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Prefix Computations on a Generalized 
Mesh-Connected Computer with Multiple Buses 

Kuo-Liang Chung 

Abstract- The mesh-connected computer with multiple buses (MC- 
CMB) is a well-known parallel organization, providing broadcast facilities 
in each row and each column. In this paper, we propose a 2-D generalized 
MCCMB (2-GMCCMB) for the purpose of increasing the efficiency of 
executing some important applications of prefix computations such as 
solving linear recurrences and tridiagonal systems, etc. A klnl x k l n 2  
2-GMCCMB is constructed from a IC1 n 1 x k.1 n2 mesh organization by 
enhancing the power of each disjoint n 1 x n2 submesh with multiple buses 
(sub-2-MCCMB). Given n data, a prefix computation can be performed 
in O(n'/'O) time on an n3/5 x I Z ~ / ~  2-GMCCMB, where each disjoint 
sub-2-MCCMB is of size n l / *  x n 3 / l o .  This time bound is faster than 
the previous time bound of O ( I Z ' / * )  for the same computation on an 
n5/' x n3/' 2-MCCMB. Furthermore, the time bound of our parallel 
prefix algorithm can be further reduced to O ( n l l " )  if fewer processors 
are used. Our result can be extended to the d-dimensional GMCCMB, 
giving a time bound of O ( n ' / ( d Z d + d ) )  for any constant d ;  here, we omit 
the constant factors. This time bound is less than the previous time bound 
of O ( I I ' / ( ~ ' ~ ) )  on the d-dimensional MCCMB. 

Index Terms- Broadcasting, mesh-connected computers, mesh- 
connected computers with multiple buses, parallel algorithms, prefix 
computation, rectangular meshes. 

I. INTRODUCTION 
The mesh-connected computer (MCC) has been of great interest 

to computer researchers. The main advantages of this organization 
are threefold: (1) it has a simple and modular connection pattern; 
(2) it corresponds to the data format of many applications in matrix 
computations, image processing, computational geometry, and graph 
algorithms; (3) it is suitable for VLSI implementation [17]. On a 2-D 
MCC (2-MCC), each processor is connected to its nearest neighbors 
by local links and can route data into one of its four nearest neighbors 
in unit time [22]. Based on this organization, parallel machines such 
as the Illiac IV [4], [14], [16] have been built. Also, some important 
parallel algorithms have been developed in [4], [30], [20], [21], [21, 

The main drawback of MCC is its large diameter. On an n 1 l 2  x 
n1/2 2-MCC, for example, to route a data may take 12( 6) time in 
the worst case. To overcome the large diameter problem, it has been 
proposed to augment MCC's by adding the processors the ability to 
do broadcasting [28], [8], [l],  [29], [24], [9], [lo]. The broadcast 
mechanism can be implemented using a bus or a collection of buses. 
It is assumed that broadcasting takes one unit time and one processor 
is permitted to broadcast data on each row bus and each column 
bus at a time. Bokhari [8] showed how the 2-MCC with a global 
bus for broadcasting can be used to find the maximum in O( n 'I3 ) 
time. 

Fig. 1 shows a 4 x 4 2-MCC with multiple buses (2-MCCMB) with 
a bus for each row and each column. Processor i ,  1 5 i 5 16, can 
broadcast data to the other processors in the same row (or column) 
via the row (or column) bus. Based on the 2-MCCMB organization, 
parallel machines such as the AMT DAP 500 [23] and the GRID array 
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Fig. 1. A 4 x 4 2-MCCMB. 

processor [25] have been built. Prefix computations [6], [7] are an 
important kernel of many typical algorithms. On a square 2-MCCMB 
with n processors, Prasanna Kumar and Raghavendra [24] and Stout 
[29] proposed O( n1/6) parallel algorithms for prefix computations. 
Recently, the time bound is reduced from O(  n1l6) to O(n ' /* )  for the 
same computations on a rectangular 2-MCCMB of size n5/' x n3/*  
[ 111, [3]. Also, some improved parallel algorithms for the selection 
problem [12], [5] are designed on this model. The main drawback 
of MCCMB's is the bus-contension problem for broadcasting data 
on buses. 

