
196 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

Prefix Computations on a Generalized
Mesh-Connected Computer with Multiple Buses

Kuo-Liang Chung

Abstract- The mesh-connected computer with multiple buses (MC-
CMB) is a well-known parallel organization, providing broadcast facilities
in each row and each column. In this paper, we propose a 2-D generalized
MCCMB (2-GMCCMB) for the purpose of increasing the efficiency of
executing some important applications of prefix computations such as
solving linear recurrences and tridiagonal systems, etc. A klnl x k l n 2
2-GMCCMB is constructed from a IC1 n 1 x k.1 n2 mesh organization by
enhancing the power of each disjoint n 1 x n2 submesh with multiple buses
(sub-2-MCCMB). Given n data, a prefix computation can be performed
in O(n'/'O) time on an n3/5 x I Z ~ / ~ 2-GMCCMB, where each disjoint
sub-2-MCCMB is of size n l / * x n 3 / l o . This time bound is faster than
the previous time bound of O (I Z ' / *) for the same computation on an
n5/' x n3/' 2-MCCMB. Furthermore, the time bound of our parallel
prefix algorithm can be further reduced to O (n l l ") if fewer processors
are used. Our result can be extended to the d-dimensional GMCCMB,
giving a time bound of O (n ' / (d Z d + d)) for any constant d ; here, we omit
the constant factors. This time bound is less than the previous time bound
of O (I I ' / (~ ' ~)) on the d-dimensional MCCMB.

Index Terms- Broadcasting, mesh-connected computers, mesh-
connected computers with multiple buses, parallel algorithms, prefix
computation, rectangular meshes.

I. INTRODUCTION
The mesh-connected computer (MCC) has been of great interest

to computer researchers. The main advantages of this organization
are threefold: (1) it has a simple and modular connection pattern;
(2) it corresponds to the data format of many applications in matrix
computations, image processing, computational geometry, and graph
algorithms; (3) it is suitable for VLSI implementation [17]. On a 2-D
MCC (2-MCC), each processor is connected to its nearest neighbors
by local links and can route data into one of its four nearest neighbors
in unit time [22]. Based on this organization, parallel machines such
as the Illiac IV [4], [14], [16] have been built. Also, some important
parallel algorithms have been developed in [4], [30], [20], [21], [21,

The main drawback of MCC is its large diameter. On an n 1 l 2 x
n1/2 2-MCC, for example, to route a data may take 12(6) time in
the worst case. To overcome the large diameter problem, it has been
proposed to augment MCC's by adding the processors the ability to
do broadcasting [28], [8], [l], [29], [24], [9], [lo]. The broadcast
mechanism can be implemented using a bus or a collection of buses.
It is assumed that broadcasting takes one unit time and one processor
is permitted to broadcast data on each row bus and each column
bus at a time. Bokhari [8] showed how the 2-MCC with a global
bus for broadcasting can be used to find the maximum in O(n 'I3)
time.

Fig. 1 shows a 4 x 4 2-MCC with multiple buses (2-MCCMB) with
a bus for each row and each column. Processor i , 1 5 i 5 16, can
broadcast data to the other processors in the same row (or column)
via the row (or column) bus. Based on the 2-MCCMB organization,
parallel machines such as the AMT DAP 500 [23] and the GRID array

Manuscript received February 12, 1993; revised August 11, 1993. The work
was supported in part by the National Science Council of R.O.C. under Grant
NSC82-0415-EOl1- 180.

The author is with the Department of Information Management, National
Taiwan Institute of Technology, Taipei, Taiwan 10672, R.O.C.

IEEE Log Number 9406343.

[181, ~ 9 1 .

