts with a large
window size determined by the average line height of the input
document image and iteratively reduces to a proper window size.
Since the average line height is usually determined by the image
segmentation process, the proposed scheme suffers from the
same problem as Gatos et al.’s method.

In addition to determining the proper window size, the trade-
off between the preservation of detailed contents and noise
ola and Pietikäinen’s method. (a) Original image, (b) binarized image using 9�9

age using 9�9 window and (f) binarized image using 33�33 window.
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suppressing should be addressed in an adaptive binarization
scheme. To discuss this issue, we briefly survey how the previous
two adaptive methods, Niblack’s method and Sauvola and Pie-
tikäinen’s method, determine the threshold of each pixel under a
specific window size. Denote by f(x,y), 0r f ðx,yÞr1, the normal-
ized intensity value of the pixel at position (x,y). Given a specific
window of size w�w with w¼2rþ1, the threshold used for
binarization in Niblack’s method is expressed as

TNib,wðx,yÞ ¼ mwðf ,x,yÞþkswðf ,x,yÞ, ð1Þ

where k is a user-defined parameter and mwðf ,x,yÞ and swðf ,x,yÞ
represent, respectively, the mean and standard deviation of
intensities of the pixels within the window centered at (x,y) and
can be expressed as

mwðf ,x,yÞ ¼
1

w2

Xr

i ¼ �r

Xr

j ¼ �r

f ðxþ i,yþ jÞ, ð2Þ

swðf ,x,yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

w2

Xr

i ¼ �r

Xr

j ¼ �r

ðf ðxþ i,yþ jÞ�mwðf ,x,yÞÞ2

vuut : ð3Þ

To improve Niblack’s method, Sauvola and Pietikäinen [12] proposed
a modified threshold TSau,wðx,yÞ which is expressed as

TSau,wðx,yÞ ¼ mwðf ,x,yÞ � 1�k0 1�
swðf ,x,yÞ

R

� �� �
, ð4Þ

where both R and k0 are set to 0.5 in [12].
Parameters k and k0 used in Eqs. (1) and (4), respectively, are

sensitive to the contents of the input document images and may
not be applicable for degraded document images. For example, for
a degraded document image in Fig. 2(a)–(c) are binarized images
obtained by Sauvola and Pietikäinen’s method with k0 ¼ 0:01 and
k0 ¼ 0:2, respectively. The binarized image with smaller k0 pre-
serves more detailed contents but suffers from more noises. This
observation motivates using two thresholding schemes to pro-
duce two binarized images from which the final binarized image
is delivered.
Fig. 2. Effect of parameter k0 in adaptive thresholding of Sauvola and Pietikäinen’s

method. (a) Original image, (b) binarized image with k0 ¼ 0:01 and (c) binarized

image with k0 ¼ 0:2.
3. The proposed two-stage and parameter-free binarization
method

In this section, we present a two-stage and parameter-free
binarization scheme for degraded document images. The first stage
determines a proper window size by considering the variation of
foreground pixel intensities within windows. In the second stage,
based on the window size determined in stage 1, a final binarized
image is delivered by contrasting two binarized images produced by
two adaptive thresholding schemes which incorporate the local
mean gray and gradient values.

3.1. Determine the proper window size

To start the two-stage binarization scheme, we first apply the
Gaussian low-pass filter to obtain the smoothed image and then
the Otsu’s method is used to determine the set of the rough
foreground pixels, denoted by RFG. The variation of foreground
pixel intensities within each window usually increases as the
window size increases from a window size which is smaller than
necessary. Large window size usually delivers binarized images
with better quality but suffers from larger computational cost,
indicating that the window size larger than necessary for accep-
table quality should not be adopted.

Since binarizing with smaller than necessary window size may
erroneously binarize foreground pixels to background pixels and
using larger than necessary window size increases the computa-
tional cost without increasing the quality, we start with a small
window size and keep increasing the window size until no sub-
stantial increase in the local variation of gray levels is observed.