In this paper, we propose a generalized 2-MCCMB (2-GMCCMB) 
for the purpose of alleviating the bus-contension problem, keeping the 
good features of MCC's and MCCMB's, and increasing the efficiency 
of executing some important applications of prefix computatons. A 
klnl x kln2 2-GMCCMB is constructed from a klnl  x kln2 mesh 
organization by enhancing the power of each disjoint nl x n2 sub- 
2-MCC with multiple buses (sub-2-MCCMB). The more detailed 
description of 2-GMCCMB's will appear in Section 11. Given n data, 
Section I11 shows that a prefix computation can be performed in 
O ( n l / " )  time on an n3/5  x n 2 / 5  2-GMCCMB with n processors, 
where each disjoint sub-2-MCCMB is of size n1l2 x n3/lo. This time 
bound is faster than the previous time bound of O(nl/*) for the same 
computation on a rectangular 2-MCCMB of size n5l8  x n3/* [ l l ] ,  
[3]. Furthermore, the time bound of our parallel prefix algorithm can 
be further reduced to O(n ' / " )  if fewer processors are used. Section 
IV shows that omitting the constant factors, a prefix computation 
can be performed on a d-dimensional GMCCMB in O ( n 1 / ( d 2 d + d ) )  
time for any constant d. This time bound is less than the previous 
time bound of O(nl / (" ' ) )  [ l l ] ,  [3]. Some concluding remarks are 
addressed in Section V. 

11. GENERALIZED 2-D MESH-CONNECTED 
COMPUTERS WITH MULTIPLE BUSES 

In this section, for simplicity we define only the 2-GMCCMB and 
its properties. As described in Section I, a kl nl x k1 n2 2-GMCCMB 
is constructed from a k l n l  x k l n 2  mesh by providing multiple buses 
in each nl x n2 sub-MCC. Fig. 2 shows an 8 x 8 2-GMCCMB 
with four 4 x 4 sub-2-MCCMB's, where wrap-around connections 
are not allowed. We designate the top-leftmost processor in each 
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sub-2-MCCMB be the head processor. We call the 2-GMCCMB a 
generalized parallel organization because 2-GMCCMB becomes a 
n l  x n2 2-MCCMB when selecting A-1 = 1; becomes an k l  x k1 
2-MCC when selecting nl = n2 = 1. In other words, 2-MCC 
and 2-MCCMB are only two extreme cases of the 2-GMCCMB. 
In deed, many problems can be solved more efficiently on our 
generalized model if the values of n l ,  kl, and nz are determined 
properly. 

Two types of data routing can be executed by the processors: route 
data to one of the four nearest neighbors; and broadcast data to a row 
of processors or a column of processors. At any time only one type of 
data routing is allowed. It is not difficult to check that the klnl x k l  n 2  

2-GMCCMB has diameter 12( kl ). For example, to construct a path 
of length at most from any processor s in one sub-2-MCCMB to any 
processor t in another sub-2-MCCMB, we first construct the path 
of length at most O ( k 1 )  time from s to processor U via row buses 
or/and horizontal local links, where the column-index of I (  is equal 
to the column-index of s. Then we construct the path of length at 
most O( kl ) time from I L  to t via column buses or/and vertical local 
links. Totally, O( kl ) time is required. 

In the next section, we will take the prefix computation as a 
representative of many typical algorithms which utilize simple and 
identical operations in the sub-2-MCCMB's and use local links 
between sub-2-MCCMB's to perform complex global task with 
surprising speed. 

111. PREFIX COMPUTATIONS ON 2-GMCCMB's 

Given a set of data SI, X Z ,  . . . , x, and an associative operator, say 
+, find all partial sums SI = 61. S2 = 21 + X Z ,  ... , s, = cy=l x z .  
This problem is known as the prefix sum problem. 

A.  Segmented Prefix Computation on Each Sub-2-MCCMB 

We first partition the 2-GMCCMB with n processors into k 
disjoint sub-2-MCCMB's, thus each sub-2-MCCMB contains n / k  
processors. Each sub-2-MCCMB will perform its own segmented 
prefix computation. For example, the first sub-2-MCCMB wants to 
compute the partial sums SI, SZ;. . ,  and Sn/k.  It has been shown 
in [ l l ] ,  [3] that using an ( r ~ / k ) ~ / '  x ( r ~ / k ) ~ / '  sub-2-MCCMB, a 
prefix computation for a data set of length n/k can be performed in 
O ( ( n / k ) ' / ' )  time. It first partitions the (n/k)'I'  x ( n / l ~ ) ~ / '  sub- 

(Block: (n/k) ' l6  x (n /k ) ' /6 ;  (n /k ) l / '  x ( r ~ / k ) l / ~  blocks) 

I block I block I . . . I block I 
(Band: (n/k)1/8 x (n/k)"/"; (n /k) l I2  bands) 

(a) 

12-sub-MCCMB 12-sub-MCCMB 1 . . .  12-sub-MCCMBI 
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Fig. 3. 
(b) Pipes of an fi(n/k)'/' X & ( ~ z / k ) ~ / '  2-GMCCMB. 