Fig. 1. A 4 x 4 2-MCCMB.

processor [25] have been built. Prefix computations [6], [7] are an
important kernel of many typical algorithms. On a square 2-MCCMB
with n processors, Prasanna Kumar and Raghavendra [24] and Stout
[29] proposed O(n1/6) parallel algorithms for prefix computations.
Recently, the time bound is reduced from O(n1l6) to O(n ' /*) for the
same computations on a rectangular 2-MCCMB of size n5/' x n3/*
[111, [3]. Also, some improved parallel algorithms for the selection
problem [12], [5] are designed on this model. The main drawback
of MCCMB's is the bus-contension problem for broadcasting data
on buses.

In this paper, we propose a generalized 2-MCCMB (2-GMCCMB)
for the purpose of alleviating the bus-contension problem, keeping the
good features of MCC's and MCCMB's, and increasing the efficiency
of executing some important applications of prefix computatons. A
klnl x kln2 2-GMCCMB is constructed from a klnl x kln2 mesh
organization by enhancing the power of each disjoint nl x n2 sub-
2-MCC with multiple buses (sub-2-MCCMB). The more detailed
description of 2-GMCCMB's will appear in Section 11. Given n data,
Section I11 shows that a prefix computation can be performed in
O (n l / ") time on an n3/5 x n 2 / 5 2-GMCCMB with n processors,
where each disjoint sub-2-MCCMB is of size n1l2 x n3/lo. This time
bound is faster than the previous time bound of O(nl/*) for the same
computation on a rectangular 2-MCCMB of size n5l8 x n3/* [l l] ,
[3]. Furthermore, the time bound of our parallel prefix algorithm can
be further reduced to O(n ' / ") if fewer processors are used. Section
IV shows that omitting the constant factors, a prefix computation
can be performed on a d-dimensional GMCCMB in O (n 1 / (d 2 d + d))
time for any constant d. This time bound is less than the previous
time bound of O(nl / (" ')) [l l] , [3]. Some concluding remarks are
addressed in Section V.

11. GENERALIZED 2-D MESH-CONNECTED
COMPUTERS WITH MULTIPLE BUSES

In this section, for simplicity we define only the 2-GMCCMB and
its properties. As described in Section I, a kl nl x k1 n2 2-GMCCMB
is constructed from a k l n l x k l n 2 mesh by providing multiple buses
in each nl x n2 sub-MCC. Fig. 2 shows an 8 x 8 2-GMCCMB
with four 4 x 4 sub-2-MCCMB's, where wrap-around connections
are not allowed. We designate the top-leftmost processor in each

1045-9219/95$04.00 0 1995 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2. FEBRUARY 1995

sub-2-MCCMB

197

sub-2-MCCMB
~

i

I sub-2-MCCMB 1-1 sub-2-MCCMB 1
I

I
I 1 x 4 H

sub-2-MCCMB be the head processor. We call the 2-GMCCMB a
generalized parallel organization because 2-GMCCMB becomes a
n l x n2 2-MCCMB when selecting A-1 = 1; becomes an k l x k1
2-MCC when selecting nl = n2 = 1. In other words, 2-MCC
and 2-MCCMB are only two extreme cases of the 2-GMCCMB.
In deed, many problems can be solved more efficiently on our
generalized model if the values of n l , kl, and nz are determined
properly.

Two types of data routing can be executed by the processors: route
data to one of the four nearest neighbors; and broadcast data to a row
of processors or a column of processors. At any time only one type of
data routing is allowed. It is not difficult to check that the klnl x k l n 2

2-GMCCMB has diameter 12(kl). For example, to construct a path
of length at most from any processor s in one sub-2-MCCMB to any
processor t in another sub-2-MCCMB, we first construct the path
of length at most O (k 1) time from s to processor U via row buses
or/and horizontal local links, where the column-index of I (is equal
to the column-index of s. Then we construct the path of length at
most O(kl) time from I L to t via column buses or/and vertical local
links. Totally, O(kl) time is required.

In the next section, we will take the prefix computation as a
representative of many typical algorithms which utilize simple and
identical operations in the sub-2-MCCMB's and use local links
between sub-2-MCCMB's to perform complex global task with
surprising speed.