Starting with a window of size 3�3, we compute the standard
deviation of the foreground pixel intensities within each window and
use the average of the standard deviations over the rough foreground
pixels as the indicator to search for the proper window size.

Let IR(w) denote the increasing rate of the average standard
deviation when enlarging the window from w�w to (wþ2)�
(wþ2) and is expressed as

IRðwÞ ¼
swþ2�sw

sw
ð5Þ

with

sw ¼
1

9RFG9

X
ðx,yÞARFG

swðf ,x,yÞ, ð6Þ

where 9RFG9 is the cardinality of the rough foreground set RFG and
swðf ,x,yÞ is the standard deviation of pixel intensities within the
w�w window centered at (x,y). The increasing rate IR(w)
decreases as the window size w increases as shown in Fig. 3(b)
and (d). The proper window size wn is the smallest window size
such that IR(w) is less than or equal to 0.01; that is, wn ¼

minfw : IRðwÞr0:01g. For saving computational efforts to deter-
mine the proper window size wn, the fast calculation scheme
proposed by Viola and Jones [20] is used to calculate the standard
deviation for each window in constant time.

3.2. Proposed noise-suppressing thresholding scheme

When determining the binarization threshold for each pixel in
degraded documents, information about the mean gray level
mwn ðf ,x,yÞ and the mean gradient mwn ðg,x,yÞ in the window of size
wn �wn may be helpful, where the gradient corresponding to a
pixel is determined using Sobel operator [21]. Figs. 4 and 5 show,
respectively, the distributions of mwn ðf ,x,yÞ and mwn ðg,x,yÞ for true
foreground and background pixels of six test images.

When dividing mwn ðf ,x,yÞ corresponding to each pixel into two
groups according to the pixel status, the squared correlation
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Fig. 3. RFG and associated IR(w) corresponding to the original images. (a) Original image, (b) IR(w) associated with (a), (c) original image and (d) IR(w) associated with (c).
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coefficient between mwn ðf ,x,yÞ and the status is the ratio of the
between-group variation to the total variation of mwn ðf ,x,yÞ, which
is the proportion of the variation in mwn ðf ,x,yÞ that can be
explained by the grouping variable status. By symmetry, the
squared correlation coefficient is the proportion of the variation
in the pixel status that can be explained by mwn ðf ,x,yÞ, indicating
that mwn ðf ,x,yÞ may be useful in predicting the pixel status and is
called the separability factor SP [22] associated with mwn ðf ,x,yÞ in
separating the pixel status. Larger values of the separability factor
SP indicate greater predicting capability. Table 1 lists the separ-
ability factor SP associated with mwn ðf ,x,yÞ, mwn ðg,x,yÞ, swn ðf ,x,yÞ,
and swn ðg,x,yÞ, respectively, showing that the local gradients may
even contain more information for predicting the pixel status than
the mean gray values. Since significant amount of the variation in
the pixel status can be accounted for by both mwn ðf ,x,yÞ and
mwn ðg,x,yÞ and a parsimonious model is often preferred, we present
a new thresholding scheme for predicting the status of a pixel, by
incorporating the information on the mean gray and gradient values
in the neighborhood.

The magnitude of the gradient corresponding to the pixel

located at (x,y) can be expressed as gðx,yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

x ðx,yÞþg2
y ðx,yÞ

q
,

where

gxðx,yÞ ¼

f ðxþ1,y�1Þ�f ðx�1,y�1Þ

f ðxþ1,yÞ�f ðx�1,yÞ

f ðxþ1,yþ1Þ�f ðx�1,yþ1Þ

2
64

3
75 �

1

2

1

2
64

3
75, ð7Þ

gyðx,yÞ ¼

f ðx�1,yþ1Þ�f ðx�1,y�1Þ

f ðx,yþ1Þ�f ðx,y�1Þ

f ðxþ1,yþ1Þ�f ðxþ1,y�1Þ

2
64

3
75 �

1

2

1

2
64

3
75 ð8Þ

with � denoting the dot product of vectors. Large values of g(x,y)
indicate that pixel f(x,y) is around the boundary between foreground
and background pixels. Based on the window size wn ¼ 2rnþ1
determined in stage 1, compute the mean gradient

mwn ðg,x,yÞ ¼
1

wn2

Xrn
i ¼ �rn

Xrn
j ¼ �rn

gðxþ i,yþ jÞ: ð9Þ

When incorporating the information contained in the mean
gray level mwn ðf ,x,yÞ and the mean gradient mwn ðg,x,yÞ of the
neighborhood around pixel (x,y), we propose a binarization
threshold