(a)Blocks and bands of an ( ~ z / k ) ~ / ~  x ( ~ 7 / k ) ~ / '  sub-2-MCCMB. 

2-MCCMB into ( n / k ) 3 / 4  disjoint ( n / k ) l / R  x (n/k)'/' submeshes, 
called blocks. A row of blocks in each sub-2-MCCMB is called a 
band. A row of sub-2-MCCMB's in the 2-GMCCMB is called a 
pipe. Fig. 3.(a) and (b) illustrate the blocks, bands, and pipes. 

In the 2-GMCCMB, the pipes are numbered (starting from 1) in 
a row-major order. In each pipe, the sub-2-MCCMB's are numbered 
in a row-major order too. Similarly, in each sub-2-MCCMB, the 
bands and blocks are numbered in a row-major order, respectively. 
In each block, the processors are also numbered in a row-major 
order. The input data are initially distributed into the 2-GMCCMB 
in an increasing sequence of pipe numbers, sub-2-MCCMB numbers, 
band numbers, then block numbers, finally processor numbers. For 
example, x2 is held in (pipe 1, sub-2-MCCMB 1, band 1, block 1, 
processor 2). Thus, if T, is held in (pipe p, sub-2-MCCMB s, band 
a, block b, processor J ) ,  S, depends on the data stored in the first 
p - 1 pipes, the first s - 1 sub-2-MCCMB's in pipe p, the first a - 1 
bands in sub-2-MCCMB s, the first b - 1 blocks in band a, and the 
first j processors in block b. 

Basically, the parallel segmented prefix algorithm for each sub-2- 
MCCMB consists of three phases. In the first phase, each ( n / k ) ' l R  X 

( n / k ) ' / *  block performs its own prefix computation via only lo- 
cal links. There are (n /k) ' / '  rows in one block. Thus, it takes 
O ( ( n / k ) ' / * )  time to perform the prefix computation for each row 
in parallel. The active value is defined as the sum of elements in 
each unit. For instance, the active value of a block means the sum of 
elements in a block. At this moment the rightmost processor in each 
row saves the sum of those corresponding (n /k) ' / '  values, called 
the active value of one row. Similarly, it takes O ( ( n / k ) l / S )  time 
to perform the prefix computation for those active values of rows in 
the processors of the rightmost column within one block. Then these 
( n / k ) 1 / 8  new active values are shifted to the adjacent processors 
downward. Finally, associated with the current active value in the 
rightmost processor, each row takes O( ( n / k ) ' / * )  time to perform the 
updation to obtain the desired prefix values. It requires O ( ( n / k ) ' / ' )  
to route the active value of each block to the top-leftmost processor 
of the block, block-header, via local links. Totally, O( ( n / k ) ' l 8 )  time 
is required to finish the prefix computation for each block in parallel. 

In the second phase, each ( n / k ) ' / *  x ( n / ! ~ ) ~ / '  band performs 
its own prefix computation via row buses and local links. There are 
( n/k)'l4 blocks in one band. Naturally, the (n/k)'/* active values 
in the block-headers are partitioned into (n /k) '18  groups since there 
are (n /k ) ' / '  row buses for each band. Therefore, each group of size 
(n/k) ' / '  is assigned a row bus for broadcasting data. We broadcast 
the ( n / k ) ' l s  active values of each group via the designated row 
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bus one by one to perform the prefix computation of each group. 
Simultaneously, the leftmost processors of each row sums up the 
broadcast values it receives. 

From now on, there are (n /k ) ' / '  intermediate values remaining 
in the leftmost column. Then it takes O ( ( n / k ) ' / * )  time to perform 
the prefix computation for those intermediate values in the leftmost 
column within one band. These (n/k) ' / '  new active values are 
shifted to the adjacent processors downward. Finally, associated with 
the current active value in the leftmost processor, each row takes 
O ( ( n / k ) ' / * )  time to perform the updation to obtain the desired 
prefix values. Totally, in this phase, it requires O( ( n / k ) ' / ' )  time 
since each band is performed in parallel. 

It requires extra O( 1) time to route the active value of each band 
to the top leftmost-processor of the band, band-header, via a row 
bus, a column bus, and a row bus. That is, first the active value of 
band i is routed to column i via a row bus. Second the active value 
is routed to the first row of band i via a column bus. Since all the 
indices of column buses used are different each other, the routing 
is collision-free. Then the active value is routed to the top-leftmost 
processor of band i via a row bus. There are still (n /k ) ' / '  active 
values to be processed. 