111. PREFIX COMPUTATIONS ON 2-GMCCMB's

Given a set of data SI, X Z , . . . , x, and an associative operator, say
+, find all partial sums SI = 61. S2 = 21 + X Z , ... , s, = cy=l x z .
This problem is known as the prefix sum problem.

A. Segmented Prefix Computation on Each Sub-2-MCCMB

We first partition the 2-GMCCMB with n processors into k
disjoint sub-2-MCCMB's, thus each sub-2-MCCMB contains n / k
processors. Each sub-2-MCCMB will perform its own segmented
prefix computation. For example, the first sub-2-MCCMB wants to
compute the partial sums SI, SZ;. . , and Sn/k. It has been shown
in [l l] , [3] that using an (r ~ / k) ~ / ' x (r ~ / k) ~ / ' sub-2-MCCMB, a
prefix computation for a data set of length n/k can be performed in
O ((n / k) ' / ') time. It first partitions the (n/k)'I' x (n / l ~) ~ / ' sub-

(Block: (n/k) ' l6 x (n /k) ' /6 ; (n /k) l / ' x (r ~ / k) l / ~ blocks)

I block I block I . . . I block I
(Band: (n/k)1/8 x (n/k)"/"; (n /k) l I2 bands)

(a)

12-sub-MCCMB 12-sub-MCCMB 1 . . . 12-sub-MCCMBI

(Pipe: (n / l ~) ~ / ' x &(n/k)'//"; 4 pipes)

(b)

Fig. 3.
(b) Pipes of an fi(n/k)'/' X & (~ z / k) ~ / ' 2-GMCCMB.

(a)Blocks and bands of an (~ z / k) ~ / ~ x (~ 7 / k) ~ / ' sub-2-MCCMB.

2-MCCMB into (n / k) 3 / 4 disjoint (n / k) l / R x (n/k)'/' submeshes,
called blocks. A row of blocks in each sub-2-MCCMB is called a
band. A row of sub-2-MCCMB's in the 2-GMCCMB is called a
pipe. Fig. 3.(a) and (b) illustrate the blocks, bands, and pipes.

In the 2-GMCCMB, the pipes are numbered (starting from 1) in
a row-major order. In each pipe, the sub-2-MCCMB's are numbered
in a row-major order too. Similarly, in each sub-2-MCCMB, the
bands and blocks are numbered in a row-major order, respectively.
In each block, the processors are also numbered in a row-major
order. The input data are initially distributed into the 2-GMCCMB
in an increasing sequence of pipe numbers, sub-2-MCCMB numbers,
band numbers, then block numbers, finally processor numbers. For
example, x2 is held in (pipe 1, sub-2-MCCMB 1, band 1, block 1,
processor 2). Thus, if T, is held in (pipe p, sub-2-MCCMB s, band
a, block b, processor J) , S, depends on the data stored in the first
p - 1 pipes, the first s - 1 sub-2-MCCMB's in pipe p, the first a - 1
bands in sub-2-MCCMB s, the first b - 1 blocks in band a, and the
first j processors in block b.

Basically, the parallel segmented prefix algorithm for each sub-2-
MCCMB consists of three phases. In the first phase, each (n / k) ' l R X

(n / k) ' / * block performs its own prefix computation via only lo-
cal links. There are (n /k) ' / ' rows in one block. Thus, it takes
O ((n / k) ' / *) time to perform the prefix computation for each row
in parallel. The active value is defined as the sum of elements in
each unit. For instance, the active value of a block means the sum of
elements in a block. At this moment the rightmost processor in each
row saves the sum of those corresponding (n /k) ' / ' values, called
the active value of one row. Similarly, it takes O ((n / k) l / S) time
to perform the prefix computation for those active values of rows in
the processors of the rightmost column within one block. Then these
(n / k) 1 / 8 new active values are shifted to the adjacent processors
downward. Finally, associated with the current active value in the
rightmost processor, each row takes O((n / k) ' / *) time to perform the
updation to obtain the desired prefix values. It requires O ((n / k) ' / ')
to route the active value of each block to the top-leftmost processor
of the block, block-header, via local links. Totally, O((n / k) ' l 8) time
is required to finish the prefix computation for each block in parallel.