Tðx,yÞ ¼ mwn ðf ,x,yÞð1�k00e�mwn ðg,x,yÞ=MÞ, ð10Þ

where M¼maxðx,yÞADfmwn ðg,x,yÞg with D denoting the input docu-
ment is used for normalizing. Eq. (10) indicates that pixels with
lower values of mwn ðf ,x,yÞ or higher values of mwn ðg,x,yÞ tend to be
predicted as foreground pixels.

Denote by 9FG9ðk00Þ the number of predicted foreground pixels
using threshold T with parameter k00 in Eq. (10). Let

Rðk00Þ ¼
9FG9ðk00�DÞ�9FG9ðk00Þ

9FG9ðk00Þ
ð11Þ

represent the relative increasing rate of 9FG9ðk00Þ when decreasing
k00 where decrement D¼ 0:001 is used in the experiments.
Decreasing parameter k00 increases the threshold T(x,y) and the
number of pixels predicted as foreground pixels increases. Start-
ing with k000 ¼ 0:3, iteratively increase the threshold according to
k00iþ1 ¼ k00i �0:001. Fig. 6 plots the corresponding relative increasing
rate Rðk00Þ with respect to k00. When decreasing parameter k00 from
some large initial value, the relative increasing rate Rðk00Þ first
decreases since the cumulative number of predicted foreground
pixels increases slowly. The relative increasing rate Rðk00Þ starts
increasing at some point where the slope of the intensity density
of all pixels is large, leading to a surge on the number of the
predicted foreground pixels.

The relative increasing rate Rðk00Þ starts decreasing at some
point before the mode of the intensity of all pixels where the
slope of the intensity density is low.

Parameters k001 and k002 are determined such that Rðk00Þ achieves
the minimum and maximum, respectively. Threshold using
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parameter k001 corresponds to the case where almost true fore-
ground pixels are predicted as foreground pixels, whereas para-
meter k002 corresponds to the case where some of the true
background pixels with lower intensities are predicted as fore-
ground pixels. Two thresholds T1ðx,yÞ and T2ðx,yÞ for pixel f(x,y)
are determined as

T1ðx,yÞ ¼ mwn ðf ,x,yÞð1�k001e�mwn ðg,x,yÞ=MÞ,

T2ðx,yÞ ¼ mwn ðf ,x,yÞð1�k002e�mwn ðg,x,yÞ=MÞ:

(

Let Bi denote the binarized image produced by the threshold
Tiðx,yÞ, i¼ 1;2. Thus, almost all the true foreground pixels are
predicted as foreground pixels in B1 and, since noisy pixels
usually have lower intensities compared to those of background
pixels, noisy pixels are predicted as foreground pixels in B2. Two
binarized images B1 and B2 are then contrasted to deliver the final
binarized image B. Since T1ðx,yÞoT2ðx,yÞ, if f(x,y) is a background
pixel in B2, then f(x,y) must be a background pixel in B1 and is very
likely to be a true background pixel in the document. Thus, the
pixel appeared to be a background pixel in B2 will be predicted as
a background pixel in B. Similarly, if f(x,y) is a foreground pixel in
B1, then f(x,y) must be a foreground pixel in B2 and is very likely to
be a true foreground pixel in the document. Thus, the pixel
appeared to be a foreground pixel in B1 will be predicted as a
foreground pixel in B. If f(x,y) is a background pixel in B1 and a
foreground pixel in B2, then it can be a foreground or a noise in
the document. To tackle such pixels, a region-growing process,
based on the pixels which are predicted as foreground pixels in
both B1 and B2, is proposed. For each pixel f(x,y) predicted as a
foreground pixel in both B1 and B2 images, a 3�3 window
centered at (x,y) is considered. Within the window, for each of
the eight pixels surrounding (x,y), if it is predicted as a back-
ground in B1 and a foreground in B2, then it is predicted as a
foreground pixel in the final binarized image B. Consequently, if a
pixel which is predicted as a background in B1 and a foreground in
B2 is not covered by any 3�3 window will be predicted as a
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Table 1
Separability factor SP of test images.