In the third phase, the ( n / k ) l / '  active values in the band-headers 
are partitioned into ( r ~ / k ) ~ / ~  groups since there are ( ~ z / k ) ~ / *  column 
buses in the sub-2-MCCMB. Thus each group of size ( n / k ) ' / *  is 
assigned a column bus for broadcasting data. Similar to the second 
phase, the prefix computation for these (n/k) ' / '  active values in the 
band-headers can be accomplished in O( (n/k)'/') time. As a result, 
the segmented prefix computation for each sub-2-MCCMB can be 
performed in O( ( n / k ) ' / * )  time. It requires extra O( 1) time to route 
the active value of each sub-2-MCCMB to the head processor, via a 
row bus and a column bus. 

B. The Algorithm 

three steps is described as follows. 
Our parallel prefix algorithm on the 2-GMCCMB consisting of 

Step 1 (Segmented prefix computation for each sub-2-MCCMB): 
Perform the prefix computation in parallel for each sub-2-MCCMB. 
This step consisting of three phases has been described in Section 
111-A and requires O( (n/k)'/*) time. 
Step 2 (Prefix computation for the active values of all sub- 
2-MCCMB's): Associated with the active values in the head 
processors of sub-2-MCCMB's, perform the prefix computation for 
these active values via row and column buses and local links. This 
step is similar to the first phase of Step 1 and requires O(  6) time. 
Step 3 (Updating each sub-2-MCCMB): Perform the updation in 

parallel for each sub-2-MCCMB via row buses and column buses. 
This step needs O(1) time. 
Based on the above three steps, we have the following theorem. 
Theorem 3.1: Given n data, a prefix computation can be 

performed in O ( ( n / k ) ' / *  + &) time using a &(n/k)'/* x 
& ( 7 ~ / k ) ~ / '  2-GMCCMB, where each sub-2-MCCMB is of 
dimensions (n /k ) ' l*  x ( 7 1 / k ) ~ / * .  

We are going to decide the values of k in order to minimize the 
time bound required. 

C. Analysis 

By Theorem 3.1, the minimal time bound can be obtained when the 
equality, (n /k ) ' / '  = fi, holds for some k .  Thus selecting k = nl/', 
we have the following theorem. 

Theorem 3.2: A prefix computation can be performed in O(n'/' ')  
time using an n3/' x n2/' 2-GMCCMB, where each sub-2-MCCMB 
is of dimensions n1l2 x n3/''.  

We consider a variant of the prefix computation above. Assuming 
that we assign each processor a local memory with size O(n' /") .  
Every processor in the 2-GMCCMB of dimensions n6/" x n4/" 
first computes the prefix sums of its own data of size O(nl / l l )  
sequentially. Thisstep needs O(n' / ' ' )  time. At the end of this step, 
the register of each processor holds its partial sum. For example, the 
register of the first processor holds the partial sum S,l/ll and the 
register of the last processor holds the partial sum ~ ~ = = n - n l ~ l l + l  2,. 

From now on, the algorithm is the same as the algorithm described 
in Section 111-B. By Theorem 3.2, it is easy to see that this step 
also needs 0(n1/"). Finally, every processor takes O(n' /")  time 
to update its own data of size O(n' /" ) .  Then we have the following 
theorem immediately. 

Theorem 3.3: A prefix computation can be performed in 0(n1/") 
time using an n6/" x n4/" 2-GMCCMB, where each processor 
has local memory of size O(n' /" )  and each sub-2-MCCMB is of 
dimensions n'/'l x n3/".  

IV. EXTENSION TO  DIMENSIONAL GMCCMB's 
We first consider the 3-D GMCCMB. It has been shown in [ 111, 

[3] that a prefix computation can be performed in O ( n ' / 2 4 )  time 
using an nl3lz4 x n7/24 x n1l6 3-MCCMB, where the 3-MCCMB is 
partitioned into blocks of size n1jZ4  x nilz4 x n 1 / 2 4 .  Furthermore, 
we show the result of 3-GMCCMB's as follows. 

Theorem 4.1: A prefix computation can be performed in O(n' /27 )  
time using an n14/27 x n8/27 x n5lz7 3-GMCCMB, where the 
3-GMCCMB is partitioned into blocks of size n1/27 x n1/27 x n1/27. 