In the second phase, each (n / k) ' / * x (n / ! ~) ~ / ' band performs
its own prefix computation via row buses and local links. There are
(n/k)'l4 blocks in one band. Naturally, the (n/k)'/* active values
in the block-headers are partitioned into (n /k) '18 groups since there
are (n /k) ' / ' row buses for each band. Therefore, each group of size
(n/k) ' / ' is assigned a row bus for broadcasting data. We broadcast
the (n / k) ' l s active values of each group via the designated row

198 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995

bus one by one to perform the prefix computation of each group.
Simultaneously, the leftmost processors of each row sums up the
broadcast values it receives.

From now on, there are (n /k) ' / ' intermediate values remaining
in the leftmost column. Then it takes O ((n / k) ' / *) time to perform
the prefix computation for those intermediate values in the leftmost
column within one band. These (n/k) ' / ' new active values are
shifted to the adjacent processors downward. Finally, associated with
the current active value in the leftmost processor, each row takes
O ((n / k) ' / *) time to perform the updation to obtain the desired
prefix values. Totally, in this phase, it requires O((n / k) ' / ') time
since each band is performed in parallel.

It requires extra O(1) time to route the active value of each band
to the top leftmost-processor of the band, band-header, via a row
bus, a column bus, and a row bus. That is, first the active value of
band i is routed to column i via a row bus. Second the active value
is routed to the first row of band i via a column bus. Since all the
indices of column buses used are different each other, the routing
is collision-free. Then the active value is routed to the top-leftmost
processor of band i via a row bus. There are still (n /k) ' / ' active
values to be processed.

In the third phase, the (n / k) l / ' active values in the band-headers
are partitioned into (r ~ / k) ~ / ~ groups since there are (~ z / k) ~ / * column
buses in the sub-2-MCCMB. Thus each group of size (n / k) ' / * is
assigned a column bus for broadcasting data. Similar to the second
phase, the prefix computation for these (n/k) ' / ' active values in the
band-headers can be accomplished in O((n/k)'/') time. As a result,
the segmented prefix computation for each sub-2-MCCMB can be
performed in O((n / k) ' / *) time. It requires extra O(1) time to route
the active value of each sub-2-MCCMB to the head processor, via a
row bus and a column bus.

B. The Algorithm

three steps is described as follows.
Our parallel prefix algorithm on the 2-GMCCMB consisting of

Step 1 (Segmented prefix computation for each sub-2-MCCMB):
Perform the prefix computation in parallel for each sub-2-MCCMB.
This step consisting of three phases has been described in Section
111-A and requires O((n/k)'/*) time.
Step 2 (Prefix computation for the active values of all sub-
2-MCCMB's): Associated with the active values in the head
processors of sub-2-MCCMB's, perform the prefix computation for
these active values via row and column buses and local links. This
step is similar to the first phase of Step 1 and requires O(6) time.
Step 3 (Updating each sub-2-MCCMB): Perform the updation in

parallel for each sub-2-MCCMB via row buses and column buses.
This step needs O(1) time.
Based on the above three steps, we have the following theorem.
Theorem 3.1: Given n data, a prefix computation can be

performed in O ((n / k) ' / * + &) time using a &(n/k)'/* x
& (7 ~ / k) ~ / ' 2-GMCCMB, where each sub-2-MCCMB is of
dimensions (n /k) ' l* x (7 1 / k) ~ / * .

We are going to decide the values of k in order to minimize the
time bound required.

C. Analysis

By Theorem 3.1, the minimal time bound can be obtained when the
equality, (n /k) ' / ' = fi, holds for some k . Thus selecting k = nl/',
we have the following theorem.