Images 1 2 3 4 5 6

mwn ðf ,x,yÞ 0.2396 0.2573 0.3400 0.4569 0.5887 0.4814

mwn ðg,x,yÞ 0.2737 0.3485 0.4103 0.4103 0.3145 0.4036

swn ðf ,x,yÞ 0.1715 0.2564 0.3165 0.3406 0.2617 0.3312

swn ðg,x,yÞ 0.0919 0.1650 0.1649 0.1807 0.2104 0.1608
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background in the final binarized image B. Furthermore, the
region-growing process will be applied to the newly predicted
foreground pixel by the region-growing process. This proposed
region-growing process can recover some true foreground pixels
and suppress the noise.

When dealing with the images with bleed-through degrada-
tion where the verso-side text or graphics appear on the recto
side, the proposed region-growing process tends to predict the
noisy pixels as the foreground pixels. To alleviate such problems,
a refining process is used to further polish the final binarized
image. We first determine if binarized image B needs further
refinement by calculating the separability of the foreground
pixels in B

s¼ max
0o io1

s2
BðiÞ

s2
T

,

where s2
BðiÞ denotes the variation between groups separated at

intensity i/255 and s2
T the total variation of the foreground inten-

sities in B. If the separability s is greater than some threshold, say
0.7, the pixels in the binarized image B are further separated using
Otsu’s method. Before using Otsu’s method, replace the intensities of
the background pixels in B by their average intensity to enhance the
refining effectiveness.
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Fig. 6. Rðk00Þ for document in Fig. 8(a).
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The proposed two-stage parameter-free window-based method
for binarizing the input document image can be summarized as
follows:
Step 1.
 Obtain from the smoothed image, by Otsu’s method, the
rough foreground pixel set RFG.
Step 2.
 Starting with w¼3, compute IR(w). If IRðwÞr0:01, let
wn ¼w be the proper window size and go to Step 3;
otherwise, let w¼wþ2 and recompute IR(w) to check if
condition IRðwÞr0:01 is satisfied.
Step 3.
 Determine T1ðx,yÞ and T2ðx,yÞ and produce binarized
images B1 and B2.
Step 4.
 Based on B2, the foreground pixels in B1 will be expanded
to the binarized image B by applying the region-growing
process. Perform the refining process of B if the separ-
ability s of the foreground pixels in B is greater than 0.7.
Fig. 7. Ten test images with different proportion ð#FG=NÞ of true foreground pixels.

(a) Test image 1 with #FG=N¼ 11:03%, (b) test image 2 with #FG=N¼ 3:74%, (c) test

image 3 with #FG=N ¼ 13:12%, (d) test image 4 with #FG=N ¼ 10:74%, (e) test image

5 with #FG=N ¼ 20:75%, (f) test image 6 with #FG=N ¼ 14:63%, (g) test image 7 with

#FG=N¼ 10:46%, (h) test image 8 with #FG=N¼ 10:69%, (i) test image 9 with

#FG=N¼ 4:51% and (j) test image 10 with #FG=N¼ 5:78%.
4. Experimental results

In this section, we empirically compare the proposed method
with the six existing methods—Niblack’s method [11], Sauvola
and Pietikäinen’s method [12], Zhao et al.’s method [13], Gatos
et al.’s method [14], Chen et al.’s method [15], and Moghaddam
and Cheriet’s method [16]. These six methods have been chosen
for comparison because some are specifically designed for blue-
print images and others are implemented based on adaptive
thresholding scheme or edge detection.