Pro08 Assuming that the 3-GMCCMB is partitioned into k 
disjoint sub-3-MCCMB's, and each sub-3-MCCMB is of size n / k .  
The derivation of our parallel prefix algorithm is a straightforward 
extension of that described in Section 111-B. By the result of 3- 
MCCMB's in [ l l ] ,  [3], the segmented prefix computation for each 
sub-3-MCCMB can be accomplished in O( ( n / k ) ' / " )  time using 
a k ' /3 (n /k ) '3 /24  x l ~ ' / ~ ( n / k ) ~ / ' ~  x k 1 / 3 ( n / k ) ' / 6  3-GMCCMB, 
where the 3-GMCCMB is partitioned into blocks of size ( n / k ) ' / 2 4  x 

By the similar arguments in Step 2 of the algorithm (see Section 
111-B), the prefix computation for the active values in the head 
processors of all sub-3-MCCMB's can be performed in O ( ~ C ' / ~ )  time. 
It takes O( 1) time to update each sub-3-MCCMB via row buses and 
column buses to obtain the desired prefix values. Totally, it requires 
O ( ( ~ L / L ) ' / ~ ~  + k 1 / 3 )  time. If we select k = n1I9, then the equality, 
( ~ t / k ) ' / ' ~  = holds. We complete the proof. Q.E.D. 

When d > 3, our results are mostly of theoretical interest. In 
general, our result can be extended to the d-GMCCMB. Omitting 
the constant factors, it has been shown in [ l l ] ,  [3] that a prefix 
computation can be performed in O ( n ' / ( d Z d )  time for any constant 

d-MCCMB, where the d-MCCMB is partitioned into blocks of size 
n ' / ( d z d )  x nil(dzd) x ... x n ' / ( d 2 d ) .  By the analysis of Theorem 
4.1, we have the result of d-GMCCMB as follows. 

( n / k ) ' / 2 4  x ( n / k ) ' / 2 4 .  

d using an n ( 2 d - ' d + l ) / ( d z d )  n ( 2 d - z d + l ) / ( d ~ d ) ~ .  . . ,(d+1)/(dzd) 

Theorem 4.2: Using an 

, ( d Z d - ' + 2 ) / ( d Z d + d )  

, ( d z d - 2 + 2 ) l ( d z d + d )  . . . , ( d + Z ) / ( d Z d + d )  

, l / ( d z d + d ) + z d / ( z d + l ) ( 2 d - 2 d + l ) / ( d Z d )  . . . 
(= nl/(d2d+d)+2d/(2d+l)(2d-'d+l)/(d2d) 

, l / ( d z d + d ) + z d / ( 2 d + l ) ( d + l ) / ( d 2 d ) ~  ~-GMCCMB 

where the d-GMCCMB is partitioned into blocks of size n' / (d2d+d)  x 
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n1/ (d2d+d)  x . . . x n 1 / ( d 2 d + “ ) ,  a prefix computation can be per- 
formed in a time bound of for any constant d: here, 
we omit the constant factors. This time bound is less than the time 
bound in [ll], [3] on the d-MCCMB. 

V. CONCLUSION 
This paper has presented efficient parallel prefix algorithms on 

newly proposed d-GMCCMB’s. Our parallel prefix algorithms are 
faster than the parallel algorithms for the same computations on 
d-MCCMB’s or d-MCC’s. 

We now consider problems in solving linear recurrences and 
tridiagonal systems on our model. It was shown in [I51 that the 
problem of solving linear recurrences can be transformed into the 
prefix-computation problem. In [26], [27], Stone showed that the 
problem of solving tridiagonal systems can be transformed into 
the prefix-computation problem too. Therefore, these two important 
problems can be solved in O( n1’l0) on our n3l5 xn2/’ 2-GMCCMB. 
The results are faster than the known algorithms for the same 
problems on 2-MCCMB’s or 2-MCC’s. 

On n3/’ x n’l8 2-MCCMB’s, Chen et al. [12], designed a fast 
median-finding algorithm and its application to two-variable linear 
programming with time complexity O(nlls log n ) .  On the same 2- 
MCCMB’s, Bhagavathi et al. [5], designed a fast selection algorithm 
with the same time complexity. Recently, we have successfully de- 
signed a fast selection algorithm with time complexity O(nl”olog n )  
on n3/’ x n2/ ’  2-GMCCMB’s [13]. 

In fact, our results can be applied to many important applications 
to achieve the better performance. These applications include as 
comparison between two numbers, data distribution, index computa- 
tion, observer problem, connected components in image processing, 
maximum, semigroup computations, median row, lexical analysis, 
string matching, etc. [241, 1161, [61, [71. 
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