Theorem 3.2: A prefix computation can be performed in O(n'/' ')
time using an n3/' x n2/' 2-GMCCMB, where each sub-2-MCCMB
is of dimensions n1l2 x n3/''.

We consider a variant of the prefix computation above. Assuming
that we assign each processor a local memory with size O(n' /") .
Every processor in the 2-GMCCMB of dimensions n6/" x n4/"
first computes the prefix sums of its own data of size O(nl / l l)
sequentially. Thisstep needs O(n' / ' ') time. At the end of this step,
the register of each processor holds its partial sum. For example, the
register of the first processor holds the partial sum S,l/ll and the
register of the last processor holds the partial sum ~ ~ = = n - n l ~ l l + l 2,.

From now on, the algorithm is the same as the algorithm described
in Section 111-B. By Theorem 3.2, it is easy to see that this step
also needs 0(n1/"). Finally, every processor takes O(n' /") time
to update its own data of size O(n' /") . Then we have the following
theorem immediately.

Theorem 3.3: A prefix computation can be performed in 0(n1/")
time using an n6/" x n4/" 2-GMCCMB, where each processor
has local memory of size O(n' /") and each sub-2-MCCMB is of
dimensions n'/'l x n3/".

IV. EXTENSION TO DIMENSIONAL GMCCMB's
We first consider the 3-D GMCCMB. It has been shown in [111,

[3] that a prefix computation can be performed in O (n ' / 2 4) time
using an nl3lz4 x n7/24 x n1l6 3-MCCMB, where the 3-MCCMB is
partitioned into blocks of size n1jZ4 x nilz4 x n 1 / 2 4 . Furthermore,
we show the result of 3-GMCCMB's as follows.

Theorem 4.1: A prefix computation can be performed in O(n' /27)
time using an n14/27 x n8/27 x n5lz7 3-GMCCMB, where the
3-GMCCMB is partitioned into blocks of size n1/27 x n1/27 x n1/27.

Pro08 Assuming that the 3-GMCCMB is partitioned into k
disjoint sub-3-MCCMB's, and each sub-3-MCCMB is of size n / k .
The derivation of our parallel prefix algorithm is a straightforward
extension of that described in Section 111-B. By the result of 3-
MCCMB's in [l l] , [3], the segmented prefix computation for each
sub-3-MCCMB can be accomplished in O((n / k) ' / ") time using
a k ' /3 (n /k) '3 /24 x l ~ ' / ~ (n / k) ~ / ' ~ x k 1 / 3 (n / k) ' / 6 3-GMCCMB,
where the 3-GMCCMB is partitioned into blocks of size (n / k) ' / 2 4 x

By the similar arguments in Step 2 of the algorithm (see Section
111-B), the prefix computation for the active values in the head
processors of all sub-3-MCCMB's can be performed in O (~ C ' / ~) time.
It takes O(1) time to update each sub-3-MCCMB via row buses and
column buses to obtain the desired prefix values. Totally, it requires
O ((~ L / L) ' / ~ ~ + k 1 / 3) time. If we select k = n1I9, then the equality,
(~ t / k) ' / ' ~ = holds. We complete the proof. Q.E.D.

When d > 3, our results are mostly of theoretical interest. In
general, our result can be extended to the d-GMCCMB. Omitting
the constant factors, it has been shown in [l l] , [3] that a prefix
computation can be performed in O (n ' / (d Z d) time for any constant

d-MCCMB, where the d-MCCMB is partitioned into blocks of size
n ' / (d z d) x nil(dzd) x ... x n ' / (d 2 d) . By the analysis of Theorem
4.1, we have the result of d-GMCCMB as follows.