Test images in Fig. 7 include blueprint images, scanned machine-
printed images, and handwritten document images whose ground
truth binary images are created by human eyes or provided by
DIBCO’09 dataset [23]. Test images 1 and 2 in Fig. 7 are blueprint
images of architectures with different proportion #FG=N of fore-
ground pixels, where #FG is the number of true foreground pixels in
the document with N pixels. Test image 3 is a document images with
non-uniform background. Test images 4–6 are the bleed-through
document images. Test image 7 is a textual document with ink stains
and test images 8–10 are the handwritten document images.

The performance evaluations are based on five measures: (a)
recall, (b) specificity, (c) precision, (d) accuracy, and (e) F-measure.
Recall is the proportion of correctly binarized foreground pixels
within the true foreground pixels. Specificity is the proportion of
correctly binarized background pixels within the true background
pixels. Precision is the proportion of true foreground pixels within the
binarized foreground pixels. Accuracy is the weighted average of
recall and specificity with weights proportional to the numbers of
true foreground and background pixels. The F-measure is the
harmonic mean of recall and precision. Let TP and TN denote,
respectively, the number of pixels that are correctly binarized as
foreground and background pixels. And denote respectively by FP and
FN the number of pixels that are erroneously binarized as foreground
and background pixels. Then, the formulations of the measures can
be expressed as

recall¼
TP

TPþFN
,

specificity¼
TN

TNþFP
,

precision¼
TP

TPþFP
,

accuracy¼
TPþTN

TPþFPþTNþFN
,

F-measure¼
2

1

recall
þ

1

precision

:



Table 6
The performance comparison of test image 5.

Method Precision Specificity Recall Accuracy F-measure

[11] 0.7256 0.9114 0.8943 0.9079 0.8012

[12] 0.9529 0.9858 0.9432 0.9785 0.9480

[13] 0.7573 0.9450 0.6550 0.8848 0.7025

[14] 0.9476 0.9860 0.9647 0.9816 0.9561

[15] 0.9289 0.9804 0.9787 0.9800 0.9531

[16] 0.8592 0.9587 0.9610 0.9592 0.9072

Proposed 0.9754 0.9939 0.9274 0.9801 0.9508

Table 7
The performance comparison of test image 6.

Method Precision Specificity Recall Accuracy F-measure
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For most images the proportion of foreground pixels is much smaller
than that of the background pixels, meaning that high accuracy may
result from high specificity and poor recall. Thus, the measure of
accuracy is only used for reference. F-measure, the harmonic mean
of recall and precision, is a more appropriate performance measure
when binarizing images. The F-measure is high only when both
recall and precision are high since the harmonic mean of two
proportions tends to be low if one of the two proportions is low.
When binarizing images, increasing threshold increases the recall
but decreases the precision. Good thresholding scheme should
obtain appropriate trade-off between the recall and the precision
to achieve high values of the F-measure.

Empirical results are tabulated in Tables 2–11, accompanied
by the visual comparisons, corresponding to 10 test images and
Table 12 shows the average performance comparison over ten
test images. For the average performance shown in Table 12, the
Table 2
The performance comparison of test image 1.

Method Precision Specificity Recall Accuracy F-measure

[11] 0.5761 0.9372 0.6886 0.9098 0.6274

[12] 0.6969 0.9577 0.7841 0.9386 0.7379

[13] 0.7487 0.9865 0.5734 0.9290 0.6495

[14] 0.7567 0.9740 0.6518 0.9385 0.7003

[15] 0.5892 0.9245 0.8733 0.9189 0.7036

[16] 0.6267 0.9384 0.8348 0.9269 0.7160

Proposed 0.7402 0.9612 0.8918 0.9535 0.8090

Table 3
The performance comparison of test image 2.

Method Precision Specificity Recall Accuracy F-measure

[11] 0.2628 0.9133 0.7955 0.9089 0.3951

[12] 0.6602 0.9832 0.8415 0.9779 0.7399

[13] 0.7424 0.9904 0.7088 0.9799 0.7252

[14] 0.5321 0.9766 0.6863 0.9657 0.5995

[15] 0.6866 0.9840 0.9018 0.9809 0.7709

[16] 0.5418 0.9709 0.8865 0.9677 0.6725

Proposed 0.7976 0.9914 0.8774 0.9871 0.8356

Table 4
The performance comparison of test image 3.

Method Precision Specificity Recall Accuracy F-measure

[11] 0.8171 0.9765 0.6957 0.9396 0.7516

[12] 0.9650 0.9960 0.7224 0.9601 0.8263

[13] 0.8333 0.9807 0.6395 0.9359 0.7236

[14] 0.9494 0.9938 0.7720 0.9647 0.8516

[15] 0.8555 0.9778 0.8702 0.9637 0.8628

[16] 0.8427 0.9796 0.7222 0.9459 0.7778

Proposed 0.8958 0.9845 0.8848 0.9714 0.8903

Table 5
The performance comparison of test image 4.

Method Precision Specificity Recall Accuracy F-measure

[11] 0.7003 0.9533 0.9068 0.9483 0.7903

[12] 0.9705 0.9965 0.9448 0.9910 0.9575

[13] 0.8882 0.9877 0.8141 0.9690 0.8495

[14] 0.8483 0.9787 0.9924 0.9801 0.9147

[15] 0.8261 0.9762 0.9423 0.9725 0.8804

[16] 0.8434 0.9781 0.9821 0.9785 0.9075

Proposed 0.9492 0.9939 0.9428 0.9884 0.9460

[11] 0.7926 0.9665 0.7468 0.9344 0.7690

[12] 0.8627 0.9758 0.8886 0.9630 0.8755

[13] 0.8435 0.9800 0.6296 0.9287 0.7210

[14] 0.8510 0.9719 0.9374 0.9668 0.8921

[15] 0.8875 0.9817 0.8401 0.9610 0.8632

[16] 0.7309 0.9410 0.9345 0.9401 0.8203

Proposed 0.9471 0.9918 0.8537 0.9716 0.8980

Table 8
The performance comparison of test image 7.

Method Precision Specificity Recall Accuracy F-measure

[11] 0.7429 0.9667 0.8242 0.9518 0.7814

[12] 0.9026 0.9882 0.9385 0.9830 0.9202

[13] 0.7921 0.9761 0.7787 0.9555 0.7853

[14] 0.9604 0.9958 0.8683 0.9825 0.9120

[15] 0.7838 0.9686 0.9756 0.9693 0.8692

[16] 0.8228 0.9761 0.9511 0.9735 0.8823

Proposed 0.9303 0.9920 0.9094 0.9834 0.9197

Table 9
The performance comparison of test image 8.

Method Precision Specificity Recall Accuracy F-measure

[11] 0.7518 0.9699 0.7620 0.9477 0.7569

[12] 0.9770 0.9980 0.7046 0.9667 0.8188

[13] 0.8717 0.9921 0.4460 0.9338 0.5900

[14] 0.9892 0.9990 0.7558 0.9730 0.8569

[15] 0.8795 0.9842 0.9635 0.9820 0.9196

[16] 0.9140 0.9916 0.7453 0.9653 0.8211

Proposed 0.9320 0.9922 0.8950 0.9818 0.9131

Table 10
The performance comparison of test image 9.

Method Precision Specificity Recall Accuracy F-measure

[11] 0.4795 0.9662 0.6600 0.9524 0.5555

[12] 0.9802 0.9994 0.6038 0.9816 0.7473

[13] 0.5300 0.9707 0.6988 0.9585 0.6028

[14] 0.9644 0.9988 0.7020 0.9854 0.8125

[15] 0.6568 0.9755 0.9920 0.9763 0.7903

[16] 0.8464 0.9922 0.9139 0.9886 0.8789

Proposed 0.8979 0.9951 0.9135 0.9914 0.9056
proposed method has good performance in both recall and
precision measures, leading to a higher F-measure. The binarized
test images showed that the proposed method also has a better
performance in terms of subjective evaluation. For blueprint
images in Figs. 8 and 9, the proposed method is competitive, in
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terms of precision, with the method proposed by Zhao et al.
which is specifically designed for blueprint images but has much
higher recall, leading to much higher values of the F-measure.
Table 11
The performance comparison of test image 10.