(n / k) ' / 2 4 x (n / k) ' / 2 4 .

d using an n (2 d - ' d + l) / (d z d) n (2 d - z d + l) / (d ~ d) ~ . . . ,(d+1)/(dzd)

Theorem 4.2: Using an

, (d Z d - ' + 2) / (d Z d + d)

, (d z d - 2 + 2) l (d z d + d) . . . , (d + Z) / (d Z d + d)

, l / (d z d + d) + z d / (z d + l) (2 d - 2 d + l) / (d Z d) . . .
(= nl/(d2d+d)+2d/(2d+l)(2d-'d+l)/(d2d)

, l / (d z d + d) + z d / (2 d + l) (d + l) / (d 2 d) ~ ~-GMCCMB

where the d-GMCCMB is partitioned into blocks of size n' / (d2d+d) x

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 2, FEBRUARY 1995 199

n1/ (d2d+d) x . . . x n 1 / (d 2 d + “) , a prefix computation can be per-
formed in a time bound of for any constant d: here,
we omit the constant factors. This time bound is less than the time
bound in [ll], [3] on the d-MCCMB.

V. CONCLUSION
This paper has presented efficient parallel prefix algorithms on

newly proposed d-GMCCMB’s. Our parallel prefix algorithms are
faster than the parallel algorithms for the same computations on
d-MCCMB’s or d-MCC’s.

We now consider problems in solving linear recurrences and
tridiagonal systems on our model. It was shown in [I51 that the
problem of solving linear recurrences can be transformed into the
prefix-computation problem. In [26], [27], Stone showed that the
problem of solving tridiagonal systems can be transformed into
the prefix-computation problem too. Therefore, these two important
problems can be solved in O(n1’l0) on our n3l5 xn2/’ 2-GMCCMB.
The results are faster than the known algorithms for the same
problems on 2-MCCMB’s or 2-MCC’s.

On n3/’ x n’l8 2-MCCMB’s, Chen et al. [12], designed a fast
median-finding algorithm and its application to two-variable linear
programming with time complexity O(nlls log n) . On the same 2-
MCCMB’s, Bhagavathi et al. [5], designed a fast selection algorithm
with the same time complexity. Recently, we have successfully de-
signed a fast selection algorithm with time complexity O(nl”olog n)
on n3/’ x n2/ ’ 2-GMCCMB’s [13].

In fact, our results can be applied to many important applications
to achieve the better performance. These applications include as
comparison between two numbers, data distribution, index computa-
tion, observer problem, connected components in image processing,
maximum, semigroup computations, median row, lexical analysis,
string matching, etc. [241, 1161, [61, [71.

ACKNOWLEDGMENT

The author is indebted to the three reviewers for making some
valuable suggestions and corrections that lead to the improved version
of the paper.

REFERENCES

A. Aggarwal, “Optimal bounds for finding maximum on array of
processors with k global buses,” IEEE Trans. Comput., vol. C-35, no.
1, pp. 62-64, Jan. 1986.
M. J. Atallah and S. R. Kosaraju, “Graph problems on a mesh-connected
processor array,” J. Assoc. Comput. Mach., vol. 31, no. 3, pp. 649467,
July 1984.
A. Bar-Noy and D. Peleg, “Square meshes are not always optimal,’’
IEEE Trans. Comput., vol. C-40, no. 2, pp. 196204, Feb. 1991.
G. H. Barnes et al., “The Illiac IV computer,” IEEE Trans. Comput.,

D. Bhagavathi et al., “Selection on rectangular meshes with multiple
broadcasting,” BIT, vol. 33, no. 1, pp. 7-14, 1993.
G. E. Blelloch, “Scans as primitive operations,” IEEE Trans. Comput.,
vol. C-38, no. 11, pp. 15261538, Nov. 1989.
-, “Prefix sums and their applications,” in Synthesis of Parallel
Algorithms, J. H. Reif, Ed. San Mateo, CA: Morgan Kaufmann, 1993,
Chapter I, pp. 3 5 4 0 .
S. H. Bokhari, “MAX: An algorithm for finding maximum in an array
processor with a global bus,” IEEE Trans. Comput., vol. C-33, no. 2,
pp. 133-139, Feb. 1984.
D. A. Carlson, “Modified mesh-connected parallel computers,” IEEE
Trans. Comput., vol. C-37, no. IO, pp. 1315-1321, Oct. 1988.
-, “Solving linear recurrence systems on mesh-connected computers
with multiple global buses,” J. Parallel and Distribut. Compur., vol. 8,

vol. C-17, pp. 746-757, 1968.

pp. 89-95, 1990.