Method Precision Specificity Recall Accuracy F-measure

[11] 0.4948 0.9414 0.9360 0.9411 0.6474

[12] 0.8732 0.9914 0.9644 0.9899 0.9165

[13] 0.4394 0.9532 0.5981 0.9327 0.5066

[14] 0.8421 0.9889 0.9690 0.9877 0.9011

[15] 0.7434 0.9791 0.9889 0.9796 0.8487

[16] 0.6463 0.9669 0.9868 0.9680 0.7810

Proposed 0.9070 0.9941 0.9346 0.9907 0.9206

Table 12
The average performance comparison of test images 1–10.

Method Precision Specificity Recall Accuracy F-measure

[11] 0.6343 0.9502 0.7910 0.9342 0.6876

[12] 0.8841 0.9872 0.8336 0.9730 0.8488

[13] 0.7447 0.9763 0.6542 0.9408 0.6856

[14] 0.8764 0.9888 0.8129 0.9722 0.8363

[15] 0.7837 0.9732 0.9326 0.9684 0.8462

[16] 0.7674 0.9693 0.8918 0.9614 0.8165

Proposed 0.8973 0.9830 0.9030 0.9799 0.8989

Fig. 8. Test image 1 and corresponding binarized images with different binarization me

(d) Zhao et al.’s method, (e) Gatos et al.’s method, (f) Chen et al.’s method, (g) Moghad
For test image 3 with non-uniform background in Fig. 10, the
methods proposed by Sauvola and Pietikäinen and Gatos et al.
have higher precision but lower recall and the proposed method
outperforms both methods in terms of the F-measure.

For test images 4–6 with different degrees of bleed-through in
Figs. 11–13, the proposed method is competitive, in terms of
F-measure, with the methods proposed by Sauvola and Pie-
tikäinen, Zhao et al., and Chen et al. and has good visual quality.

For test image 7 with ink stains in Fig. 14, the proposed
method has competitive precision and good recall, leading to
higher values of the F-measure when compared to Sauvola and
Pietikäinen’s and Gatos et al.’s methods.

For handwritten images 8–10 with different degrees of bleed-
through in Figs. 15–17, the proposed method is competitive, in
terms of the F-measure, with the methods proposed by Sauvola
and Pietikäinen and Gatos et al. and has good visual quality.

Based on the empirical results, the following general observa-
tions are obvious:
1.
thod

dam
The proposed method has significantly higher F-measure than
the existing methods, indicating that the proposed method
achieves better performance in both recall and precision
simultaneously.
2.
 In terms of the specificity, the proposed method is better than
most of the existing methods. The reason is because the thresh-
olds T1ðx,yÞ or T2ðx,yÞ may be conservatively low, leading to the
fact that most true background pixels are correctly identified.
s. (a) Test image 2, (b) Niblack’s method, (c) Sauvola and Pietikäinen’s method,

and Cheriet’s method and (h) Proposed method.



Fig. 9. Test image 2 and corresponding binarized images with different binarization methods. (a) Test image 2, (b) Niblack’s method, (c) Sauvola and Pietikäinen’s method,

(d) Zhao et al.’s method, (e) Gatos et al.’s method, (f) Chen et al.’s method, (g) Moghaddam and Cheriet’s method and (h) proposed method.

Fig. 10. Test image 3 and corresponding binarized images with different binarization methods. (a) Test image 3, (b) Niblack’s method, (c) Sauvola and Pietikäinen’s

method, (d) Zhao et al.’s method, (e) Gatos et al.’s method, (f) Chen et al.’s method, (g) Moghaddam and Cheriet’s method and (h) proposed method.