Y. C. Chen et al., “Designing efficient parallel algorithms on mesh-
connected computers with multiple broadcasting,” IEEE Tians. Parallel
and Distribut. Syst., vol. I , no. 2, pp. 241-246, Apr. 1990.
Y. C. Chen, W. T. Chen and G. H. Chen, “Efficient median finding and
its application to two-variable linear programming on mesh-connected
computers with multiple broadcasting,” J. Parallel and Distribut. Com-

K. L. Chung, “Fast selection algorithms on generalized mesh-connected
computers with multiple buses,” unpublished manuscript.
K. Hwang and F. Briggs, Computer Architecture and Parallel Process-
ing. New York: McGraw-Hill, 1984.
P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Trans.
Comput., vol. C-22, no. 8, pp. 786793, Aug. 1973.
F. T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, and Hypercubes. Los Altos, CA: Morgan Kaufmann,
1992.
C. Mead and L. Conway, Introduction to VLSI Systems. Reading, MA:
Addison-Wesley, 1980.
R. Miller and Q. F. Stout, “Geometric algorithms for digitized pictures
on a mesh-connected computer,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. PAMI-7, pp. 216228, Mar. 1985.
-, “Mesh computer algorithms for computational geometry,” IEEE
Trans. Comput., vol. C-38, no. 3, pp. 321-340, Mar. 1989.
D. Nassimi and S. Sahni, “Bitonic sort on a mesh-connected parallel
computer,” IEEE Trans. Comput., vol. C-28, no. 1, pp. 2-7, Jan. 1979.
__, “Finding connected components and connected ones on a mesh-
connected parallel computer,” SIAM J. Comput., vol. 9, pp. 744-757,
Nov. 1980.
-, “Data broadcasting in SIMD computers,” IEEE Trans. Comput.,
vol. C-30, no. 2, pp. 101-107, Feb. 1981.
D. Parkinson, D. J. Hunt and K. S. MacQueen, “The AMT DAP 500,” in
Proc. 33rd IEEE Comput. Con$, San Francisco, CA, 1988, pp. 196-199.
V. K. Prasanna Kumar and C. S. Raghavendra, “Array processor with
multiple broadcasting,” J. Parallel and Distribut. Comput., vol. 2, pp.
173-190, 1987.
I. N. Robinson and W. R. Moore, “A parallel processing array architec-
ture and its implementation in silicon,” in Proc. IEEE Custom Integrated
Circuits Con$, Rochester, NY, 1982.
H. S. Stone, “An efficient algorithm for the solution of a tridiagonal
linear system of equations,” J. Assoc. Comput. Mach., vol. 20, no. 1,

- , “Parallel tridiagonal equation solvers,” ACM Trans. Mathematical
Software, vol. 1, no. 4, pp. 289-307, 1975.
Q. F. Stout, “Mesh-connected computers with broadcasting,” IEEE
Trans. Comput., vol. C-32, no. 9, pp. 826830, Sept. 1983.
__, “Meshes with multiple buses,’’ in Proc. 27th IEEE Symp. Foun-
dations Comput. Sci., pp. 264273, 1986.
C. D. Thompson and H. T. Kung, “Sorting on a mesh-connected parallel
computer,” Commun. Assoc. Comput. Mach., vol. 20, pp. 263-271, Apr.
1977.

put., vol. 15, pp. 79-84, 1992.

pp. 27-38, 1973.