Fig. 11. Test image 4 and corresponding binarized images with different binarization methods. (a) Test image 4, (b) Niblack’s method, (c) Sauvola and Pietikäinen’s

method, (d) Zhao et al.’s method, (e) Gatos et al.’s method, (f) Chen et al.’s method, (g) Moghaddam and Cheriet’s method and (h) proposed method.
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Fig. 12. Test image 5 and corresponding binarized images with different binarization methods. (a) Test image 5, (b) Niblack’s method, (c) Sauvola and Pietikäinen’s

method, (d) Zhao et al.’s method, (e) Gatos et al.’s method, (f) Chen et al.’s method, (g) Moghaddam and Cheriet’s method and (h) proposed method.

Fig. 13. Test image 6 and corresponding binarized images with different binarization methods. (a) Test image 6, (b) Niblack’s method, (c) Sauvola and Pietikäinen’s

method, (d) Zhao et al.’s method, (e) Gatos et al.’s method, (f) Chen et al.’s method, (g) Moghaddam and Cheriet’s method and (h) proposed method.

Fig. 14. Test image 7 and corresponding binarized images with different binarization methods. (a) Test image 7, (b) Niblack’s method, (c) Sauvola and Pietikäinen’s

method, (d) Zhao et al.’s method, (e) Gatos et al.’s method, (f) Chen et al.’s method, (g) Moghaddam and Cheriet’s method and (h) proposed method.

Fig. 15. Test image 8 and corresponding binarized images with different binarization methods. (a) Test image 8, (b) Niblack’s method, (c) Sauvola and Pietikäinen’s

method, (d) Zhao et al.’s method, (e) Gatos et al.’s method, (f) Chen et al.’s method, (g) Moghaddam and Cheriet’s method and (h) proposed method.
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Fig. 16. Test image 9 and corresponding binarized images with different binarization methods. (a) Test image 9, (b) Niblack’s method, (c) Sauvola and Pietikäinen’s

method, (d) Zhao et al.’s method, (e) Gatos et al.’s method, (f) Chen et al.’s method, (g) Moghaddam and Cheriet’s method and (h) proposed method.

Fig. 17. Test image 10 and corresponding binarized images with different binarization methods. (a) Test image 10, (b) Niblack’s method, (c) Sauvola and Pietikäinen’s

method, (d) Zhao et al.’s method, (e) Gatos et al.’s method, (f) Chen et al.’s method, (g) Moghaddam and Cheriet’s method and (h) proposed method.
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3.
 In terms of the accuracy, the proposed method is competitive
with the existing methods. Since accuracy is the weighted
average of recall and specificity, small recall of the proposed
method is accompanied by large specificity and may lead to
higher values of the F-measure.
4.
 For highly degraded documents such as blueprint images
1 and 2, results in Tables 1 and 2 show that the proposed
method achieves higher precision with acceptable recall when
compared to the existing methods.
5.
 In general, the proposed method has competitive recall and
the good precision, specificity, accuracy, and F-measure among
all concerned methods.

In addition to the numerical performance measures, the visual
comparisons are also shown in Figs. 8–17. In the case of highly
degraded documents, our method suppresses the noisy back-
ground pixels and preserves more texts and lines since the
proposed thresholding scheme incorporates the information of
the mean gray and gradient values which are highly correlated
with the pixel status.
5. Conclusion

In this paper, we propose a two-stage parameter-free window-
based binarization method. In the first stage, a proper window size is
automatically determined based on the local variation of pixel inten-
sities. Based on the determined window size, in the second stage,
noise is suppressed by contrasting two binarized images produced
using two thresholding schemes which incorporate information on
local mean gray and gradient values. Furthermore, a refining process
is proposed to improve the binarization quality, especially for bleed-
through degraded images. In general, the proposed binarization
scheme is competitive when compared to the existing methods.
Specifically, the proposed method generates visually acceptable
binarized images and has good performance in both recall and
precision measures, resulting in high values of the F-measure.
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